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Unit 13: Partial differential equations

Introduction

13.1. If we can relate the changes in one quantity with changes in an other quantity,
partial differential equations come in. One of the simplest rules is that the rate of
change of a function f(t, x) in time is related to the rate of change in space. Such a
rule could be expressed for example as a rule ft(t, x) = fx(t, x), where ft is the partial
derivative with respect to t and fx is the partial derivative with respect to x. You can
check that f(t, x) = sin(t+x) is an example of a function which satisfies this differential
equation. You can see even that for any function g, the function f(t, x) = g(t + x)
satisfies ft = fx. A typical situation is to be given f(0, x), the situation of “now”. We
then can see what f(t, x) is for a later time t. This describes the situation in the
future. As you see, the differential equation ft = fx describes “transport”. The initial
situation is translated to the left. Check this out and draw for example f(0, x) = x2.
We see that f(t, x) = (x+ t)2 and especially f(1, x) = (x+ 1)2. The graph has moved
to the left.

Figure 1. A function f(t, x) satisfying a differential equation ftt −
fxx = sin(u). This PDE is called Sin − Gordon equation, a nonlinear
wave equation featuring solitons. Space is here one dimensional time
goes from left to right. We see a wave going left and right, reflecting at
the boundary and building up to a larger peak. A “rogue wave”.
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13.2. A partial differential equation is a rule which combines the rates of changes of
different variables. Our lives are affected by partial differential equations: the Maxwell
equations describe electric and magnetic fields E and B. Their motion leads to the
propagation of light. The Einstein field equations relate the metric tensor g with the
mass tensor T . The Schrödinger equation tells how quantum particles move. Laws
like the Navier-Stokes equations govern the motion of fluids and gases and especially
the currents in the ocean or the winds in the atmosphere. Partial differential equations
appear also in unexpected places like in finance, where for example, the Black-Scholes
equation relates the prices of options in dependence of time and stock prices.

13.3. If f(x, y) is a function of two variables, we can differentiate f with respect to
both x or y. We just write fx(x, y) for ∂xf(x, y). For example, for f(x, y) = x3y + y2,
we have fx(x, y) = 3x2y and fy(x, y) = x3 + 2y. If we first differentiate with respect to
x and then with respect to y, we write fxy(x, y). If we differentiate twice with respect
to y, we write fyy(x, y). An equation for an unknown function f for which partial
derivatives with respect to at least two different variables appear is called a partial
differential equation PDE. If only the derivative with respect to one variable appears,
one speaks of an ordinary differential equation ODE. An example of a PDE is
f 2
x + f 2

y = fxx + fyy, an example of an ODE is f ′′ = f 2 − f ′. It is important to realize
that it is a function we are looking for, not a number. The ordinary differential equation
f ′ = 3f for example is solved by the functions f(t) = Ce3t. If we prescribe an initial
value like f(0) = 7, then there is a unique solution f(t) = 7e3t. The KdV partial
differential equation ft+6ffx+fxxx = 0 is solved by (you guessed it) 2sech2(x−4t).
This is one of many solutions. In that case they are called solitons, nonlinear waves.
Korteweg-de Vries (KdV) is an icon in a mathematical field called integrable systems
which leads to insight in ongoing research like about rogue waves in the ocean.

13.4. We say f ∈ C1(R2) if both fx and fy are continuous functions of two variables
and f ∈ C2(R2) if all fxx, fyy, fxy and fyx are continuous functions. The next theorem is
called the Clairaut theorem. It deals with the partial differential equation fxy = fyx.
The proof demonstrates the proof by contradiction. We will look at this technique
a bit more in the proof seminar.

Theorem: Every f ∈ C2 solves the Clairaut equation fxy = fyx.

13.5. Proof. We use Fubini’s theorem which will appear later in the double integral

lecture: integrate
∫ x0+h

x0
(
∫ y0+h

y0
fxy(x, y) dy)dx by applying the fundamental theorem

of calculus twice
∫ x0+h

x0
fx(x, y0 +h)−fx(x, y0) dx = f(x0 +h, y0 +h)−f(x0, y0 +h)−

f(x0+h, y0)+f(x0, y0). An analogous computation gives
∫ y0+h

y0
(
∫ x0+h

x0
fyx(x, y) dx)dy =

f(x0 + h, y0 + h)− f(x0, y0 + h)− f(x0 + h, y0) + f(x0, y0). Fubini applied to g(x, y) =

fxy(x, y) assures
∫ y0+h

y0
(
∫ x0+h

x0
fyx(x, y) dx)dy =

∫ x0+h

x0
(
∫ y0+h

y0
fyx(x, y) dy)dx so that∫ ∫

A
fxy−fyx dydx = 0. Assume there is some (x0, y0), where F (x0, y0) = fxy(x0, y0)−

fyx(x0, y0) = c > 0, then also for small h, the function F is bigger than c/2 everywhere
on A = [x0, x0 + h]× [y0, y0 + h] so that

∫ ∫
A
F (x, y) dxdy ≥ area(A)c/2 = h2c/2 > 0

contradicting that the integral is zero.



13.6. The statement is false for functions which are only C1. The standard counter
example is f(x, y) = 4xy(y2 − x2)/(x2 + y2) which has for y 6= 0 the property that
fx(0, y) = 4y and for x 6= 0 has the property that fy(x, 0) = −4x. You can see the
comparison of f(x, y) = 2xy = r2 sin(2θ) and f(x, y) = 4xy(y2 − x2)/(x2 + y2) =
r2 sin(4θ). The later function is not in C2. The values fxy and fyx, changes of slopes
of tangent lines, turn differently.

Figure 2. Clairaut holds for f(x, y) = 2xy which is in polar coordi-
nates r2 sin(2θ). It does not for the function f(x, y) = 4xy(y2−x2)/(x2+
y2) which is in polar coordinates 2r2 sin(2θ) cos(2θ) = r2 sin(4θ).

Illustration

13.7. In many cases, one of the variables is time for which we use the letter t and
keep x as the space variable. The differential equation ft(t, x) = fx(t, x) is called
the transport equation. What are the solutions if f(0, x) = g(x)? Here is a cool
derivation: if Df = f ′ is the derivative, 1 we can build operators like (D+D2+4D4)f =
f ′+f ′′+4f ′′′′. The transport equation is now ft = Df . Now as you know from calculus,
the only solution of f ′ = af, f(0) = b is beat. If we boldly replace the number a with
with the operator D we get f ′ = Df and get its solution

eDtg(x) = (1 +Dt+D2t2/2! + · · · )g(x) = g(x) + g′(x)t+ g′′(x)t2/2! + · · · .
By the Taylor formula, this is equal to g(x+t). You should actually remember Taylor

as g(x+ t) = eDtg(x) . We have derived for g(x) = f(0, x) in C1(R2):

Theorem: ft = fx is solved by f(t, x) = g(x+ t).

Proof. We can ignore the derivation and verify this very quickly: the function satisfies
f(0, x) = g(x) and ft(t, x) = fx(t, x). QED.

13.8. Another example of a partial differential equation is the wave equation ftt =
fxx. We can write this (∂t + D)(∂t −D)f = 0. One way to solve this is by looking at
(∂t−D)f = 0. This means transport ft = fx and f(t, x) = f(x+ t). We can also have
(∂t+D)f = 0 which means ft = −fx leading to f(x−t). We see that every combination
af(x+ t) + bf(x− t) with constants a, b is a solution. Fixing the constants a, b so that
f(x, 0) = g(x) and ft(x, 0) = h(x) gives the following d’Alembert solution. It
requires g, h ∈ C2(R).

1We usually write df for derivative but D tells it is an operator. D also stands for Dirac.
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Theorem: ftt = fxx is solved by f(t, x) = g(x+t)+g(x−t)
2

+ h(x+t)−h(x−t)
2

.

13.9. Proof. Just verify directly that this indeed is a solution and that f(0, x) = g(x)
and ft(0, x) = h(x). Intuitively, if we throw a stone into a narrow water way, then the
waves move to both sides.

13.10. The partial differential equation ft = fxx is called the heat equation. Its
solution involves the normal distribution

N(m, s)(x) = e−(x−m)2/(2s2)/
√

2πs2

in probability theory. The number m is the average and s is the standard deviation.

13.11. If the initial heat g(x) = f(0, x) at time t = 0 is continuous and zero outside a
bounded interval [a, b], then

Theorem: ft = fxx is solved by f(t, x) =
∫ b

a
g(m)N(m,

√
2t)(x) dm.

Proof. For every fixed m, the function N(m,
√

2t)(x) solves the heat equation.�
f=PDF[ NormalDistr ibut ion [m, Sqrt [ 2 t ] ] , x ] ; Simplify [D[ f , t ]==D[ f ,{ x , 2 } ] ]� �
Every Riemann sum approximation g(x) = (1/n)

∑n
k=1 g(mk) of g defines a function

fn(t, x) = (1/n)
∑n

k=1 g(mk)N(mk,
√

2t)(x) which solves the heat equation. So does
f(t, x) = limn→∞ fn(t, x). To check f(0, x) = g(x) which need

∫∞
−∞N(m, s)(x) dx = 1

and
∫∞
−∞ h(x)N(m, s)(x) dx→ h(m) for any continuous h and s→ 0, proven later.

13.12. For functions of three variables f(x, y, z) one can look at the partial differential
equation ∆f(x, y, z) = fxx + fyy + fzz = 0. It is called the Laplace equation and ∆ is
called the Laplace operator. The operator appears also in one of the most important
partial differential equations, the Schrödinger equation

i~ft = Hf = − ~2

2m
∆f + V (x)f ,

where ~ = h/(2π) is a scaled Planck constant and V (x) is the potential depending
on the position x and m is the mass. For i~ft = Pf with P = −i~D, then the
solution f(x− t) is forward translation. The operator P is the momentum operator
in quantum mechanics. The Taylor formula tells that P generates translation.



Homework

Problem 13.1: Verify that for any constant b, the function

f(x, t) = e−bt sin(x+ t)

satisfies the driven transport equation

ft(x, t) = fx(x, t)− bf(x, t) .

This PDE is sometimes called the advection equation with damping b.

Problem 13.2: We have seen in class that f(t, x) = e−x
2/(4t)/

√
4πt

solves the heat equation ft = fxx. Verify more generally that

e−x
2/(4at)/

√
4aπt

solves the heat equation
ft = afxx .

Problem 13.3: The Eiconal equation f 2
x + f 2

y = 1 is used in optics.

Let f(x, y) be the distance to the circle x2 + y2 = 1. Show that it satisfies
the eiconal equation. Remark: the equation can be written rewritten as
||df ||2 = 1, where df = ∇f = [fx, fy] is the gradient of f which is the
Jacobian matrix for the map f : R2 → R.

Problem 13.4: The differential equation

ft = f − xfx − x2fxx
is a version of the Black-Scholes equation. Here f(x, t) is the price of
a call option and x is the stock price and t is time. Find a function
f(x, t) solving it which depends both on x and t. Hint: look first for
solutions f(x, t) = g(t) or f(x, t) = h(x) and then for functions of the
form f(x, t) = g(t) + h(x).

Problem 13.5: The partial differential equation

ft + ffx = fxx

is called Burgers equation and describes waves at the beach. In higher
dimensions, it leads to the Navier-Stokes equation which is used to de-
scribe the weather. Verify that the function

f(t, x) =

(
1
t

)3/2
xe−

x2

4t√
1
t
e−

x2

4t + 1

is a solution of the Burgers equation. You better use technology.
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