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MATH 22B

Unit 20: Constraints

Introduction

20.1. There is rarely a “free lunch”. If we want to maximize a quantity, we often
have to work with constraints. Obstacles might prevent us to change the parameters
arbitrarily. The gradient can still be used as a guiding principle. While we can not
achieve ∇f to be zero, we can look for points where the gradient is perpendicular to
the constraint. This gives us an optimal point under the confinement. If you hike on a
path in the mountains, you often reach a local maximum without being on top of the
mountain. What happens at such points x is that ∇f(x) is perpendicular to the curve
meaning that ∇f(x) is parallel to ∇g(x).

Figure 1. The situation, where a function f(x, y) is optimized along
a curve g(x, y) = c is a frame-work which can be tackled with Lagrange.
The condition of being maximal means that the gradient of f is per-
pendicular to the curve. This means that the gradients of f and g are
parallel. ∇f = λ∇g.

20.2. The method of Lagrange is much more general. We can work with arbitrary
many constraints and still use the same principle. The gradient of f : Rn → R is then
perpendicular to the constraint surface which means that is a linear combination of the
gradients of all the m constraints: these are n equations ∇f =

∑m
j=1 λj∇gj because

the vectors have n components. Together with the m equations gj = cj we have n+m
equations for n+ n variables x1, . . . , xn, λ1, . . . , λm.
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Lecture

20.3. If we want to maximize a function f : Rm → R on the constraint S = {x ∈
Rm | g(x) = c}, then both the gradients of f and g matter. We call two vectors v, w
parallel if v = λw or w = λv for some real λ. The zero vector is parallel to everything.
Here is a variant of Fermat:

Theorem: If x0 is a maximum of f under the constraint g = c, then
∇f(x0) and ∇g(x0) are parallel.

20.4. Proof by contradiction: assume ∇f(x0) and ∇g(x0) are not parallel and x0 is a
local maximum. Let T be the tangent plane to S = {g = c} at x0. Because ∇f(x0)
is not perpendicular to T we can project it onto T to get a non-zero vector v in T
which is not perpendicular to ∇f . Actually the angle between ∇f and v is acute so
that cos(α) > 0. Take a curve r(t) in S with r(0) = x0 and r′(0) = v. We have
d/dtf(r(0)) = ∇f(r(0)) · r′(0) = |∇f(x0)||v| cos(α) > 0. By linear approximation, we
know that f(r(t)) > f(r(0)) for small enough t > 0. This is a contradiction to the fact
that f was maximal at x0 = r(0) on S.

Figure 2. A Lagrange problem

20.5. This immediately implies: (distinguish ∇g 6= 0 and ∇g = 0)

Theorem: For a maximum of f on S = {g = c} either the Lagrange
equations ∇f(x0) = λ∇g(x0), g = c hold, or then ∇g(x0) = 0, g = c.



20.6. For functions f(x, y), g(x, y) of two variables, this means we have to solve a
system with three equations and three unknowns:

fx(x0, y0) = λgx(x0, y0)
fy(x0, y0) = λgy(x0, y0)
g(x, y) = c

20.7. To find a maximum, solve the Lagrange equations and add a list of critical points
of g on the constraint. Then pick a point where f is maximal among all points. We
don’t bother with a second derivative test. But here is a possible statement:

d2

dt2
DtvDtvf(x0)|t=0 < 0

for all v perpendicular to ∇g(x0), then x0 is a local maximum.

20.8. Of course, the case of maxima and minima are analog. If f has a maximum
on g = c, then −f has a minimum at g = c. We can have a maximum of f under a
smooth constraint S = {g = c} without that the Lagrange equations are satisfied. An
example is f(x, y) = x and g(x, y) = x3 − y2 shown in Figure (3).

x
3-y2=0

f(x,y)=x

1= λ 3x2

0=-λ 2y

x
3-y2=0

Figure 3. An example of a function, where the Lagrange equations
do not give the minimum, here (0, 0). It is a case, where ∇g = 0.

20.9. The method of Lagrange can maximize functions f under several constraints.
Lets show this in the case of a function f(x, y, z) of three variables and two constraints
g(x, y, z) = c and h(x, y, z) = d. The analogue of the Fermat principle is that at a
maximum of f , the gradient of f is in the plane spanned by ∇g and ∇h. This leads
to the Lagrange equations for 5 unknowns x, y, z, λ, µ.
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fx(x0, y0, z0) = λgx(x0, y0, z0) + µhx(x0, y0, z0)
fy(x0, y0, z0) = λgy(x0, y0, z0) + µhy(x0, y0, z0)
fz(x0, y0, z0) = λgz(x0, y0, z0) + µhz(x0, y0, z0)
g(x, y, z) = c
h(x, y, z) = d

20.10. For example, if f(x, y, z) = x2+y2+z2 and g(x, y, z) = x2+y2 = 1, h(x, y, z) =
x+ y+ z = 4, then we find points on the ellipse g = 1, h = 4 with minimal or maximal
distance to 0.

Figure 4. We see a situation where we try to maximize a function f
under two constraints. In this case the intersection g = c, h = d is an
ellipse.

Examples

20.11. Problem: Minimize f(x, y) = x2+2y2 under the constraint g(x, y) = x+y2 =
1. Solution: The Lagrange equations are 2x = λ, 4y = λ2y. If y = 0 then x = 1. If
y 6= 0 we can divide the second equation by y and get 2x = λ, 4 = λ2 again showing
x = 1. The point x = 1, y = 0 is the only solution.

20.12. Problem: Which cylindrical soda can of height h and radius r has minimal
surface A for fixed volume V ? Solution: We have V (r, h) = hπr2 = 1 and A(r, h) =
2πrh + 2πr2. With x = hπ, y = r, you need to optimize f(x, y) = 2xy + 2πy2 under
the constrained g(x, y) = xy2 = 1. We will do that in class.



20.13. Problem: If 0 ≤ pk ≤ 1 is the probability that a dice shows k, then we have
g(p) = p1 +p2 + · · ·+p6 = 1. This vector p is called a probability distribution. The
Shannon entropy of p is defined as

S(p) = −
6∑
i=1

pi log(pi) = −p1 log(p1)− p2 log(p2)− · · · − p6 log(p6) .

Find the distribution p which maximizes entropy S. Solution: ∇f = (−1 −
log(p1), . . . ,−1− log(pn)), ∇g = (1, . . . , 1). The Lagrange equations are −1− log(pi) =
λ, p1+· · ·+p6 = 1, from which we get pi = e−(λ+1). The last equation 1 =

∑
i exp(−(λ+

1)) = 6 exp(−(λ + 1)) fixes λ = − log(1/6)− 1 so that p1 = p2 = · · · = p6 = 1/6. It is
the fair dice that has maximal entropy. Maximal entropy means least information
content.

20.14. Assume that the probability that a physical or chemical system is in a state k
is pk and that the energy of the state k is Ek. Nature minimizes the free energy

F (p1, . . . , pn) = −
∑
i

[pi log(pi)− Eipi]

if the energies Ei are fixed. The probability distribution pi satisfying
∑

i pi = 1 min-
imizing the free energy is called a Gibbs distribution. Find this distribution in
general if Ei are given. Solution: ∇f = (−1− log(p1)− E1, . . . ,−1− log(pn)− En),
∇g = (1, . . . , 1). The Lagrange equation are log(pi) = −1−λ−Ei, or pi = exp(−Ei)C,
where C = exp(−1− λ). The constraint p1 + · · · + pn = 1 gives C(

∑
i exp(−Ei)) = 1

so that C = 1/(
∑

i e
−Ei). The Gibbs solution is pk = exp(−Ek)/

∑
i exp(−Ei). 1

20.15. If f is a quadratic function on Rm and g is linear that is f(x) = Bx · x/2
with B ∈ M(m,m) and if the constraint g(x) = Ax = c is linear A ∈ M(1,m), then
∇f(x) = Bx and ∇g(x) = AT . Lets call b = AT ∈ M(m, 1) ∼ Rm. The Lagrange
equations are then Bx = λb,Ax = c. We see in general that for quadratic f and linear
g, we end up with a linear system of equations.

20.16. Related to the previous remark is the following observation. It is often possible
to reduce the Lagrange problem to a problem without constraint. This is a point of
view often taken in economics. Let us look at it in dimension 2, where we extremize
f(x, y) under the constraint g(x, y) = 0. Define F (x, y, λ) = f(x, y) − λg(x, y). The
Lagrange equations for f, g are now equivalent to ∇F (x, y, λ) = 0 in three dimensions.

1This example is from Rufus Bowen, Lecture Notes in Math, 470, 1978
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Homework

Problem 20.1: Find the cylindrical basket which is open on the top
has has the largest volume for fixed area π. If x is the radius and y
is the height, we have to maximize f(x, y) = πx2y under the constraint
g(x, y) = 2πxy + πx2 = π. Use the method of Lagrange multipliers.

Problem 20.2: Given a n × n symmetric matrix B, we look at the
function f(x) = x · Bx. and look at extrema of f under the constraint
that g(x) = x · x = 1. This leads to an equation

Bx = λx .

A solution x is called an eigenvector. The Lagrange constant λ is an
eigenvalue. Find the solutions to Bx = λx, |x| = 1 if B is a 2×2 matrix,
where f(x, y) = ax2 + (b + c)xy + dy2 and g(x, y) = x2 + y2. Then solve
the problem with a = 4, b = 1, c = 1, d = 4.

Problem 20.3: Which pyramid of height h over a square [−a, a]×[−a, a]
with surface area is 4a

√
h2 + a2 + 4a2 = 4 has maximal volume V (h, a) =

4ha2/3? By using new variables (x, y) and multiplying V with a constant,
we get to the equivalent problem to maximize f(x, y) = yx2 over the

constraint g(x, y) = x
√
y2 + x2 + x2 = 1. Use the later variables.

Problem 20.4: Motivated by the Disney movie “Tangled”, we want
to build a hot air balloon with a cuboid mesh of dimension x, y, z which
together with the top and bottom fortifications uses wires of total length
g(x, y, z) = 6x + 6y + 4z = 32. Find the balloon with maximal volume
f(x, y, z) = xyz.

Problem 20.5: A solid bullet made of a half sphere and a cylinder has
the volume V = 2πr3/3 + πr2h and surface area A = 2πr2 + 2πrh+ πr2.
Doctor Manhattan designs a bullet with fixed volume and minimal
area. With g = 3V/π = 1 and f = A/π he therefore minimizes
f(h, r) = 3r2 +2rh under the constraint g(h, r) = 2r3 +3r2h = 1. Use the
Lagrange method to find a local minimum of f under the constraint g = 1.



Appendix: Data illustration: Cobb Douglas

20.17. The mathematician and economist Charles W. Cobb at Amherst college and
the economist and politician Paul H. Douglas who was also teaching at Amherst,
found in 1928 empirically a formula F (K,L) = LαKβ which fits the total production
F of an economic system as a function of the capital investment K and the labor L.
The two authors used logarithms variables and assumed linearity to find α, β. Below
are the data normalized so that the date for year 1899 has the value 100.

Y ear K L P
1899 100 100 100
1900 107 105 101
1901 114 110 112
1902 122 118 122
1903 131 123 124
1904 138 116 122
1905 149 125 143
1906 163 133 152
1907 176 138 151
1908 185 121 126
1909 198 140 155
1910 208 144 159
1911 216 145 153
1912 226 152 177
1913 236 154 184
1914 244 149 169
1915 266 154 189
1916 298 182 225
1917 335 196 227
1918 366 200 223
1919 387 193 218
1920 407 193 231
1921 417 147 179
1922 431 161 240
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The graph of F (L,K) = L3/4K1/4 fits pretty well that data set. You can see in the
data that there is an out-layer.

20.18. Assume that the labor and capital investment are bound by the additional
constraint G(L,K) = L3/4 +K1/4 = 50. (This function G is unrelated to the function
F (L,K) as we are in a Lagrange problem. ) Where is the production P maximal under
this constraint? Plot the two functions F (L,K) and G(L,K).
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