
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 25: Solids

Introduction

25.1. 1-dimensional objects are curves and 2-dimensional objects are regions or sur-
faces. In dimension 3, we deal with solids. The simplest solids imaginable are the cube
or the spherical ball. Solids in three dimensional space are usually drawn by plotting
their boundary surfaces. A solid polyhedron for example is bound by planes. The first
figure shows the solid bound by hyperboloids. It is quite a challenge to compute its
volume. 1

Figure 1. The “Archimedes revenge problem” asks to prove that
E : x2+y2−z2 ≤ 1, y2+z2−x2 ≤ 1, z2+x2−y2 ≤ 1 has Vol(E) = log(256).

25.2. While curves C have length and regions S have area, three dimensional solids
E have volume. We will in the next lecture look at surface area

∫ ∫
S

1 dS. In this
lecture we look at volume

∫∫∫
E

1 dV

1Archimedes Revenge, first appeared in Math S21a exam, Harvard Summer School, 2017
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25.3. A basic solid R in Rn is a bounded region enclosed by finitely many surfaces
gi(x1, · · · , xn) = ci. A solid is a finite union of such basic solids. We focus here mostly
on n = 3. A 3D integral I =

∫∫∫
R
f(x, y, z) dxdydz is defined in the same way as a

limit of a Riemann sum In which for a given integer n is defined as

In =
1

n3

∑
(i/n,j/n,k/n)∈R

f(
i

n
,
j

n
,
k

n
) .

The convergence is proven in the same way. The boundary contribution can be ne-
glected in the limit n→∞. If Φ : R→ E is a parametrization of the solid, then

Theorem:
∫∫∫

R
f(u, v, w)|dΦ(u, v, w)|dudvdw =

∫∫∫
E
f(x, y, z) dxdydz

Figure 2. Solids in R3 are sets which are unions of solids bound by
smooth surfaces. The second solid appears in homework 25.3, the last in
25.2

25.4. If f(x, y, z) is constant 1, then
∫∫∫

E
f(x, y, z) dxdydz is the volume of the

solid E. For a cone x2 + y2 ≤ z2, 0 ≤ z ≤ 1, we can write
∫∫∫

1 dzdxdy =∫∫
R

1 −
√
x2 + y2 dxdy, where R is the unit disc. Its volume is π − 2π/3 = π/3.

For the unit sphere x2 + y2 + z2 ≤ 1 for example, we can write
∫∫∫

E
1 dzdxdy =∫∫

R
2
√

1− x2 − y2 dxdy, where R is the unit disc x2 + y2 ≤ 1. In polar coordi-

nates, we get
∫ 2π

0

∫ 1

0
2
√

1− r2r drdθ = 4π/3. We can also use spherical coordinates
Φ([ρ, φ, θ]) = [ρ sin(φ) cos(θ), ρ sin(φ) sin(θ), ρ cos(φ)], where |dΦ| = ρ2 sin(φ). The vol-

ume is
∫ 2π

0

∫ π
0

∫ 1

0
ρ2 sin(φ) dρdφdθ = 4π/3.

25.5. There are two basic strategies to compute the integral: the first is to slice the

region up along a line like the z-axis then form
∫ b
a

∫∫
R(z)

f(x, y, z)dxdydz. To get

the volume of a cone for example, integrate
∫ 1

0
[
∫∫

R(z)
1dxdy]dz. The inner double

integral is the area of the slice which is πz2. The last integral gives π/3. A second
reduction is to see the solid sandwiched between two graphs of a function on a region

R, then form
∫∫

R
[
∫ h(x,y)
g(x,y)

f(x, y, z) dz]dxdy. In the cone case, we have for R the disc

of radius 1. The lower function is g(x, y) =
√
x2 + y2 the upper function is 1. We get∫∫

R
[1 −

√
x2 + y2] dxdy, a double integral which best can be computed using polar

coordinates:
∫ 2π

0

∫ 1

0
(1− r)rdrdθ = 2π(1/2− 1/3) = π/3. Burgers and fries!



Figure 3. The “burger and fries methods” to compute triple integral.
The first reduces to a single integral, the second to a double integral.

25.6. We have seen in the theorem the coordinate change formula if Φ : R → E is
given. For spherical coordinates Φ([ρ, φ, θ]) = [ρ sin(φ) cos(θ), ρ sin(φ) sin(θ), ρ cos(φ)],

we have |dφ| = ρ2 sin(φ) . For cylindrical coordinates, the situation is the same as

for polar coordinates. The map Φ([r, θ, z]) = [r cos(θ), r sin(θ), z] produces |dΦ| = r .

25.7. Let us find the integral
∫∫∫

E
1 dxdydz, where E = {x2/a2 + y2/b2 + z2/c2 ≤ 1}

is a solid ellipsoid. The most comfortable way is to introduce another coordinate
change Ψ([x, y, z])→ [ax, by, cz] which maps the solid sphere S to to the solid ellipsoid
E. Then take the spherical coordinate map φ : R→ S, where R = {(ρ, φ, θ) | 0 ≤ ρ ≤
1, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π}. Now Ψ ◦ Φ : R → E is a coordinate change which maps
R to the ellipsoid. By the chain rule, the distortion factor is |dΨ||dΦ| = abcρ2 sin(φ).

The integral is abc(1/3)(2π)
∫ π
0

sin(φ) dφ = (4π/3)(abc) .

25.8. In order to compute the volume of a solid torus, we can introduce a special
coordinate system Φ([r, ψ, θ]) = [(b+ ar cos(ψ)) cos(θ), (b+ ar cos(ψ)) sin(θ), a sin(ψ)].
The solid torus E is then the image of the cuboid {(r, ψ, θ) | 0 ≤ r ≤ 1, 0 ≤ ψ ≤
2π, 0 ≤ θ ≤ 2π}. The determinant is |dΦ| = a2 cos2(s)(b+ ar cos(s)). Integration over
the cuboid gives the volume (2πb)(πa2).

Examples

25.9. To find
∫∫∫

E
f dV for E = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} and f(x, y, z) =

24x2y3z, set up the integral
∫ 1

0

∫ 1

0

∫ 1

0
24x2y3z dz dy dx . Start with the core∫ 1

0
24x2y3z dz = 12x3y3, then integrate the middle layer,

∫ 1

0
12x3y3 dy = 3x2 and

finally handle the outer layer:
∫ 1

0
3x2dx =1.
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25.10. To find the moment of inertia I =
∫∫∫

E
x2 + y2 dV of a sphere E = {x2 +

y2 + z2 ≤ L2}, we use spherical coordinates. We know that x2 + y2 = ρ2 sin2(φ) and
the distortion factor is ρ2 sin(φ). We have therefore

I =

∫ 2π

0

∫ π

0

∫ L

0

ρ2 sin2(φ)ρ2 sin(φ) dρdφdθ = 8πL5/15 .

We will see some details in class. If we rotate the sphere around the z-axis with angular
velocity ω, then Iω2/2 is the kinetic energy of that sphere. Example: the moment
of inertia of the earth is 8 · 1037kgm2. With an angular velocity of ω = 2π/day =
2π/(86400s), this rotational kinetic energy is 8 · 1037kgm2/(7464960000s2) ∼ 1029J ∼
2.5 · 1024kcal.

25.11. Problem: Find the volume E of the intersection of x2 + y2 ≤ 1, x2 + z2 ≤ 1
and y2+z2 ≤ 1. Solution: look at 1/16’th of the body given in cylindrical coordinates
0 ≤ θ ≤ π/4, r ≤ 1, z > 0. The roof is z =

√
1− x2 because above the ”one eighth

disc” R only the cylinder x2 + z2 = 1 matters. The polar integration problem

16

∫ π/4

0

∫ 1

0

√
1− r2 cos2(θ)r drdθ

has an inner r-integral of (16/3)(1 − sin(θ)3)/ cos2(θ). Integrating this over θ can be
done by integrating f(x) = (1 − sin(x)3) sec2(x) by parts (using tan′(x) = sec2(x))
leading to the anti-derivative − cos(x) + sec(x) + tan(x) of f . The result is 16− 8

√
2.

25.12. Problem: A pencil E, a hexagonal cylinder of radius 1 above the xy-plane
is cut by a sharpener below the cone z = 10 − r. What is its volume? Solution: we
consider one sixth of the pen where the base is the polar region 0 ≤ θ ≤ 2π/6 and
r(θ) ≤

√
3/(
√

3 cos(θ) + sin(θ)). The pen’s back is z = 0 and the sharpened part is
z = 10− r. ∫ π/3

0

∫ √3/(√3 cos(t)+sin(t))

0

∫ 10−r

0

1 r dzdrdθ .

The integral can be computed and is a bit messy (29− 3arctanh(2−
√

3))/(3
√

3). 2

Figure 4. The pen problem

2An exam problem at ETH in a single variable calculus exam when Oliver was an undergrad.



The homework is combined in Unit 26.
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