
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 22: Double integrals

Introduction

22.1. When integrating a continuous function f(x, y) over a two-dimensional domain
R ⊂ R2, we can use Riemann sums again like in one dimensions and get

∫∫
R
f(x, y) dA.

A special case of a continuous function is the function f(x, y) = 1. If we integrate∫∫
R

1 dA we get the area. Unlike in one dimensions, where a domain is just an
interval, we can have much more interesting regions in two dimensions.

Figure 1. What is the area of the Mandelbrot set? The integral∫∫
R
f(x, y) dA has an interpretation of the volume under the graph of f .

If the height is constant 1, then the volume is the area
∫∫

R
1 dA = |R|

of the region R. For the Mandelbrot set we measure an area slightly
above 1.5.

22.2. Integration in two dimensions is a good prototype. Knowing this multi-dimensional
situation, will allow also to understand how to integrate in 3 or more dimensions. We
will learn next week how to compute the area of a surface. But dimensional integrals
also matter in higher dimensions: if we integrate a so called 2-form F over a two-
dimensional surface, we get double integrals. An example of a 2-form is the electro-
magnetic field also known as “light”. String theorists work in higher dimensional
spaces. The surface traced out by a moving string is a 2-dimensional surface called a
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“world-sheet”. Its surface area is called the Nambu-Goto action which plays the
role of the length in classical mechanics. This is a double integral.

22.3. Like particle move on shortest paths called geodesics, strings move on paths
in which the surface area is minimized. Not everybody has jumped onto the string
theory wagon however and the theory lead to a dead end. We do not know yet. In
any case, in the quest of understanding the basic building blocks of space and time
and matter is exciting. We live in an interesting time where highly successive theories
like the standard model (SM), quantum mechanics (QM) or general relativity (GR)
match measurements with enormous precision. There are also other interesting theories
which lack experimental verifications. Without doubt however, calculus and integration
theory in particular will play an important role also in the future, whatever lies ahead.

Lecture

22.4. Given a bounded region R in R2 and a continuous function f(x, y) : R → R,
define the Riemann integral I =

∫∫
R
f(x, y) dA as the n→∞ limit of

In =
∑

(i/n,j/n)∈R

f(
i

n
,
j

n
)

1

n2
.

The bounded region R is a defined as closed subset of R2 bound by finitely many differ-
entiable curves R = {g1 ≤ c1, . . . gk ≤ ck}. As already in one dimension, the definition
is designed to be independent of an orientation chosen on R. We are integrating like
summing up a spread sheet. Just add up all entries. To justify that the limit exists,
we again can use the Heine-Cantor theorem which tells that f is continuous on R if
and only if it is uniformly continuous. This means there are numbers Mn → 0 such
that if |(x1, y1)− (x2, y2)| ≤ 1/n, then |f(x1, y1)− f(x2, y2)| ≤Mn.

Theorem: For continuous f on a bounded region R,
∫∫

R
fdxdy exists.

22.5. Proof. In each cube Qij = {i/n ≤ x ≤ (i + 1)/n, j/n ≤ y ≤ (j + 1)/n} ∩ R
define aij = min(x,y)∈Qij

f(x, y) and bij = max(x,y)∈Qij
f(x, y). Because the boundary

was assumed to be given by a collection of curves which have finite total arc length L,
the number of cubes Qij which intersect the boundary C is bounded by 4Ln (a curve
of length 1 can maximally touch 4 squares). Define also F = max(x,y)∈R |f(x, y)|. We
have with Kn = 4LF/n:

An −Kn ≤ In ≤ Bn +Kn ,

where An =
∑

i,j aij/n
2 and Bn =

∑
i,j bij/n

2 and Kn takes care of cubes Qij which
intersect the boundary of R and so only contribute partially. Let I be the limsup
of In. We have Bn − An ≤ Mnn

2/n2 = Mn → 0 and Kn → 0 as well so that
||In − I| ≤Mn +Kn → 0.

22.6. We rarely evaluate integrals using Riemann sums. Fortunately it is possible to
reduce a double integral to single integrals. One can do that for basic regions which
consist of two type of regions “bottom to top” regions R = {(x, y), a ≤ x ≤
b, c(x) ≤ y ≤ d(x)} or “left to right” regions R = {(x, y), a(y) ≤ x ≤ b(y), c ≤ y ≤
d}. By cutting a general region into smaller pieces like intersecting with sufficiently
small cubes Qi,j defined above, we can write any region as a union of such basic regions:



for large enough n, any Qij ∩ R us a basic region. Now we can define the integral in

the first case as
∫ b
a
[
∫ d(x)
c(x)

f(x, y) dy]dx and in the second case as
∫ d
c

[
∫ b(y)
a(y)

f(x, y) dx]dy.

Is this the same? This is answered with Fubini, which we have already used. Let R be
a rectangle R = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}. Here is the Fubini theorem:

Figure 2. “Bottom to top” and “left to right” regions.

Theorem:
∫∫

R
f(x, y) dA =

∫ b
a
[
∫ d
c
f(x, y) dy]dx =

∫ d
c

[
∫ b
a
f(x, y) dx]dy.

22.7. Proof: first make a coordinate change to get R = [0, 1]×[0, 1], then cover R with
n2 cubes Qij of side length 1/n. We have for every y a uniformly continuous function
x → f(x, y) and for every x a uniformly continuous function y → f(x, y) and the
constants Mn work for all: there is Mn → 0 so that if |x1−x2| < 1/n and |y1−y2| < 1/n,
then |f(x1, y1) − f(x2, y2)| ≤ Mn. Now use the notation A ∼c B if |A − B| ≤ c and

get
∫∫

R
f(x, y)dA ∼Mn

1
n

∑n−1
i=0

1
n

∑n−1
j=0 f(i/n, j/n) ∼2Mn

1
n

∑n−1
i=0

∫ 1

0
f(i/n, y) dy ∼3Mn∫ 1

0
[
∫ 1

0
f(x, y) dy] dx. Similarly, we can show

∫∫
R
f(x, y)dA ∼3Mn

∫ 1

0
[
∫ 1

0
f(x, y) dx] dy.

22.8. Without continuity, Fubini is false: the standard example is illustrated in Fig-
ure (3):

−π
4

=

∫ 1

0

∫ 1

0

(x2 − y2)
(x2 + y2)2

dydx 6=
∫ 1

0

∫ 1

0

(x2 − y2)
(x2 + y2)2

dxdy =
π

4
.

Proof.
∫

(x2−y2)/(x2+y2)2 dx = −x/(x2+y2),
∫

(x2−y2)/(x2+y2)2 dy = y/(x2+y2). so

that
∫ 1

0
(x2−y2)/(x2+y2)2 dx = −1/(1+y2) and

∫ 1

0
(x2−y2)/(x2+y2)2 dy = 1/(1+x2).

22.9. Integrals in higher dimensions are defined in the same way. We will cover the
three dimensional case in particular later. Lets just add the definition for now. Given
a m dimensional region R in Rm and a continuous f : Rm → R, using the multi-index
notation x = (x1, . . . , xm), dx = dx1dx2 · · · dxm and i/n = (i1/n, i2/n, . . . , im/n) de-
fine ∫

R

f(x)dx = lim
n→∞

1

nm

∑
i
n
∈R

f(
i

n
) .

A region is now a set R = {x ∈ Rm | g1(x) ≤ c1, . . . , gk(x) ≤ ck} where gk are smooth
functions. It is called bounded if there exists ρ > 0 such that R ⊂ {|x| ≤ ρ}.
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Figure 3. Integrating over a region via a Riemann integral. A double
integral is a signed volume. Parts where f < 0 is negative volume. Fubini
can fail, even if the two conditional integrals exist.

Examples

22.10. If f(x, y) = 1, then
∫∫

R
f(x, y) dxdy is the area of R. For example, if

∫∫
x2+y2≤9

8 dxdy = 8
∫∫

x2+y2≤9 1 dxdy = 8Area(R) = 72π.

22.11. We know from single variable calculus that
∫ b
a
f(x) dx is the signed area under

the curve of f . For f(x) ≥ 0, where it is the area, we can write this as
∫ b
a

∫ f(x)
0

1 dydx.
Note that as we have defined the integrals, the equivalence would be wrong if f(x)
is negative somewhere. It is the double integral which is the correct notion of area.
Example: The area of the region bounded by the curve y = 1/(1 + x2), the curve

y = 0 and the curve x = −1 and x = 1 is
∫ 1

−1

∫ 1/(1+x2)

0
dydx = arctan(x)|1−1 = π/2.

Figure 4.

22.12. The integral
∫∫

R
f(x, y) dxdy can be interpreted as the signed volume under

the graph of f above the region R. Find the volume of the region bound by z =
4 − 2x4 − 2y4 and z = 4 − 2x2 − 2y2 and −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. Solution:∫ 1

0

∫ 1

0
(4− 2x4 − 2y4)− (4− 2x2 − 2y2) dxdy = (4/15)2.

22.13. Problem. Find the area of a disc of radius a. Solution:∫ a

−a

∫ √a2−x2
−
√
a2−x2

1 dydx =

∫ a

−a
2
√
a2 − x2 dx .



Use trig substitution x = a sin(u), dx = a cos(u), to get∫ π/2

−π/2
2
√
a2 − a2 sin2(u)a cos(u) du =

∫ π/2

−π/2
2a2 cos2(u) du .

Using a double angle formula, this gives a2
∫ π/2
−π/2 2 (1+cos(2u))

2
du = a2π. We will next

time compute this much more effectively.

22.14. Problem. Let R be the triangle {1 ≥ x ≥ 0, 0 ≤ y ≤ x}. Evaluate∫ ∫
R
e−x

2
dxdy. Solution. We can not evaluate the integral directly because e−x

2

has no anti-derivative given in terms of elementary functions. But we can write the
integral as

∫ 1

0
[
∫ x
0
e−x

2
dy] dx

=

∫ 1

0

xe−x
2

dx = −e
−x2

2
|10 =

(1− e−1)
2

.

Homework

Problem 22.1: Calculate the iterated integral
∫ 1

0

∫ 2−x
x

(x3 − y) dydx in
two ways, once as a “left to right” and once as a “bottom to top” integral.

Problem 22.2: Find the integral∫ 1

0

∫ y2

√
y

3x7√
x− x2

dx dy .

Problem 22.3: a) Compute the area of the elliptical region bound by
the ellipse x2/42 + y2/92 = 1 using trig substitution.
b) Now do this in general for an ellipse x2/a2 + y2/b2 = 1.
(It is the “hardest problem in geometry”, according to the comedy-drama
“Rushmore”, a movie from 1998).

Problem 22.4: Find the integral∫ π2

0

∫ π

√
y

sin(x)

x2
dxdy .

Problem 22.5: Find the volume of the hoof solid x2+y2 ≤ 1, 0 ≤ z ≤ x.
The hoof solid was considered by Archimedes already.



Linear Algebra and Vector Analysis

Appendix: Data illustration: Monte Carlo

22.15. Often, when we deal with real data, we do not have analytic expressions for
the region or function we want to integrate. The Riemann integral has its limitations.
In other branches of mathematics like in probability theory, a better integral is
needed. Its definition is close to the Riemann integral which we have given as the limit∫
(xk,yl)∈R

f(xk, yl)
1
n2 , where xk = k/n, yl = l/n. The Lebesgue integral replaces the

regularly spaced (xk, yl) grid with random points (xk, yl) and uses the same formula.

22.16. How do we find the area of Mandelbrot set

M = {c = a+ ib ∈ C ∈ R2 | Tc(0)n stays bounded } ,
where Tc(z) = z+c. In real coordinates, this is the map Tc(x, y) = (x2−y2 +a, 2xy+b).

22.17. What is the area of the Mandelbrot set? We know it is contained in the
rectangle x ∈ [−2, 1] and y ∈ [−3/2, 3/2]. We now just randomly shoot into this
rectangle and see whether we are in the Mandelbrot set or not after 1000 iterations.
Here is some Mathematica code which allows you to compute things. When we ran
it, it gave a value of about 1.515.... More accurate measurements reported hint for a
slightly smaller value like 1.506.... Others have given bounds [1.50311, 1.5613027].�
M=Compile [{ x , y} ,Module [{ z=x+I y , k=0} ,

While [Abs [ z ]<2.&&k<1000 , z=N[ zˆ2+x+I y];++k ] ; Floor [ k / 1 0 0 0 ] ] ] ;
9∗Sum[M[−2+3 Random[ ] , −1.5+3 Random[ ] ] ,{1000000} ] / 1000000� �
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