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MATH 22B

Unit 26: Surface area

Introduction

26.1. We have looked at maps r : R→ S in the context of coordinate changes and also
in full generality, in the case when R is a subset of Rm and S is a subset of Rn. We have
learned that the Jacobian matrix dr allows to quantify the distortion

√
det(drTdr). If

R is a subset of R2, then r describes a 2-dimensional surface. We usually write a point
in R as (u, v) but other variables can be used. If n = 3, that is if we deal with a surface
in three dimensional space, then the distortion factor is |ru × rv| and the surface area
is the double integral

∫∫
R
|ru× rv| dudv. This topic is therefore a great opportunity to

practice more double integrals.

Figure 1. A circle moving in space time produces a two dimensional
surface. The surface area of this surface is of interest in physics. The
surface area is the Nambu-Goto action.
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Lecture

26.2. A map r : R ⊂ R2 → R3 has an image r(R) = S which is a parametrized
surface. What is its surface area? We have seen that the distortion factor is now
|dr| =

√
det(g) = |ru × rv|, where g = drTdr was the first fundamental form of the

surface. Of course, it is more convenient to use |ru × rv|, which is the same as |dr|.

Theorem: The surface area
∫∫

S
dS of S is

∫∫
R
|ru × rv|dudv.

26.3. More generally if f : R → R is a function which describes something like a
density then

∫∫
R
f(r(u, v)) |ru×rv|dudv is an integral which is abbreviated as

∫∫
S
f dS

and called a scalar surface integral. For example, if f is a density on the surface then
this

∫∫
S
fdS is the mass. Again, we have to stress that in this integral, the orientation

of the surface is irrelevant. The distortion factor |dr| is always non-negative. It is
better to think of

∫∫
S
fdS as a weighted surface area generalizing area

∫∫
S
dS. 1

26.4. Here is the most general change of integration formula for maps r : Rm → Rn,
with distortion factor |dr| =

√
det(drTdr). The formula holds for m > n too, det is

then a pseudo determinant. If S = r(R) is the image of a solid R under a C2 map r
and f : Rn → R is a function, then the mother of all substitution formulas is

Theorem:
∫∫

R
f(r(u))|dr(u)| du =

∫∫
S
f(u) du.

26.5. The proof is the same as seen in the two-dimensional change of variable sit-
uation. Just because n is used for the target space Rn, we use the basic size 1/N .
We chop up the region into parts R ∩ Q with cubes Q of size 1/N and estimate
the difference V ol(dr(Q)) and V ol(r(Q)) by CMN/N

2 leading to an overall difference
bounded by FCMN/N

2, where F is the maximal value of f on R and Mn is the
Heine-Cantor function modulus of continuity of f . Adding everything up gives an
error FCVol(R)MN + 2nVol(δR)F/N → 0, where δR is the boundary of R. There is

one new thing: we have to see why
√

det(ATA) is the volume of the parallelepiped
spanned by the column vectors of the Jacobian matrix A = dr. We will talk about
determinants in detail later but if A is in row reduced echelon form then ATA is the
identity matrix and the determinant is 1, agreeing with the volume. Now notice that if
a column of A is scaled by λ producing a new matrix B, then det(BTA) = λdet(ATA)
and det(BTB) = λ2det(ATA). If two columns of A are swapped leading to a new
matrix B, then det(BTA) = −det(ATA) and det(BTB) = det(ATA). If a column of A
is added to another column, then this does change det(BTB). The only row reduction
step which affects the |dr| is the scaling. But that is completely in sync what happens
with the volume. QED.

26.6. The last theorem covers everything we have seen and we ever need to know when
integrating scalar functions over manifolds. In the special case n = m it leads to:

Theorem:
∫∫

R
|dr(u)| du = Vol(S).

1Unfortunately, scalar integrals are often placed close to the integration of differential forms (like
volume forms). The later are of different nature and use an integration theory in which spaces come
with orientation. So far, if we replace r(u, v) with r(v, u) gives the same result (like area or mass).



26.7. Here are the important small dimensional examples:

If m = 1, n = 3, then
∫ b
a
|r′(t)| dt is the arc length of the curve C = r(I).

If m = 2, n = 2, then
∫∫

R
|dr| dudv is the area of the region S = r(R).

If m = 2, n = 3, then
∫∫

R
|ru × rv| dudv is the surface area of S = r(R).

If m = 3, n = 3, then
∫∫∫

R
|dr| dudvdw is the volume of the solid S = r(R).

Examples

26.8. In all the examples of surface area computations, we take a parametrization
r(u, v) : R→ S, then use use that the distortion factor is

√
det(drTdr) = |ru × rv|.

Figure 2. The distortion factors |dr| = |g| =
√

det(g) =
√

det(drTdr)
appear in general. Form = 2, n = 3 we get surface area

∫∫
R
|ru×rv| dudv.

26.9. Problem: find the surface area of a sphere x2+y2+z2 = L2. Solution: Param-
etrize the surface r([θ, φ]) = [L sin(φ) cos(θ), L sin(φ) sin(θ), L cos(φ)]. The distortion
factor is L2 sin(φ). The surface area is 4πL2.

26.10. Problem: find the surface area of surface of revolution given in cylindrical
coordinates as z = g(θ), a ≤ z ≤ b. Solution: Parametrize the surface r([θ, z]) =

[g(z) cos(θ), g(z) sin(θ), z]. The distortion factor is g(z)
√

1 + g′(z)2.

26.11. As an example, we can look at the surface of revolution x2+y2 = 1/z2, |z|2 > 1.
The volume of the solid enclosed by the surface is π. The surface area is infinite.

26.12. Problem: find the surface area of the graph of a function z = f(x, y), (x, y) ∈
R. Solution: Parametrize the surface as r([x, y]) = [x, y, f(x, y)]. The distortion
factor is |rx × ry| =

√
1 + f 2

x + f 2
y .

26.13. Problem: what is the surface area of the intersection of x2 +z2 ≤ 1, 6x+3y+
9z = 12. Solution: The surface is a plane but also a graph over R = {x2 + z2 ≤ 1}
in the xz-plane. The simplest parametrization is r([x, z]) = [x, (12 − 6x − 9z)/3, z] =
[x, 4 − 2x − 3z, z]. It gives |rx × rz| = |[−2,−1,−3]| =

√
14. The surface area is∫∫

R

√
14dxdy =

√
14Area(R) =

√
14π.
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26.14. The following hyperspherical coordinates parametrize the 3-dimensional
sphere x2 + y2 + z2 + w2 = 1 in R4.

r([φ, ψ, θ]) = [cos(φ), sin(φ) cos(ψ), sin(φ) sin(ψ) cos(θ), sin(φ) sin(ψ) sin(θ)] ,

with θ ∈ [0, 2π], φ ∈ [0, π], ψ ∈ [0, π]. The distortion factor is
√

det(drTdr) =√
sin4(φ) sin2(ψ) so that the surface area of the hypersphere is

2π
∫ π
0

∫ π
0

sin2(φ) sin(ψ)dφdψ = 2π2 .
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Figure 3. The volume and surface area of k dimensional spheres

26.15. In dimension n what is the volume |Bn| of the n-dimensional unit ball Bn in
Rn and the volume |Sn| of the n-dimensional unit sphere Sn in Rn+1? It starts with
|B0| = 1, as B0 is a point and |S0| = 2, as S0 consists of two points. The n-ball of radius
ρ has the volume |Bn|ρn and the n-sphere of radius ρ has the volume |Sn|ρn. Because

|Bn+1| =
∫ 1

0
|Sn|ρn dρ, we have |Bn+1| = |Sn|/(n + 1). Because Sn can be written as

a union of products (n− 2)-spheres with S1 leading to |Sn| = 2π
∫ π/2
0
|Sn−2| cos(φ) dφ

= 2π|Bn−1|. We know now all: just start with |B0| = 1, |S0| = 2, |B1| = 2, |S1| = 2π
and

Theorem: |Bn| = 2π
n
|Bn−2|, |Sn| = 2π

n−1 |Sn−2|.

The 5-ball has maximal volume 5.26379... among all unit balls. The 6-sphere has
maximal surface area 33.0734... among all unit spheres. The volume of the 30-ball is
only 0.00002.... The surface area of the 30-sphere for example is only 0.0003. Compare
with a n-unit cube of volume 1 and a boundary surface area 2n. High dimensional
spheres and balls are tiny!

26.16. If S is a cylinder x2 + y2 = 1, 0 < z < 1, triangulated with each triangle
smaller than 1/n→ 0, does the area converge to the surface area A(S)? No! A counter
example is the Schwarz lantern from 1880. The cylinder is cut into m slices and
n points are marked on the rim of each slice to get triangles like A = (1, 0, 0), B =



(cos(4π/n), sin(4π/n, 0)), C = (cos(2π/n), sin(2π/n), 1/m) of area

sin(2π/n)(1/m)
√

2 + 3m2 − 4m2 cos(2π/n) +m2 cos(4π/n)/
√

2. The nm triangles have

area ∼
√

2 + 8m2π4/n4/
√

2. For m = n3, the triangulated area diverges.

Figure 4. The Schwarz lantern.

26.17. The three dimensional sphere is x2 + y2 + z2 + w2 = 1 in R4. The Hopf
parametrization is r : R ⊂ R3 → S ⊂ R4 is

r([φ, θ1, θ2]) = [cos(φ) cos(θ1), cos(φ) sin(θ1), sin(φ) cos(θ2), sin(φ) sin(θ2)] .]

We compute |dr| =
√

det(drTdr) = cos(φ) sin(φ) = sin(2φ)/2. If we fix φ, we see a
two dimensional torus. Their union with φ ∈ [0, π/2] is the Hopf fibration. We can
now compute the volume of the three dimensional sphere:∫ π/2

0

∫ 2π

0

∫ 2π

0

sin(2φ)/2 dφdθ1dθ2 = 2π2 .

Figure 5. The Hopf fibration of the 3-sphere.
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Homework

Problem 25-26.1: Find the moment of inertia
∫∫∫

E
x2 + y2 dV , where

E = {x2 + y2 ≤ z2, |z|2 ≤ 1 is the double cone.

Problem 25-26.2: Evaluate the triple integral∫∫∫
E

xy dV ,

where E is bounded by the parabolic cylinders y = 3x2 and x = 3y2 and
the planes z = 0 and z = x+ y.

Problem 25-26.3: We have seen the problem in the movie “Gifted” to
compute the improper integral of e−x

2
. Here is another approach: verify∫ ∞

−∞

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2+z2) dx dy dz = (

√
π)3.

Use this as in the “Gifted” computation to find
∫∞
−∞ e

−x2 dx. You can do

that without knowing that the later is
√
π.

Problem 25-26.4: Find the surface area of the Einstein-Rosen bridge
r(u, v) = [3v3, v9 cos(u), v9 sin(u)]T , where 0 ≤ u ≤ 2π and −1 ≤ v ≤
1. Tunnels connecting different parts of space-time appear frequently in
science fiction.

Figure 6. A “wormhole”.

Problem 25-26.5: Find the area of the surface given by the helicoid
r(u, v) = [u cos(v), u sin(v), v]T with 0 ≤ u ≤ 1, 0 ≤ v ≤ π.
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