LINEAR ALGEBRA AND VECTOR ANALYSIS

$\mathrm{MATH}\ 22\mathrm{B}$

Unit 14: Keywords for First Hourly

This is a bit of a checklist. Make your own list. But here is a checklist which tries to be comprehensive. Check off the topics you know and check back with things you do not recall. You will need to have the following on your finger tips.

Theorems
Cauchy-Schwarz $ v \cdot w \leq v w $ in general for $M(n,m)$
Pythagoras $c^2 = a^2 + b^2$ for any inner product space
Al Khashi $c^2 = a^2 + b^2 - 2ab\cos(\alpha)$ for any triangle
Uniqueness of row reduction: $rref(A)$ is unique in $M(n,m)$
The dot product formula $v \cdot w = v w \cos(\alpha)$
The cross product formula $ v \times w = v w \sin(\alpha)$
Image of transpose $im(A^T)$ is kernel $ker(A)$
Cauchy-Binet formula $ v \times w ^2 = v ^2 w ^2 - (v \cdot w)^2$
Arc length $\int_{a}^{b} r'(t) dt$ for differentiable r
Curvature formulas $ T' / r' = r' \times r'' / r' ^3$
Euler formula $e^{it} = \cos(t) + i\sin(t)$ and special case
Distortion formula $\sqrt{\det(dr^T dr)} = r_u \times r_v $ for $r : \mathbb{R}^2 \to \mathbb{R}^3$

ns and notation
liction
pictures
etric problems
ction
s of intuition
ted verification
liction pictures etric problems ction s of intuition

Algorithms

Find the angle between vectors or matrices
I find the angle between vectors of matrices
Find the area of parallelogram
Find the volume of parallelepiped
Row reduce a matrix in $M(n,m)$
Get position from velocity or acceleration
Find the vector perpendicular to a plane

Linear Algebra and Vector Analysis

Find the length of a curve or matrix Find the curvature at some point

Compute with complex numbers

Switch between coordinate systems

Compute the distortion factor

Get distances between objects

Obje	cts
	Matrices A
	Column- and row vectors
	Parametrized curves $r(t) = [x(t), y(t), z(t)]^T$
	Parametrized surfaces $r(u, v) = [x(u, v), y(u, v), z(u, v)]^T$
	Functions $f(x, y, z)$.
	Level surfaces $f(x, y, z) = d$
	Linear manifolds $\{x Ax = d\}$
	Quadratic manifolds $\{x x^T B x + A x = d\}$
	Kernel of a linear map $\{x Ax = 0\}$
	Image of a linear map $\{Ax x \in \mathbb{R}^n\}$

Differentiation

Velocity r'
Acceleration r''
Jerk r'''
Free fall: $r'' = v$ given
TNB frame, $T = r'/ r' , N = T'/ T' , B = T \times N$
derivative $dr \in M(n,m)$ of a map $\mathbb{R}^m \to \mathbb{R}^n$
Jacobian matrix dr of a map $\mathbb{R}^n \to \mathbb{R}^n$
Distortion factor $\sqrt{\det(dr^T dr)}$
Distortion factor for $n = m$ simplifies to $ \det(dr) $
Example: $r'(t) = dr$, $\sqrt{\det(dr^T dr)} = r' $ is speed
Curvature $ T' / r' $. In \mathbb{R}^3 also $ r' \times r'' / r' ^3$

Integration

Integrate to get arc length.
Integrate to get position from velocity etc.
Integration technique: substitution
Integration technique: integration by parts
Integration technique: partial fractions
Integration technique: simplification

Coordinate systems

- Cartesian coordinates
- Polar coordinates
- Cylindrical coordinates
- Spherical coordinates

	eral coordina ⁻		
Disto	ortion factor	$ \det(dr) = $	$\overline{\det(dr^T dr)}$

Parametrized	Surfaces
--------------	----------

Spheres
Surfaces of revolution
Graphs
Planes
Torus
Helicoid

eople	
Mandelbrot	
Hamilton	
Descartes	
Cauchy	
Binet	
Schwarz	
Euler	
Heine	
Cantor	
Bolzano	
Archimedes	
Newton	
Einstein	
Napoleon	

Geometry of Space

$v = [v_1, v_2, v_3]^T, w = [w_1, w_2, w_3]^T, v + w = [v_1 + w_1, v_2 + w_2, v_3 + w_3]^T$
dot product $v.w = v_1w_1 + v_2w_2 + v_3w_3 = v w \cos(\alpha)$
] angle $\cos(\alpha) = (v \cdot w)/ v w $.
] cross product $v \cdot (v \times w) = 0, \ w \cdot (v \times w) = 0$
] area parallelogram $ v \times w = v w \sin(\alpha)$
] triple scalar product $u \cdot (v \times w)$
] volume of parallelepiped: $ u \cdot (v \times w) $
] parallel vectors $v \times w = 0$, orthogonal vectors: $v \cdot w = 0$
] scalar projection $\operatorname{comp}_w(v) = v \cdot w/ w $
] vector projection $\operatorname{proj}_w(v) = (v \cdot w)w/ w ^2$
] completion of square: $x^2 - 4x + y^2 = 1$ gives $(x - 2)^2 + y^2 = 5$
] unit vector = direction: vector of length 1.

Lines, Planes, Functions

parametric equation for plane $r(t, s) = p + tv + sw$ containing p
plane $A^T[x, y, z] = ax + by + cz = d$
parametric equation for line $r(t) = p + tv$ containing p

graph $G = \{(x, y, f(x, y)) \mid (x, y) \text{ in the domain of } f \}$
plane $ax + by + cz = d$ has normal $n = [a, b, c]^T$
line $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$ contains $v = [a, b, c]^T$
plane through A, B, C : find normal vector $(a, b, c) = AB \times CB$

Level surfaces
intercepts: intersections of a surface with coordinate axis
traces: intersections of a surface with coordinate planes
generalized traces: intersections with $\{x = c\}, \{y = c\}$ or $\{z = c\}$
level surface $g(x, y, z) = c$: Example: graph $g(x, y, z) = z - f(x, y)$
linear equation like $2x + 3y + 5z = 7$ defines plane
quadric: ellipsoid,paraboloid,hyperboloid,cylinder,cone

Distance formulas

distance $d(P,Q) = PQ = \sqrt{(P_1 - Q_1)^2 + (P_2 - Q_2)^2 + (P_3 - Q_3)^2}$
distance point-plane: $d(P, \Sigma) = (PQ) \cdot n / n $
distance point-line: $d(P, L) = (PQ) \times u / u $
distance line-line: $d(L, M) = (PQ) \cdot (u \times v) / u \times v $
distance parallel lines L, M : distance point $d(P, M)$ where P is in L.
distance parallel planes: $d(P, \Sigma)$ where P is in first plane.

Functions

graph: $z = f(x, y)$
contour curve: $f(x, y) = c$ is a curve in the plane
contour map: draw curves $f(x, y) = c$ for various c .
contour surface: $f(x, y, z) = c$ in space

Curves

plane and space curves $r(t)$
circle: $x^2 + y^2 = r^2$, $r(t) = [r \cos t, r \sin t]^T$.
ellipse: $(x - x_0)^2 / a^2 + (y - y_0)^2 / b^2 = 1$, $r(t) = [x_0 + a\cos t, y_0 + b\sin t]^T$
velocity $r'(t)$, acceleration $r''(t)$, $ r'(t) $ speed
unit tangent vector $T(t) = r'(t)/ r'(t) $
integration: get $r(t)$ from $r'(t)$ and $r(0)$ by integration.
integration: get $r(t)$ from acceleration $r''(t)$ as well as $r'(0)$ and $r(0)$.
r'(t) is tangent to the curve at the point $r(t)$.
$r(t) = [f(t)\cos(t), f(t)\sin(t)]^T$ polar curve to polar graph $r = f(\theta)$.
$\int_{a}^{b} r'(t) dt$, arc length of parametrized curve.
$\ddot{N}(t) = T'(t)/ T'(t) $ normal vector, is perpendicular to $T(t)$.
$B(t) = T(t) \times N(t)$ bi-normal vector, is perpendicular to T and N.
$\kappa(t) = T'(t) / r'(t) $ curvature $= r'(t) \times r''(t) / r'(t) ^3$.
$\kappa(t)$ and arc length are independent of parametrization

Coordinates

Cartesian coordinates (x, y, z)
polar coordinates $(x, y) = (r \cos(\theta), r \sin(\theta)), r \ge 0$
cylindrical coordinates $(x, y, z) = (r \cos(\theta), r \sin(\theta), z), r \ge 0$
spherical coordinates $(x, y, z) = (\rho \cos(\theta) \sin(\phi), \rho \sin(\theta) \sin(\phi), \rho \cos(\phi))$
radius: $r = x^2 + y^2$ and spherical radius $\rho = x^2 + y^2 + z^2$.
radius: important relation $r = \rho \sin(\phi)$
Jacobian matrix
Distortion factor

Surfaces

$g(r, \theta) = 0$ polar curve, especially $r = f(\theta)$, polar graphs
$r = f(z, \theta)$ cylindrical surface, $r = r(z)$ surface of revolution
$g(\rho, \theta, \phi) = 0$ spherical surface: example $\rho = 1$ sphere
f(x, y) = c level curves of $f(x, y)$
plane: $ax + by + cz = d$, $r(s,t) = r_0 + sv + tw$, $[a, b, c]^T = v \times w$
surface of revolution: $x^2 + y^2 = r(z)^2$, $r(\theta, z) = [r(z)\cos(\theta), r(z)\sin(\theta), z)$
graph: $g(x, y, z) = z - f(x, y) = 0, r(x, y) = [x, y, f(x, y)]^T$
rotated graph $g(x, y, z) = y - f(x, z) = 0, r(x, z) = [x, f(x, z), z]^T$
ellipsoid: $r(\theta, \phi) = [a\cos\theta\sin\phi, b\sin\theta\sin\phi, c\cos\phi]^T$
unit sphere: $x^2 + y^2 + z^2 = 1$, $r(u, v) = [\cos u \sin v, \sin u \sin v, \cos v]^T$

Oliver Knill, 2/22/22 last update: 2/25/22

OLIVER KNILL, KNILL@MATH.HARVARD.EDU, MATH 22B, HARVARD COLLEGE, SPRING 2022