
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22A

Unit 11: Parametrization

Introduction

11.1. We have seen that when parametrizing curves r(t), we have much more control
than when looking at curves given by equations. It would be difficult to describe a
helix r(t) = [cos(t), sin(t), t] in terms of equations for example. For surfaces also, it
is good to have as many coordinates as the dimension. We live on a two dimensional
sphere x2 + y2 + z2 = 1 but do not use the x, y, z coordinates to describe a point
on the surface. We use two coordinates longitude) and latitude Euler used first the
parametrization [x, y, z] = [cos(t) cos(s), sin(t) sin(s), sin(s)] where t, s are angles. You
can check quickly that x2 + y2 + z2 adds up to 1 so that whatever angles t, s we chose,
we always are on the sphere.

Figure 1. This surface is an example of a Calabi-Yau surface. It is
parametrized r(u, v). We drew out some grid curves, where u is constant
or v is constant.
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Lecture

11.2. A map r : Rm → Rn is called a parametrization. We have seen maps r
from R to Rn, which were curves. Then we have seen maps f : Rn → Rn which
were coordinate changes. In each case we defined the Jacobian matrix df(x). In
the case of the curve r : R → Rn, it was the velocity dr(t) = r′(t). In the case of
coordinate changes, the Jacobian matrix df(x) was used to get the volume distortion

factor det(df(x)) =
√

det(dfTdf). Today, we look at the case m < n. In particular
at m = 2, n = 3. As in the case of curves, we use the letter r to describe the map.
The image of a map r : R ⊂ Rm → Rn is then a m-dimensional surface in Rn. The
distortion factor ||dr|| defined as ||dr||2 = det(drTdr) will be used later to compute
surface area. 1

Figure 2. An ellipsoid, half an ellipsoid, a bulb, a heart and a cat.

11.3. We mostly discuss here the case m = 2 and n = 3, as we ourselves are made of
two-dimensional surfaces, like cells, membranes, skin or tissue. A map r : R ⊂ R2 →

R3, written as r(

[
u
v

]
) =

 x(u, v)
y(u, v)
z(u, v)

 defines a two-dimensional surface. In order to

save space, we also just write r(u, v) = [x(u, v), y(u, v), z(u, v)]. In computer graphics,
the r is called uv-map. The uv-plane is where you draw a texture. The map r places
it onto the surface. In geography, the map r is called (surprise!) a map. Several maps
define an atlas. The curves u→ r(u, v) and v → r(u, v) are called grid curves.

11.4. The parametrization r(φ, θ) = [sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)] produces the
sphere x2 + y2 + z2 = 1. The full sphere has 0 ≤ φ ≤ π, 0 ≤ θ < 2π. By modifying
the coordinates, we get an ellipsoid r(φ, θ) = [a sin(φ) cos(θ), b sin(φ) sin(θ), c cos(φ)]
satisfying x2/a2 + y2/b2 + z2/c2 = 1. By allowing a, b, c to be functions of φ, θ we get
“bumpy spheres” like r(φ, θ) = (3 + cos(3φ) sin(4θ))[sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)].

11.5. Planes are described by linear maps r(x) = Ax + b with A ∈ M(3, 2) and
b ∈ M(3, 1). The Jacobian map is dr = A. Let ru, rv be the two column vectors of A.
Actually, ru is a short cut for ∂ur(u, v), which is the velocity vector of the grid curve
u→ r(u, v).

1Distinguish ||A||2 = det(ATA) and |A|2 = tr(ATA) in M(n,m). They only agree for m = 1.



11.6. An example is the parametrization r(u, v) = [u+ v − 1, u− v + 3, 3u− 5v + 7].

In this case b =

 −1
3
7

, ru =

 1
1
3

 rv =

 1
−1
−5

 and A = dr =

 1 1
1 −1
3 −5

. We see

ATA =

[
11 −15
−15 27

]
which has determinant 72. We also have

|ru × rv|2 = |

 1
1
3

×
 1
−1
−5

 |2 = |

 −2
8
−2

 |2 = 72

11.7. The previous computation suggests a relation between the normal vector and
the fundamental form g = drTdr. In three dimensions, the distortion factor of a
parametrization r : R2 → R3 can indeed always be rewritten using the cross product:

Theorem: det(drTdr) = |ru × rv|2.

Proof. As drTdr =

[
ru · ru ru · rv
rv · ru rv · rv

]
, the identity is the Cauchy-Binet identity

|ru × rv|2 = |ru|2|rv|2 − |ru · rv|2 which boils down to sin2(θ) = 1− cos2(θ), where θ is
the angle between ru and rv. This is the angle between the grid curves you see on the
pictures.

Figure 3. A plane, graph, surface of revolution and helicoid.

Examples

11.8. For the unit sphere r(φ, θ) = [sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)] and A = dr:

g = ATA =

[
cos(φ) cos(θ) cos(φ) sin(θ) − sin(φ)
− sin(φ) sin(θ) sin(φ) cos(θ) 0

] cos(φ) cos(θ) − sin(φ) sin(θ)
cos(φ) sin(θ) sin(φ) cos(θ)
− sin(φ) 0


This is g =

[
1 0
0 sin2(φ)

]
and

√
det(g) = sin(φ) is the distortion factor.

11.9. An important class of surfaces are graphs z = f(x, y). Its most natural
parametrization is r(x, y) = [x, y, f(x, y)], where the map r just lifts up the bottom part
to the elevated version. An example is the elliptic paraboloid r(x, y) = [x, y, x2 + y2]
and the hyperbolic paraboloid r(x, y) = [x, y, x2−y2]. We could of course have written
also r(u, v) = [u, v, u2 − v2].
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11.10. A surface of revolution is parametrized like r(θ, z) = [g(z) cos(θ), g(z) sin(θ), z].
Note that we can use any variables. In this case, u = θ, v = z are used. An ex-
ample is the cone r(θ, z) = [z cos(θ), z sin(θ), z] or the one-sheeted hyperboloid
r(θ, z) = [

√
z2 + 1 cos(θ),

√
z2 + 1 sin(θ), z].

11.11. The torus is in cylindrical coordinates given as (r − 3)2 + z2 = 1. We can
parametrize this using the polar angle θ and the polar angle centered at center of the
circle as r(θ, φ) = [(3 + cos(φ)) cos(θ), (3 + cos(φ)) sin(θ), sin(φ)]. Both angles θ and φ
go from 0 to 2π. We see now also the relation with the toral coordinates.

11.12. The helicoid is the surface you see as a staircase or screw. The parametrization
is r(θ, p) = [p cos(θ), p sin(θ), θ]. How can we understand this? The key is to look at
grid curves. If p = 1, we get a curve r(θ) = [cos(θ), sin(θ), θ] which we had identified
as a helix. On the other hand, if you fix θ, then you get lines.

11.13. Side remark. The first fundamental form g = drTdr is also called a
metric tensor. In Riemannian geometry one looks at a manifold M equipped
with a metric g. The simplest case is when g comes from a parametrization, as we did
here. In physics, we know that it is mass which deforms space-time. The quantity
||g||2 = det(g) is a multiplicative analogue of |g|2 = tr(g). For an invertible positive
definite square matrix A, we will later see the identity log det(A) = tr log(A) which
illustrates how both determinant and trace are pivotal numerical quantities derived
from a matrix. Trace is additive because of tr(A+B) = tr(A)+tr(B) and determinant
is multiplicative det(AB) = det(A)det(B) as we will see later.

11.14. To summarize, we have seen so far that there are two fundamentally different
ways to describe a manifold. The first is to write it as a level surface f = c which is a
kernel of a map g(x) = f − c. A second is to write it as the image of some map r.

Illustration

Figure 4. “Veritas on Earth and the Moon” theme (rendered in Povray).

Figure 5. A fruit and math-candy© math-candy.com (rendered in Mathematica)



Homework

Problem 11.1: Parametrize the upper part of the two sheeted hyper-
boloid x2 + y2 − z2 = −1, z > 0 as a surface of revolution.

Problem 11.2: a) Parametrize the plane x + 2y + 3z − 6 = 0 using a
map r : R2 → R3. b) Now find the matrix A = dr and compute g = ATA

as well as the distortion factor
√

det(ATA). c) Also compute ru, rv and
ru × rv and then compute |ru × rv|. You should get the same number.

Problem 11.3: Given a parametrization r(θ, φ) = [(7 +
2 cos(φ)) cos(θ), (7 + 2 cos(φ)) sin(θ), 2 sin(φ)] of the 2-torus, find the im-
plicit equation g(x, y, z) = 0 which describes this torus.

Problem 11.4: Parametrize the hyperbolic paraboloid z = x2 −
y2. What is the first fundamental form g = drTdr which is g =[
rx · rx rx · ry
ry · rx ry · ry

]
?. What is the distortion factor

√
det(g)?

Problem 11.5: The matrix g = drTdr is also called the first funda-
mental form. If r : R4 to R4 is a parametrization of space time then
g is the space time metric tensor. The matrix entries of g appear in
general relativity. Now for some reasons, physics folks use Greek sym-
bols to access matrix entries. They write gµν for the entry at row µ and
column ν. This appears for example in the Einstein field equations

Rµν −
1

2
Rgµν =

8πG

c4
Tµν .

We just want you to look up the equation and tell from each of the vari-
ables, what it is called and whether it is a matrix, a scalar function or a
constant.
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