LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22A

Unit 11: Parametrization

INTRODUCTION

11.1. We have seen that when parametrizing curves r(t), we have much more control
than when looking at curves given by equations. It would be difficult to describe a
helix r(t) = [cos(t),sin(t),t] in terms of equations for example. For surfaces also, it
is good to have as many coordinates as the dimension. We live on a two dimensional
sphere 22 + 3% + 22 = 1 but do not use the z,y, z coordinates to describe a point
on the surface. We use two coordinates longitude) and latitude Euler used first the
parametrization [x,y, z] = [cos(t) cos(s), sin(t) sin(s), sin(s)] where ¢, s are angles. You
can check quickly that z2 + ¢% + 22 adds up to 1 so that whatever angles ¢, s we chose,
we always are on the sphere.
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FiGure 1. This surface is an example of a Calabi-Yau surface. It is
parametrized r(u,v). We drew out some grid curves, where u is constant
or v is constant.
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11.2. A map r : R — R” is called a parametrization. We have seen maps r
from R to R"™, which were curves. Then we have seen maps f : R” — R"™ which
were coordinate changes. In each case we defined the Jacobian matrix df(z). In
the case of the curve r : R — R, it was the velocity dr(t) = r/(¢). In the case of
coordinate changes, the Jacobian matrix df (x) was used to get the volume distortion
factor det(df(z)) = /det(dfTdf). Today, we look at the case m < n. In particular
at m = 2,n = 3. As in the case of curves, we use the letter r to describe the map.
The image of a map r : R C R™ — R" is then a m-dimensional surface in R". The
distortion factor ||dr|| defined as ||dr||* = det(dr?dr) will be used later to compute
surface area.

FIGURE 2. An ellipsoid, half an ellipsoid, a bulb, a heart and a cat.

11.3. We mostly discuss here the case m = 2 and n = 3, as we ourselves are made of
two-dimensional surfaces, like cells, membranes, skin or tissue. A map r : R C R? —

(u,

z(u,v)

R3, written as r({ “ ]) = | y(u,v) | defines a two-dimensional surface. In order to
v z(u,v)

save space, we also just write r(u,v) = [z(u,v),y(u,v), z(u,v)]. In computer graphics,
the r is called uv-map. The uv-plane is where you draw a texture. The map r places
it onto the surface. In geography, the map r is called (surprise!) a map. Several maps
define an atlas. The curves u — r(u,v) and v — r(u,v) are called grid curves.

11.4. The parametrization r(¢,0) = [sin(¢) cos(6), sin(¢) sin(f), cos(¢)] produces the
sphere 22 + % + 22 = 1. The full sphere has 0 < ¢ < 7, 0 < 0 < 27. By modifying
the coordinates, we get an ellipsoid r(¢,0) = [asin(¢) cos(d), bsin(¢) sin(f), c cos(¢)]
satisfying z%/a® + y?/b* + 2?/c* = 1. By allowing a, b, ¢ to be functions of ¢, 6 we get
“bumpy spheres” like (¢, 0) = (34 cos(3¢) sin(40))[sin(¢) cos(f), sin(¢p) sin(6), cos(¢)].

11.5. Planes are described by linear maps r(z) = Az + b with A € M(3,2) and
be M(3,1). The Jacobian map is dr = A. Let r,,r, be the two column vectors of A.
Actually, r, is a short cut for d,7(u,v), which is the velocity vector of the grid curve
u— r(u,v).

!Distinguish ||A]|?> = det(AT A) and |A|> = tr(ATA) in M(n,m). They only agree for m = 1.



11.6. An example is the parametrization r(u,v) = [u+v —1,u — v+ 3,3u — 5v + 7].

-1 1 1 1 1
In this case b = 3|,ru=|1|r,=| -1 ]|andA=dr=|1 —1 |. We see
7 3 -5 3 =5
. 11 15 . .
ATA = [ 15 o7 } which has determinant 72. We also have
1 1 —2
ra xr2=] 1| x| =1]P=]| 8|=12
-5 -2

11.7. The previous computation suggests a relation between the normal vector and
the fundamental form g = drfdr. In three dimensions, the distortion factor of a
parametrization r : R? — R? can indeed always be rewritten using the cross product:

Theorem: det(dridr) = |r, x r,|>.

Ty Tu Tu-Ty
Ty Ty Ty Ty
170 X 752 = |7u|}|70|? = |74 - 70|? Wwhich boils down to sin?() = 1 — cos?(6), where 6 is
the angle between r, and r,. This is the angle between the grid curves you see on the
pictures.

Proof. As drldr = , the identity is the Cauchy-Binet identity

FIGURE 3. A plane, graph, surface of revolution and helicoid.

EXAMPLES
11.8. For the unit sphere r(¢, ) = [sin(¢) cos(), sin(¢) sin(0), cos(¢)] and A = dr:
: : 0) —sin(¢)sin(0)
B B cos(¢) cos(f) cos(¢)sin(f) —sin(¢) cos(¢) C(.)S( :
g=A"A= { —sin(¢) sin(#) sin(¢) cos(0) 0 COS(@:;ESZ; sin(¢) 005(98
This is g = { (1) Sing(¢) } and y/det(g) = sin(¢) is the distortion factor.
11.9. An important class of surfaces are graphs z = f(z,y). Its most natural

parametrization is r(z,y) = [z, vy, f(z,y)], where the map r just lifts up the bottom part
to the elevated version. An example is the elliptic paraboloid r(z,y) = [z, y, 2? + y?]
and the hyperbolic paraboloid 7(x,y) = [z,y, 2> —y*]. We could of course have written

also r(u,v) = [u,v,u® — v?].
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11.10. A surface of revolution is parametrized like (6, z) = [g(z) cos(6), g(z) sin(#), z].
Note that we can use any variables. In this case, u = 0,v = z are used. An ex-
ample is the cone r(,z) = [zcos(f), zsin(f), z] or the one-sheeted hyperboloid

r(0,z) = [V22 + 1cos(f), V22 + 1sin(h), z].

11.11. The torus is in cylindrical coordinates given as (r — 3)? + 22 = 1. We can
parametrize this using the polar angle ¢ and the polar angle centered at center of the
circle as (60, ¢) = [(3 + cos(¢)) cos(), (3 + cos(¢)) sin(f), sin(¢)]. Both angles § and ¢
go from 0 to 2w. We see now also the relation with the toral coordinates.

11.12. The helicoid is the surface you see as a staircase or screw. The parametrization
is 7(0,p) = [pcos(0),psin(f),d]. How can we understand this? The key is to look at
grid curves. If p = 1, we get a curve r(6) = [cos(),sin(f), #] which we had identified
as a helix. On the other hand, if you fix 6, then you get lines.

11.13. Side remark. The first fundamental form g = dr’dr is also called a
metric tensor. In Riemannian geometry one looks at a manifold M equipped
with a metric g. The simplest case is when g comes from a parametrization, as we did
here. In physics, we know that it is mass which deforms space-time. The quantity
l|g]|* = det(g) is a multiplicative analogue of |g|* = tr(g). For an invertible positive
definite square matrix A, we will later see the identity logdet(A) = trlog(A) which
illustrates how both determinant and trace are pivotal numerical quantities derived
from a matrix. Trace is additive because of tr(A+B) = tr(A)+tr(B) and determinant
is multiplicative det(AB) = det(A)det(B) as we will see later.

11.14. To summarize, we have seen so far that there are two fundamentally different
ways to describe a manifold. The first is to write it as a level surface f = ¢ which is a
kernel of a map g(z) = f — ¢. A second is to write it as the image of some map 7.
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FIGURE 4. “Veritas on Earth and the Moon” theme (rendered in Povray).

FIGURE 5. A fruit and math-candy© math-candy.com (rendered in Mathematica)



HOMEWORK

Problem 11.1: Parametrize the upper part of the two sheeted hyper-
boloid x? + y? — 2?2 = —1, 2z > 0 as a surface of revolution.

Problem 11.2: a) Parametrize the plane xz 4+ 2y + 3z — 6 = 0 using a
map r : R? — R3. b) Now find the matrix A = dr and compute g = AT A
as well as the distortion factor y/det(ATA). ¢) Also compute r,,r, and
ru X 1, and then compute |r, x r,|. You should get the same number.

Problem 11.3: Given a parametrization r(6,¢) = [(7 +
2 cos(¢)) cos(0), (T + 2cos(¢)) sin(f), 2sin(¢)] of the 2-torus, find the im-
plicit equation g(x,y, z) = 0 which describes this torus.

Problem 11.4: Parametrize the hyperbolic paraboloid z = 2% —

y?>.  What is the first fundamental form ¢ = drfdr which is g =
[ ToTe TatTy } 7. What is the distortion factor /det(g)?
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Problem 11.5: The matrix ¢ = dr’dr is also called the first funda-
mental form. If r : R* to R?* is a parametrization of space time then
g is the space time metric tensor. The matrix entries of g appear in
general relativity. Now for some reasons, physics folks use Greek sym-
bols to access matrix entries. They write g,, for the entry at row p and
column v. This appears for example in the Einstein field equations

1 8rG

§ng/ = 7Tuu .

We just want you to look up the equation and tell from each of the vari-
ables, what it is called and whether it is a matrix, a scalar function or a
constant.
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