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MATH 22B

Unit 19: Extrema

Introduction

19.1. Learning is an optimization process with the goal to increase knowledge, skills
and creative power. This applies both for education as well as for machine learning.
In order to track the learning process, we need a function which measures progress.
An old fashioned metric is the GPA averaging some grades in an educational system,
an other or IQ scores measured by doing tests. An other metric example in a research
setting is a social network score like the number of citations or the h-index. For a car
driving autonomously it could be the f(x) = 100/(1+N(x)) where N(x) is the number
of accidents produced using the parameter configuration x in a fixed period.

f = c

∇f

From D. Perkins: The Eureka Effect, the Art and Logic of Breakthrough Thinking , 2000

Figure 1. The Klondike picture of David Perkins illustrates the search
for solutions in a higher dimensional landscape defined by a height func-
tion f . Calculus suggests to follow the gradient ∇f as this leads to local
maxima. To find global maxima (which could be breakthrough ideas),
we have to search harder and make a list of all maxima. The process is
named after Klondike region in Canada which became infamous during
the Gold rush.
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19.2. Once the frame work and the function f is fixed, the question is how to increase
f most effectively. This simplistic picture is quite effective both for human intelligence
or artificial intelligence. For many functions which have been considered (winning in
chess games, computational power, data retention, feature detection, driving cars or
flying planes) machines progressed rapidly. There is hardly anybody who seriously
doubts that humans eventually will lose the battle for any function f which can be
considered. There are still domains where machines have not taken over. Examples
are art or writing scientific papers. 1

19.3. Once a machine knows the function f , it can quit comfortably determine from
a position x in which direction to change to increase f most rapidly. The direction
of fastest increase is the direction of the gradient ∇f of f . In calculus, we look at
situations, where the position consists of a few variables only. Single variable calculus
deals with the situation of one variable. We look here at the situation with n variables
but will mostly work with 2 variables as this already gives the main idea. The principle
is that we have reached an optimum where no change any more can increase the function
f . This means mathematically that the derivative df of f is zero. We call such points
“critical points”.

19.4. Let us first look at the rate of change of a function along a direction v. Take a
curve r(t) = x+ tv where v is a unit vector. By the chain rule, the rate of change at x
is given by f(r(t)) = ∇f(r(t)) · r′(0) = ∇f(x) · v. We know for the dot product that
this is equal to |∇f(x)||v| cos(α) = |∇f(x)| cos(α). This is maximized for cos(α) = 1
which means that v points into the same direction than ∇f . So, The gradient points
into the direction of maximal increase. This is important to remember. If you are in a
landscape given by the height f(x) you have to go into the direction of ∇f(x)/|∇f(x)|
in order to increase most. Of course, this does not make sense if ∇f(x) = 0 but that
is the situation where you are at a maximum, and where you can not increase f any
more.

Lecture

19.5. All functions are assumed here to be in C2, meaning that they are two times
continuously differentiable. It all starts with an observation going back to Pierre de
Fermat:

Theorem: If x0 is a maximum of f : Rm → R, then ∇f(x0) = 0.

Proof. We prove this by contradiction. Assume ∇f(x0) 6= 0, define the vector v =
∇f(x0) and look at g(t) = f(x0 + tv), which is a function of one variable. By the chain
rule, it satisfies g′(0) = ∇f(x0 + 0v) · v = |∇f |2 > 0. This means that f(x0 + tv) > 0
for small t > 0. The point x0 can not have been maximal. This is a contradiction.
QED.

1There could be resistance: humans might decide not to cite scientific breakthroughs by machines.
On the other hand, who would not want to learn a “theory of everything” even if it is discovered by
a machine?



19.6. A point x with ∇f(x) = 0 is called a critical point of f . By the Taylor
formula, we have at a critical point x0 the quadratic approximation Q(x) = f(x0) +
(x− x0)TH(x0)(x− x0)/2, where H(x0) is the Hessian matrix

H(x0) =


fx1x1 fx1x2 . . . fx1xm

fx2x1 fx2x2 . . . fx2xm

. . . . . . . . . . . .
fxmx1 fxmx2 . . . fxmxm

 .

19.7. As in one dimension, having a critical point does not assure that a point is a local
maximum or minimum. The second derivative test in single variable calculus assures
that if f ′(x0) = 0, f ′′(x0) > 0, we have a local minimum and if f ′(x0) = 0, f ′′(x0) < 0,
we have a local maximum. If f ′′(x0) = 0, we can not say anything without looking at
higher derivatives.

19.8. A matrix A is called positive definite if v · Av > 0 for all vectors v 6= 0. It is
called negative definite if v · Av < 0 for all vectors v 6= 0. A diagonal matrix with
positive diagonal entries is positive definite. In the following statements, we assume x0
is a critical point.

19.9. We say x0 is a local maximum of f if there exists r > 0 such that f(x) ≤ f(x0)
for all |x − x0| < r. We say, it is a local minimum of f if f(x) ≥ f(x0) for all
|x− x0| < r. How can we check whether a point is a local maximum or minimum?

Theorem: Assume ∇f(x0) = 0. If H(x0) is positive definite, then x0 is a
local minimum. If H(x0) is negative definite, then x0 is a local maximum.

19.10. Proof: as ∇f(x0) = 0, the quadratic approximation at x0 is Q(x) = f(x0) +
H(x0)v · v/2 > f(x0) for small non-zero v = x − x0 and Hessian H. The analogue
statement for the minimum can be deduced by replacing f with −f .

19.11. Let us look at the case, where f(x, y) is a function of two variables such that
fx(x0, y0) = 0 and gx(x0, y0) = 0. The Hessian matrix is

H(x0, y0) =

[
fxx fxy
fyx fyy

]
.

In this two dimensional case, we can classify the critical points if the determinant
D = det(H) = fxxfyy − f 2

xy of H is non-zero. The number D is also called the
discriminant at a critical point.

Figure 2. f = x2 + y2 gives a minimum, f = −x2 − y2 a maximum
and f = x2 − y2 a saddle. The case f = x2y − yx2 is not Morse.
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19.12. We say (x0, y0) is a Morse point, if (x0, y0) is a critical point and the de-
terminant is non-zero. A C2 function is a Morse function if every critical point is
Morse. Examples of Morse functions are f(x, y) = x2 + y2, f(x, y) = −x2 − y2 and
f(x, y) = x2 − y2. The last case is called a hyperbolic saddle. In general, a critical
point is a hyperbolic saddle if D 6= 0 and if it is neither a maximum nor a minimum.
Here is the second derivative test in dimension 2:

Theorem: Assume f ∈ C2 has a critical point (x0, y0) with D 6= 0.
If D > 0 and fxx > 0 then (x0, y0) is a local minimum.
If D > 0 and fxx < 0 then (x0, y0) is a local maximum.
If D < 0 then (x0, y0) is a hyperbolic saddle.

19.13. Proof. After translation (x, y) → (x − x0, y − y0) and replacing f with f −
f(x0, y0), we have (x0, y0) = (0, 0) and f(0, 0) = 0. At the critical point, the quadratic
approximation is now

Q(x, y) = ax2 + 2bxy + cy2 .

This can be rewritten as a(x+ b
a
y)2 +(c− b2

a
)y2 = a(A2 +DB2) with A = (x+ b

a
y), B =

b2/a2 and discriminant D. If a = fxx > 0 and D > 0 then c − b2/a > 0 and the
function has positive values for all (x, y) 6= (0, 0). The point (0, 0) is then a minimum.
If a = fxx < 0 and D > 0, then c− b2/a < 0 and the function has negative values for
all (x, y) 6= (0, 0) and the point (x, y) is a local maximum. If D < 0, then f takes both
negative and positive values near (0, 0). QED

19.14. One can ask, why fxx and not fyy is chosen. It does not matter, because if
D > 0, then both fxx and fyy need to be non-zero and have the same sign. Instead
of fxx, one could also have pick the more natural trace tr(H). It is invariant under
coordinate changes similarly as the determinant D. The discriminant D happens also
to be the Gauss curvature of the surface at the point.

19.15. In higher dimensions, the situation is described by the Morse lemma. It tells
that near a critical point there is a coordinate change φ such that g(x) = f(φ(x)) is
a quadratic function f(x) = B(x− x0) · (x− x0) where B is diagonal with entries +1
or −1. Critical point can then be given a Morse index, the number of entries −1
in B. The Morse lemma is actually a theorem (theorems are more important than
lemmata=helper theorems)

Theorem: Near a Morse critical point x0 of a C2 function f , there is a
coordinate change φ : Rm → Rm such that g(x) = f(φ(x))− f(x0) is

g(x) = −x21 − · · · − x2k + x2k+1 + · · ·+ x2m .

19.16. Proof. We use induction with respect to m. (i) Induction foundation. For
m = 1, the result tells that for a Morse critical point, the function looks like y = x2

or y = −x2. First show that if f(0) = f ′(0) = 0, f ′′(0) 6= 0, then f(x) = x2h(x) or
f(x) = −x2h(x) for some positive C2 function h. Proof. By a linear coordinate change
we assume x0 = 0 and f(0) = 0. There exists then g(x) such that f(x) = xg(x):
it is g(x) = f(x)/x for x 6= 0 and is in the limit x → 0 the value of limx→0(f(x) −
f(0))/x = f ′(0). By the product rule, f ′(x) = g(x) + xg′(x) with g(0) = 0. Because



f ′(0) = g(0) = 0 can define f(x)/x2 for x 6= 0 and take the limit x → 0, because
by applying Hôpital twice, the limit is f ′′(0). The coordinate change is now given by

a function y = φ(x) satisfying g(x, y) = y
√
h(y) = x. Implicit differentiation gives

gy(0, 0) =
√
h(y) 6= 0 so that by the implicit function theorem y(x) exists.

(ii) Induction step m→ m+1: we first note that Taylor for C2 with remainder term
implies that f(x1, . . . , xn) =

∑
i,j xixjhij(x1, . . . , xn) with some continuous functions

hij. Furthermore, the function value hij(0) = fxixj
(0) = Hij(0) are the coordinates

of the Hessian. Apply first a rotation so that h11 6= 0. Now look at x1 and keep the
other coordinates constant. As in (i), find a coordinate change φ such that f(φ(x)) =
±x21 + g(x2, . . . , xm), where g inherits the properties of but is of one dimension less.
By induction assumption, there is a second coordinate change such that g(ψ(x)) =
x22 − · · · − x2l + x2l+1 + · · ·+ x2m. Combining φ and ψ produces the Morse normal form.

Examples

19.17. Q: Classify the critical points of f(x, y) = x3− 3x− y3− 3y. A: As ∇f(x, y) =
[3x2 − 3,−3y2 + 3]T , the critical points are (1, 1),(−1, 1),(1,−1) and (−1,−1). We

compute H(x, y) =

[
2x 0
0 −2y

]
. For (1, 1) and (−1,−1) we have D = −4 and so

saddle points. For (−1, 1), we have D = 4, fxx = −2, a local max. For (1,−1) where
D = 4, fxx = 2 we have a local min.

Homework

Problem 19.1: a) Classify the critical points of the function

f(x, y) = x2 + y3 − xy .
(Maxima, minima or saddle points).
b) Now do the same for

f(x, y, z) = x2 + y3 − xy + z2

and find the Morse index at each critical point.

Problem 19.2: Find all critical points of the 3D area 51 function

f(x, y, z) = x51 − 51x+ y51 − 51y + z51 − 51z .

Compute the Hessian H = d2f at each critical point and determine the
maxima (all eigenvalues are negative) and minima (all eigenvalues are
positive) P.S. Area 51 is an old hat. But 3D Area 51 is still highly classified
and rumored to be near the dark side of the moon.

Problem 19.3: Where on the parametrized surface r(u, v) = [u2, v3, uv]
is the temperature T (x, y, z) = 12x + y − 12z minimal. Classify all the
critical points of the function f(u, v) = T (r(u, v)). [ If you have found the
function f(u, v), you can replace u, v again with x, y if you like to work
with a function f(x, y). ]
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Problem 19.4: Find all the critical points of the function f(x, y, z) =
(x − 1)2 − y2 + xz2. In each of the cases, find the Hessian matrix. Also
here compute the eigenvalues. These are numbers λ such that Hv = λv
for some non-zero vector. One can find them by looking for the roots of
the characteristic polynomial χH(λ) = det(L−λ). You can calculate them
on a computer. Find in each case the eigenvalues.

Problem 19.5: a) Find a function f(x, y) with 3 maxima and 3 saddle
points and one minimum.
b) You see below a contour map of a function of two variables. How many
critical points are there? Is the function a Morse function?
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