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MATH 22B

Unit 2: Gauss-Jordan elimination

Introduction

Figure 1. A picture of the dwarf planet Ceres taken in 2015 by the
NASA Dawn space craft.

2.1. Systems of linear equations have already been tackled four thousand years ago
by Babylonian mathematicians. 1 They were able to solve simple systems of equations
of two unknown like x + y = 12, x − y = 2. Chinese mathematicians, in the “Nine
chapter of the mathematical art”, pushed this to systems of three equations and also
to related number theoretical setting appearing in the form of the Chinese remainder
theorem. The problem of solving systems of equations appeared also in analysis, like
when maximizing functions with constraints. The method of determinants, pioneered

1I checked with Ajak who also hinted, that Phastos might have leaked Gauss-Jordan elimination.
The opening scene in the newest Marvel’s movie shows the eternals arriving here 5000 BC.
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by Leibniz, led with Gabriel Cramer to explicit solution formulas of systems or equa-
tions. The modern approach of solving systems of equation uses a clear cut elimination
process. This process is wicked fast and was formalized by Carl Friedrich Gauss. It is
the method we still are using today. It also allows to compute determinants effectively.

2.2. Elimination was of course used long before Gauss. We learn it early on as ordinary
elimination. For example, solve for one variable and put it into the rest to have a system
with less unknown. What Gauss did was to write down a formal elimination process.
This was around 1809. He called the ordinary elimination “eliminationem vulgarem”.
The process came not out of the blue. The work on rather applied problems must have
led to it. For example, Gauss in 1801 was able in a few weeks to predict the path
of the minor planet Ceres from 24 measurements published in the summer of 1801.
It is reported that Gauss needed more than 100 hours to determine the 5 parameters
for the orbit. Exercises like this definitely motivated Gauss for writing down later
more formal procedures allowing to solve linear problems or more general data fitting
problems. The name “Gaussian elimination” was used first by George Forsythe, while
Alan Turing described it in the way we teach it today. We will see here formally that
the process determines in a unique way. 2

Lecture

2.3. If a n×m matrix A is multiplied with a vector x ∈ Rm, we get a new vector Ax
in Rn. The process x→ Ax defines a linear map from Rm to Rn. Given b ∈ Rn, one
can ask to find x satisfying the system of linear equations Ax = b. Historically,
this gateway to linear algebra was walked through much before matrices were even
known: there are Babylonian and Chinese roots reaching back thousands of years. 3

2.4. The best way to solve the system is to row reduce the augmented matrix
B = [A|b]. This is a n× (m+ 1) matrix as there are m+ 1 columns now. The Gauss-
Jordan elimination algorithm produces from a matrix B a row reduced matrix
rref(B). The algorithm allows to do three things: subtract a row from another
row, scale a row and swap two rows. If we look at the system of equations, all
these operations preserve the solution space. We aim to produce leading ones
1○, which are matrix entries 1 which are the first non-zero entry in a row. The goal

is to get to a matrix which is in row reduced echelon form. This means: A) every
row which is not zero has a leading one, B) every column with a leading 1 has no other
non-zero entries besides the leading one. The third condition is C) every row above a
row with a leading one has a leading one to the left.

2.5. We will practice the process in class and homework. Here is a theorem

Theorem: Every matrix A has a unique row reduced echelon form.

Proof. 4 We use the method of induction with respect to the number m of columns
in the matrix. The induction assumption is the case m = 1 where only one column
exists. By condition B) there can either be zero or 1 entry different from zero. If there

2J.F. Grcar, Mathematicians of Gaussian Elimination, Notices of the AMS, 58, 2011
3For more, look at the exhibit on the website of the 2018 Math 22a.
4The proof is well known: i.e. Thomas Yuster, Mathematics Magazine, 1984



is none, we have the zero column. If it is non-zero, it has to be at the top by condition
C). We are in row reduced echelon form. Now, let us assume that all n ×m matrices
have a unique row reduced echelon form. Take a n×(m+1) matrix [A|b]. It remains in
row reduced echelon form, if the last column b is deleted (see lemma). Remove the last
column and row reduce is the same as row reducing and then delete the last column.
So, the columns of A are uniquely determined after row reduction. Now note that for
a row of [A|b] without leading one at the end, all entries are zero so that also the last
entries agree. Assume we have two row reductions [A′|b′] and [A′|c′] where A′ is the
row reduction of A. A leading 1○ in the last column of [A′|b′]) happens if and only
if the corresponding row in A was zero. So, also [A′, c′] has that leading 1○ at the
end. Assume now there is no leading one in the last column and b′k 6= c′k. We have so
x, a solution to the equation A′kqxq + A′k,q+1xq+1 + ...A′k,mxm = b′k. Since solutions to
equations stay solutions when row reducing, also A′kqxq+A′k,q+1xq+1+· · ·+A′k,mxm = c′k.
Therefore b′k = c′k. �

2.6. A separate lemma allows to break up a proof:

Lemma: If [A|b] is row reduced, then A is row reduced.

Proof. We have to check the three conditions which define row reduced echelon form.
�

2.7. It is not true that if A is in row reduced echelon form, then any sub-matrix is in
row reduced echelon form. Can you find an example?

Examples

2.8. To row reduce, we use the three steps and document on the right. To save space,
we sometimes report only after having done two steps. We circle the leading 1○. Note
that we did not immediately go to the leading 1○ by scaling the first. It is a good idea
to avoid fractions as much as possible. 3 4 5 6 7

20 30 40 50 60
1 2 3 4 4

 → row 3

→ row 1

 1○ 2 3 4 5
20 30 40 50 60
3 4 5 6 7

 ∗1/10 1○ 2 3 4 5
2 3 4 5 6
3 4 5 6 7

 −R1

−R2

 1○ 2 3 4 5
1 1 1 1 1
1 1 1 1 1

 −R1

−R2 1○ 2 3 4 5
0 −1 −2 −3 −4
0 0 0 0 0

 +2R2

∗(−1)

 1○ 0 −1 −2 −3
0 1○ 2 3 4
0 0 0 0 0


2.9. Finish the following Suduku problem which is a game where one has to fix
matrices. The rules are that in each of the four 2 × 2 sub-squares, in each of the
four rows and each of the four columns, the entries 1 to 4 have to appear and so

add up to 10


2 1 x 3
3 y z 1
4 3 a 2
b c d e

. We have the equations 2 + 1 + x + 3 = 10, 3 + y +

z + 1 = 10, 4 + 3 + a + 2 = 10, b + c + d + e = 10 for the rows, 2 + 3 + 4 + b =
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10, 1 + y + 3 + c = 10, x + z + a + d = 10, 3 + 1 + 2 + e + 10 for the columns and
2 + 1 + 3 + y = 10, x + 3 + z + 1 = 10, 4 + 3 + b + c = 10, a + 2 + d + e = 10 for the
four squares. We could solve the system by writing down the corresponding augmented

matrix and then do row reduction. The solution is


2 1 4 3
3 4 2 1
4 3 1 2
1 2 3 4

.

Illustrations

The system of equations∣∣∣∣∣∣∣∣∣∣
x + u = 3

y + v = 5
z + w = 9

x + y + z = 8
u + v + w = 9

∣∣∣∣∣∣∣∣∣∣
is a tomography problem. These problems appear in magnetic resonance imaging.
A precursor was was X-ray Computed Tomography (CT) for which Allen MacLeod Cormack got the Nobel in 1979

(Cormack had a sabbatical at Harvard in 1956-1957, where the idea hatched). Cormack lived until 1998 in Winchester

MA. He originally had been a physicist. His work had tremendous impact on medicine.
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Figure 2. A MRI scanner can measure averages of tissue densities
along lines. MRI (Magnetic Resonance Imaging) is a radiology imaging
technique that avoids radiation exposure to the patient). Solving a sys-
tem of equations allows to compute the actual densities and so to do the
magic of “seeing inside the body”.



We build the augmented matrix [A|b] and row reduce. First remove the sum of the
first three rows from the 4th, then change the sign of the 4’th column:

1○ 0 0 1 0 0 3

0 1○ 0 0 1 0 5

0 0 1 0 0 1 9
1 1 1 0 0 1 8

0 0 0 1 1 1 9

 ⇒


1○ 0 0 1 0 0 3

0 1○ 0 0 1 0 5

0 0 1○ 0 0 1 9
0 0 0 1○ 1 1 9

0 0 0 1 1 1 9

 ⇒


1○ 0 0 0 −1 −1 −6
0 1○ 0 0 1 0 5

0 0 1○ 0 0 1 9
0 0 0 1○ 1 1 9

0 0 0 0 0 0 0


Now we can read of the solutions. We see that v and w can be chosen freely. They are
free variables. We write v = r and w = s. Then just solve for the variables:

x = −6 + r + s

y = 5− r

z = 9− s

u = 9− r − s

v = r

w = s

Figure 3. This is a polyhedron with F=540 faces. In the homework
you compute from this knowledge alone the number of vertices V and
the number of edges E. The equations which hold are V − E + F = 2
and 3F = 2E.
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Homework

Problem 2.1: For a polyhedron with v vertices, e edges and f trian-
gular faces Euler proved his famous formula V − E + F = 2. An other
relation 3F = 2E called a Dehn-Sommerville relation holds because each
face meets 3 edges and each edge meets 2 faces. Assume the number F of
triangles is F = 540. Write down a system of equations for the unknowns
V,E, F in matrix form Ax = b, then solve it using Gaussian elimination.

Problem 2.2: Row reduce the matrix A =

 1 2 3 4 5
1 2 3 4 0
1 2 3 0 0

.

Problem 2.3: In the “Nine Chapters on Arithmetic”, the following
system of equations appeared

3x + 2y + z = 39
2x + 3y + z = 34
x + 2y + 3z = 26

Solve it using row reduction by writing down an augmented matrix and
row reduce.

Problem 2.4: a) Which of the following matrices are in row reduced
echelon form?

A =

[
1 1 0 1
0 0 1 0

]
, B =

[
0 0 1
0 1 0

]
, C =

[
0 0 1
0 0 0

]
, D =

[
0 0
0 1

]
.

b) Two n × m matrices in reduced row-echelon form are called of the
same type if they contain the same number of leading l’s in the same

positions. For example,

[
1 2 0
0 0 1

]
and

[
1 3 0
0 0 1

]
are of the same type.

How many types of 2× 2 matrices in reduced row-echelon form are there?

Problem 2.5: Given A =

 1 2 3
4 5 6
7 8 9

. Compare rref(AT ) with

(rref(A))T . Is it true that the transpose of a row reduced matrix is a
row reduced matrix?
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