
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 16: Chain rule

Introduction

16.1. In calculus, we can build from basic functions more general functions. One
possibility is to add functions like f(x) + g(x) = x2 + sin(x). An other possibility is to
multiply functions like f(x)g(x) = x2 sin(x). A third possibility is to combine functions
like f ◦ g(x) = f(g(x)) = sin2(x). The composition of functions is non-commutative:
f ◦ g 6= g ◦ f . Indeed, we have g ◦ f(x) = sin(x2) which is completely different from
f ◦ g(x) = sin2(x).

Chain Rule
d( f(g(x)) = df(g(x)) dg(x)

ℝm ℝp ℝng f
x y=g(x) f(g(x))

dg(x) df(y)

Figure 1. f : Rp → Rn and g : Rm → Rp can be combined to
f(g) : Rm → Rn.

16.2. How can we express the rate of change of a composite function in terms of
the basic functions it is built of? For the sum of two functions, we have the ad-
dition rule (f + g)′(x) = f ′(x) + g′(x), for multiplication we have the product
rule (fg)′(x) = f ′(x)g(x) + f(x)g(x). We usually just write (f + g)′ = f ′ + g′ or
(fg)′ = f ′g + fg′ and do not always write the argument. As you know from single
variable calculus, the derivative of the composite function is given by chain rule.
This is (f ◦ g)′ = f ′(g)g′. Written out in more details with argument, we can write
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d
dx
f(g(x)) = d

dx
f ′(g(x))g′(x). We generalize this here to higher dimensions. Instead

of d
dx
f we just write df . This is the Jacobean matrix we know. Now, the same rule

holds as before df(g(x)) = df(g(x))dg(x) and this is called the chain rule in higher

dimensions. On the right hand side, we have the matrix product of two matrices.

16.3. Let us see why this makes sense in terms of dimensions: g : Rm → Rp and f :
Rp → Rn, then dg(x) ∈M(p,m) and df(g(x)) ∈M(n, p) and df(g(x))dg(x) ∈M(n,m)
which is the same type of matrix than d(f ◦ g) because f ◦ g(x) maps Rm → Rn so
that also d(f ◦ g)(x) ∈ M(n,m). The name chain rule comes because it deals with
functions that are chained together.

Lecture

16.4. Given a differentiable function r : Rm → Rp, its derivative at x is the Jacobian
matrix dr(x) ∈ M(p,m). If f : Rp → Rn is another function with df(y) ∈ M(n, p),
we can combine them and form f ◦ r(x) = f(r(x)) : Rm → Rn. The matrices df(y) ∈
M(n, p) and dr(x) ∈ M(p,m) combine to the matrix product df dr at a point. This
matrix is in M(n,m). The multi-variable chain rule is:

Theorem: d(f ◦ r)(x) = df(r(x))dr(x)

16.5. For m = n = p = 1, the single variable calculus case, we have df(x) = f ′(x)
and (f ◦ r)′(x) = f ′(r(x))r′(x). In general, df is now a matrix rather than a number.
By checking a single matrix entry, we reduce to the case n = m = 1. In that case,
f : Rp → R is a scalar function. While df is a row vector, we define the column
vector ∇f = dfT = [fx1 , fx2 , . . . fxp ]T . If r : R → Rp is a curve, we write r′(t) =
[x′1(t), · · · , x′p(t)]T instead of dr(t). The symbol ∇ is addressed also as “nabla”. 1 The
special case n = m = 1 is:

Theorem: d
dt
f(r(t)) = ∇f(r(t)) · r ′(t).

16.6. Proof. d/dtf(x1(t), x2(t), . . . , xp(t)) is the limit h→ 0 of

[f(x1(t+ h), x2(t+ h), . . . , xp(t+ h))− f(x1(t), x2(t), . . . , xp(t))]/h =

= [f(x1(t+ h), x2(t+ h), . . . , xp(t+ h))− f(x1(t), x2(t+ h), . . . , xp(t+ h)]/h

+ [f(x1(t), x2(t+ h), . . . , xp(t+ h))− f(x1(t), x2(t), . . . , xp(t+ h)]/h+ · · ·
+ [f(x1(t), x2(t), . . . , xp(t+ h))− f(x1(t), x2(t), . . . , xp(t))]/h

which is (1D chain rule) in the limit h→ 0 the sum fx1(x)x′1(t) + · · ·+ fxp(x)x′p(t).

16.7. Proof of the general case: Let h = f ◦ r. The entry ij of the Jacobian matrix
dh(x) is dhij(x) = ∂xjhi(x) = ∂xjfi(r(x)). The case of the entry ij reduces with t = xj
and hi = f to the case when r(t) is a curve and f(x) is a scalar function. This is the
case we have proven already.

1Etymology tells that the symbol is inspired by a Egyptian or Phoenician harp.



Example

16.8. Assume a ladybug walks on a circle r(t) =

[
cos(t)
sin(t)

]
and f(x, y) = x2−y2 is the

temperature at the position (x, y), then f(r(t)) is the rate of change of the temperature.
We can write f(r(t)) = cos2(t)− sin2(t) = cos(2t). Now, d/dtf(r(t)) = −2 sin(2t). The

gradient of f and the velocity are ∇f(x, y) =

[
2x
−2y

]
, r′(t) =

[
− sin(t)

cos(t)

]
. Now

∇f(r(t)) · r′(t) =

[
2 cos(t)
−2 sin(t)

]
·
[
− sin(t)

cos(t)

]
= −4 cos(t) sin(t) = −2 sin(2t) .

Figure 2. If f(x, y) is a height, the rate of change d/dtf(r(t)) is the
gain of height the bug climbs in unit time. It depends on how fast the
bug walks and in which direction relative to the gradient ∇f it walks.

Illustrations

16.9. The case n = m = 1 is extremely important. The chain rule d/dtf(r(t)) =
∇f(r(t)) · r′(t) tells that the rate of change of the potential energy f(r(t)) at the
position r(t) is the dot product of the force F = ∇f(r(t)) at the point and the velocity
with which we move. The right hand side is power = force times velocity. We will
use this later in the fundamental theorem of line integrals.

16.10. If f, g : Rm → Rm, then f◦g is again a map from Rm to Rn. We can also iterate
a map like x → f(x) → f(f(x)) → f(f(f(x))) . . . . The derivative dfn(x) is by the
chain rule the product df(fn−1(x)) · · · df(f(x))df(x) of Jacobian matrices. The number
λ(x) = lim supn→∞(1/n) log(|dfn(x)|) is called the Lyapunov exponent of the map f
at the point x. It measures the amount of chaos, the “sensitive dependence on initial
conditions” of f . These numbers are hard to estimate mathematically. Already for
simple examples like the Chirikov map f([x, y]) = [2x − y + c sin(x), x], one can
measure positive entropy S(c). A conjecture of Sinai tells that that the entropy
of the map is positive for large c. Measurements show that this entropy S(c) =∫ 2π

0

∫ 2π

0
λ(x, y) dxdy/(4π2) satisfies S(x) ≥ log(c/2). The conjecture is still open. 2

16.11. If H(x, y) is a function called the Hamiltonian and x′(t) = Hy(x, y), y′(t) =
−Hx(x, y), then d/dtH(x(t), y(t)) = 0. This can be interpreted as energy conserva-
tion. We see that a Hamiltonian differential equation always preserves the energy. For
the pendulum, H(x, y) = y2/2−cos(x), we have x′ = y, y′ = − sin(x) or x′′ = − sin(x).

2To generate orbits, see http://www.math.harvard.edu/̃ knill/technology/chirikov/.
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Figure 3. The map f([x, y]) = [x2−x/2−y, x] is a Henon map. We
see some orbits. The map f([x, y]) = [2x − y + 4 sin(x), x] on the right
appeared in the first hourly. The torus T2 = R2/(2πZ)2 is filled with a
blue “stochastic sea” containing red “stable islands”.

16.12. The chain rule is useful to get derivatives of inverse functions. Like

1 =
d

dx
x =

d

dx
sin(arcsin(x)) = cos(arcsin(x)) arcsin′(x)

which then gives arcsin′(x) = 1/
√

1− sin2(arcsin(x)) = 1/
√

1− x2.

16.13. Assume f(x, y) = x3y+ x5y4− 2− sin(x− y) = 0 is a curve. We can not solve
for y. Still, we can assume f(x, y(x)) = 0. Differentiation using the chain rule gives
fx(x, y(x)) + fy(x, y(x))y′(x) = 0. Therefore

y′(x) = −fx(x, y(x))

fy(x, y(x))
.

In the above example, the point (x, y) = (1, 1) is on the curve. Now gx(x, y) =
3 + 5− 1 = 7 and gy(x, y) = 1 + 4 + 1 = 6. So, g′(1) = −7/6. This is called implicit
differentiation. We could compute with it the derivative of a function which was not
known.

16.14. The implicit function theorem assures that a differentiable implicit function
g(x) exists near a root (a, b) of a differentiable function f(x, y).

Theorem: If f(a, b) = 0, fy(a, b) 6= 0 there exists c > 0 and a function
g ∈ C1([b− c, b+ c]) with f(x, g(x)) = 0.

Proof. Let c be so small that for fixed x ∈ [a− c, a+ c], the function y ∈ [b− c, b+ c]→
h(y) = f(x, y) has the property h(b−c) < 0 and h(b+c) > 0 and h′(y) 6= 0 in [b−c, b+c].
The intermediate value theorem for h now assures a unique root z = g(x) of h near
b. The chain rule formula above then assures that for a− c < x < a + c, the differen-
tial quotient [g(x+h)−g(x)]/h written down for g has a limit −fx(x, g(x))/fy(x, g(x)).

P.S. We can get the root of h by applying Newton steps T (y) = y − h(y)/h′(y).
Taylor (seen in the next class) shows the error is squared in every step. The Newton
step T (y) = y − dh(y)−1h(y) works also in arbitrary dimensions. One can prove the
implicit function theorem by just establishing that Id − T = dh−1h is a contraction
and then use the Banach fixed point theorem to get a fixed point of Id− T which
is a root of h.



h(x)

x-T(x)

Figure 4. The Newton step.

Figure 5. If we apply the map f([x, y]) = [x2 − x4 − y, x] again and
again and plot points, we get an orbit. Such simple dynamical systems
are largely not understood. Which points do not escape to infinity?
What is the boundary of this set. Proving that there are regions which
stay bounded is hard and needs “hard implicit function theorems”. The
Newton method allows to get a grip on proving this, where the Newton
step is applied on spaces of functions. Some of the hardest analysis which
humans have invented for tackling mathematical problems come to play
in this seemingly simple map f : R2 → R2.

Units 16 and 17 are together taught on Wednesday. Homework is all in unit 17.
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