LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22A

Unit 11: Parametrization

INTRODUCTION

11.1. We have seen that when parametrizing curves r(t), we have much more control than when looking at curves given by equations. It would be difficult to describe a helix $r(t) = [\cos(t), \sin(t), t]$ in terms of equations for example. For surfaces also, it is good to have as many coordinates as the dimension. We live on a two dimensional sphere $x^2 + y^2 + z^2 = 1$ but do not use the x, y, z coordinates to describe a point on the surface. We use two coordinates longitude) and latitude Euler used first the parametrization $[x, y, z] = [\cos(t) \cos(s), \sin(t) \sin(s), \sin(s)]$ where t, s are angles. You can check quickly that $x^2 + y^2 + z^2$ adds up to 1 so that whatever angles t, s we chose, we always are on the sphere.

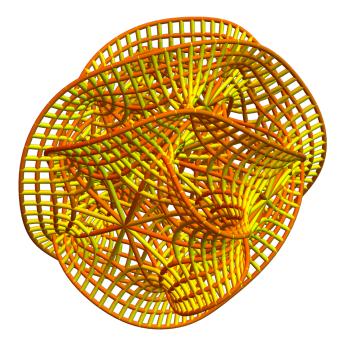


FIGURE 1. This surface is an example of a Calabi-Yau surface. It is parametrized r(u, v). We drew out some grid curves, where u is constant or v is constant.

Lecture

11.2. A map $r : \mathbb{R}^m \to \mathbb{R}^n$ is called a **parametrization**. We have seen maps r from \mathbb{R} to \mathbb{R}^n , which were **curves**. Then we have seen maps $f : \mathbb{R}^n \to \mathbb{R}^n$ which were **coordinate changes**. In each case we defined the **Jacobian matrix** df(x). In the case of the curve $r : \mathbb{R} \to \mathbb{R}^n$, it was the **velocity** dr(t) = r'(t). In the case of coordinate changes, the Jacobian matrix df(x) was used to get the **volume distortion** factor det $(df(x)) = \sqrt{\det(df^T df)}$. Today, we look at the case m < n. In particular at m = 2, n = 3. As in the case of curves, we use the letter r to describe the map. The image of a map $r : R \subset \mathbb{R}^m \to \mathbb{R}^n$ is then a **m-dimensional surface** in \mathbb{R}^n . The distortion factor ||dr|| defined as $||dr||^2 = \det(dr^T dr)$ will be used later to compute surface area.

FIGURE 2. An ellipsoid, half an ellipsoid, a bulb, a heart and a cat.

11.3. We mostly discuss here the case m = 2 and n = 3, as we ourselves are made of two-dimensional surfaces, like cells, membranes, skin or tissue. A map $r : R \subset \mathbb{R}^2 \to \mathbb{R}^2$

 \mathbb{R}^3 , written as $r(\begin{bmatrix} u\\v \end{bmatrix}) = \begin{bmatrix} x(u,v)\\y(u,v)\\z(u,v) \end{bmatrix}$ defines a two-dimensional surface. In order to

save space, we also just write r(u, v) = [x(u, v), y(u, v), z(u, v)]. In computer graphics, the *r* is called *uv*-map. The *uv*-plane is where you draw a texture. The map *r* places it onto the surface. In geography, the map *r* is called (surprise!) a map. Several maps define an **atlas**. The curves $u \to r(u, v)$ and $v \to r(u, v)$ are called **grid curves**.

11.4. The parametrization $r(\phi, \theta) = [\sin(\phi)\cos(\theta), \sin(\phi)\sin(\theta), \cos(\phi)]$ produces the **sphere** $x^2 + y^2 + z^2 = 1$. The full sphere has $0 \le \phi \le \pi$, $0 \le \theta < 2\pi$. By modifying the coordinates, we get an **ellipsoid** $r(\phi, \theta) = [a\sin(\phi)\cos(\theta), b\sin(\phi)\sin(\theta), c\cos(\phi)]$ satisfying $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$. By allowing a, b, c to be functions of ϕ, θ we get "bumpy spheres" like $r(\phi, \theta) = (3 + \cos(3\phi)\sin(4\theta))[\sin(\phi)\cos(\theta), \sin(\phi)\sin(\theta), \cos(\phi)]$.

11.5. Planes are described by linear maps r(x) = Ax + b with $A \in M(3, 2)$ and $b \in M(3, 1)$. The Jacobian map is dr = A. Let r_u, r_v be the two column vectors of A. Actually, r_u is a short cut for $\partial_u r(u, v)$, which is the velocity vector of the **grid curve** $u \to r(u, v)$.

¹Distinguish $||A||^2 = \det(A^T A)$ and $|A|^2 = \operatorname{tr}(A^T A)$ in M(n, m). They only agree for m = 1.

11.6. An example is the parametrization r(u, v) = [u + v - 1, u - v + 3, 3u - 5v + 7]. In this case $b = \begin{bmatrix} -1 \\ 3 \\ 7 \end{bmatrix}$, $r_u = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$, $r_v = \begin{bmatrix} 1 \\ -1 \\ -5 \end{bmatrix}$ and $A = dr = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 3 & -5 \end{bmatrix}$. We see $A^T A = \begin{bmatrix} 11 & -15 \\ -15 & 27 \end{bmatrix}$ which has determinant 72. We also have $|r_u \times r_v|^2 = |\begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \times \begin{bmatrix} 1 \\ -1 \\ -5 \end{bmatrix} |^2 = |\begin{bmatrix} -2 \\ 8 \\ -2 \end{bmatrix} |^2 = 72$

11.7. The previous computation suggests a relation between the normal vector and the fundamental form $g = dr^T dr$. In three dimensions, the distortion factor of a parametrization $r : \mathbb{R}^2 \to \mathbb{R}^3$ can indeed always be rewritten using the cross product:

Theorem: det $(dr^T dr) = |r_u \times r_v|^2$.

Proof. As $dr^T dr = \begin{bmatrix} r_u \cdot r_u & r_u \cdot r_v \\ r_v \cdot r_u & r_v \cdot r_v \end{bmatrix}$, the identity is the **Cauchy-Binet identity** $|r_u \times r_v|^2 = |r_u|^2 |r_v|^2 - |r_u \cdot r_v|^2$ which boils down to $\sin^2(\theta) = 1 - \cos^2(\theta)$, where θ is the angle between r_u and r_v . This is the angle between the grid curves you see on the pictures.

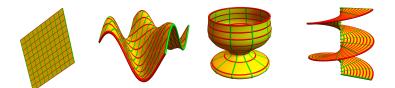


FIGURE 3. A plane, graph, surface of revolution and helicoid.

EXAMPLES

11.8. For the unit sphere $r(\phi, \theta) = [\sin(\phi)\cos(\theta), \sin(\phi)\sin(\theta), \cos(\phi)]$ and A = dr:

$$g = A^{T}A = \begin{bmatrix} \cos(\phi)\cos(\theta) & \cos(\phi)\sin(\theta) & -\sin(\phi) \\ -\sin(\phi)\sin(\theta) & \sin(\phi)\cos(\theta) & 0 \end{bmatrix} \begin{bmatrix} \cos(\phi)\cos(\theta) & -\sin(\phi)\sin(\theta) \\ \cos(\phi)\sin(\theta) & \sin(\phi)\cos(\theta) \\ -\sin(\phi) & 0 \end{bmatrix}$$

This is $g = \begin{bmatrix} 1 & 0 \\ 0 & \sin^{2}(\phi) \end{bmatrix}$ and $\sqrt{\det(g)} = \sin(\phi)$ is the distortion factor.

11.9. An important class of surfaces are **graphs** z = f(x, y). Its most natural parametrization is r(x, y) = [x, y, f(x, y)], where the map r just lifts up the bottom part to the elevated version. An example is the elliptic paraboloid $r(x, y) = [x, y, x^2 + y^2]$ and the hyperbolic paraboloid $r(x, y) = [x, y, x^2 - y^2]$. We could of course have written also $r(u, v) = [u, v, u^2 - v^2]$.

11.10. A surface of revolution is parametrized like $r(\theta, z) = [g(z)\cos(\theta), g(z)\sin(\theta), z]$. Note that we can use any variables. In this case, $u = \theta, v = z$ are used. An example is the **cone** $r(\theta, z) = [z\cos(\theta), z\sin(\theta), z]$ or the **one-sheeted hyperboloid** $r(\theta, z) = [\sqrt{z^2 + 1}\cos(\theta), \sqrt{z^2 + 1}\sin(\theta), z]$.

11.11. The **torus** is in cylindrical coordinates given as $(r-3)^2 + z^2 = 1$. We can parametrize this using the polar angle θ and the polar angle centered at center of the circle as $r(\theta, \phi) = [(3 + \cos(\phi))\cos(\theta), (3 + \cos(\phi))\sin(\theta), \sin(\phi)]$. Both angles θ and ϕ go from 0 to 2π . We see now also the relation with the **toral coordinates**.

11.12. The **helicoid** is the surface you see as a staircase or screw. The parametrization is $r(\theta, p) = [p \cos(\theta), p \sin(\theta), \theta]$. How can we understand this? The key is to look at grid curves. If p = 1, we get a curve $r(\theta) = [\cos(\theta), \sin(\theta), \theta]$ which we had identified as a **helix**. On the other hand, if you fix θ , then you get lines.

11.13. Side remark. The first fundamental form $g = dr^T dr$ is also called a metric tensor. In Riemannian geometry one looks at a manifold M equipped with a metric g. The simplest case is when g comes from a parametrization, as we did here. In physics, we know that it is mass which deforms space-time. The quantity $||g||^2 = \det(g)$ is a multiplicative analogue of $|g|^2 = \operatorname{tr}(g)$. For an invertible positive definite square matrix A, we will later see the identity $\log \det(A) = \operatorname{tr}\log(A)$ which illustrates how both determinant and trace are pivotal numerical quantities derived from a matrix. Trace is additive because of $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$ and determinant is multiplicative $\det(AB) = \det(A)\det(B)$ as we will see later.

11.14. To summarize, we have seen so far that there are two fundamentally different ways to describe a manifold. The first is to write it as a level surface f = c which is a **kernel** of a map g(x) = f - c. A second is to write it as the **image** of some map r.

ILLUSTRATION

FIGURE 4. "Veritas on Earth and the Moon" theme (rendered in Povray).

FIGURE 5. A fruit and math-candy[©] math-candy.com (rendered in Mathematica)

Homework

Problem 11.1: Parametrize the upper part of the two sheeted hyperboloid $x^2 + y^2 - z^2 = -1, z > 0$ as a surface of revolution.

Problem 11.2: a) Parametrize the plane x + 2y + 3z - 6 = 0 using a map $r : \mathbb{R}^2 \to \mathbb{R}^3$. b) Now find the matrix A = dr and compute $g = A^T A$ as well as the distortion factor $\sqrt{\det(A^T A)}$. c) Also compute r_u, r_v and $r_u \times r_v$ and then compute $|r_u \times r_v|$. You should get the same number.

Problem 11.3: Given a parametrization $r(\theta, \phi) = [(7 + 2\cos(\phi))\cos(\theta), (7 + 2\cos(\phi))\sin(\theta), 2\sin(\phi)]$ of the 2-torus, find the implicit equation g(x, y, z) = 0 which describes this torus.

Problem 11.4: Parametrize the hyperbolic paraboloid $z = x^2 - y^2$. What is the first fundamental form $g = dr^T dr$ which is $g = \begin{bmatrix} r_x \cdot r_x & r_x \cdot r_y \\ r_y \cdot r_x & r_y \cdot r_y \end{bmatrix}$?. What is the distortion factor $\sqrt{\det(g)}$?

Problem 11.5: The matrix $g = dr^T dr$ is also called the **first fundamental form**. If $r : \mathbb{R}^4$ to \mathbb{R}^4 is a parametrization of **space time** then g is the **space time metric tensor**. The matrix entries of g appear in **general relativity**. Now for some reasons, physics folks use Greek symbols to access matrix entries. They write $g_{\mu\nu}$ for the entry at row μ and column ν . This appears for example in the **Einstein field equations**

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu} \,.$$

We just want you to look up the equation and tell from each of the variables, what it is called and whether it is a matrix, a scalar function or a constant.

OLIVER KNILL, KNILL@MATH.HARVARD.EDU, MATH 22B, HARVARD COLLEGE, SPRING 2022