
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 29: Line integrals

Introduction

29.1. Today, we learn already how to generalize the fundamental theorem of cal-

culus
∫ b
a
f ′(t) dt = f(b) − f(a) to higher dimensions. The interval [a, b] is now re-

placed by a curve and the derivative f ′(t) becomes d
dt
f(r(t)) which by the chain rule

is ∇f(r(t)) · r′(t). If we integrate this from a to b we get the fundamental theorem
of line integrals.∫ b

a

∇f(r(t)) · r′(t) dt =

∫ b

a

d

dt
f(r(t)) = f(r(b))− f(r(a)) .

The gradient field ∇f(x) can be generalized to a general vector field field x→ F (x),
a map which assigns to every point a vector.

Figure 1. The vector field F (x, y) = [P (x, y), Q(x, y)]T = [x − y −
x(x2 + y2), x + y − y(x2 + y2)]T is shown with some flow lines tracing
the field. In this case there exists a single flow line which is a circle.
Everything gets attracted to it. It is called a limit cycle. Hilbert 16’th
problem asked to give an upper bound for the number of possible limit
cycles if P,Q are polynomials in x, y of degree n. The problem is open.
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29.2. One of the questions we want to answer is under which conditions a general
vector field F is a gradient field F = ∇f . The reason is that if this is the case, then

the integral
∫ b
a
F (r(t) · r′(t) dt is easy to evaluate. If F is a gradient field, the result is

f(r(b))−f(r(a)). In general however, vector fields are not gradient fields. In the above
figure we see an example. Not all hope is lost however. We will learn in the next two
weeks that in some cases, like of the path is closed, we have other ways to compute the
line integral.

29.3. A good way to think about line integral is to see it as mechanical work. The
vector field F then is thought of as a force field and the product of the force with the
velocity F · r′ is power, which is a scalar. Integrating power over a time gives work.
In the case when F was a gradient field F = ∇f , then f is considered a potential
energy. The fundamental theorem of line integrals now tells that the work done over
some time is just the potential energy difference. It is not really necessary to adopt
this picture. The set-up is purely mathematical but in order to remember it, it can be
helpful to see it associated with concepts we know. If you bike for example, then both
the force applied to the pedals as well as the velocity matters.

Lecture

29.4. A vector field F assigns to every point x ∈ Rn a vector F (x) = [F1(x), . . . , Fn(x)]T

such that every Fk(x) is a continuous function. We think of F as a force field. Let
t→ r(t) ∈ Rn be a curve parametrized on [a, b]. The integral∫

C

F · dr =

∫ b

a

F (r(t)) · r′(t) dt

is called the line integral of F along C. We think of F (r(t)) · r′(t) as power and∫
C
F · dr as the work. Even so F and r are column vectors, we write in this lecture

[F1(x), . . . , Fn(x)] and r′ = [x′1, . . . , x
′
n] to avoid clutter. Mathematically, F : Rn → Rn

can also be seen as a coordinate change, we think about it differently however and
draw a vector F (x) at every point x.

Figure 2. A line integral in the plane and a line integral in space.



29.5. If F (x, y) = [y, x3], and r(t) = [cos(t), sin(t)] a circle with 0 ≤ t ≤ 2π, then
F (r(t)) = [sin(t), cos3(t)] and r′(t) = [− sin(t), cos(t)] so that F (r(t))·r′(t) = − sin2(t)+

cos4(t). The work is
∫
C
F · dr =

∫ 2π

0
− sin2(t) + cos4(t) dt = −π/4. Figure 1 shows the

situation. We go more against the field than with the field.

29.6. A vector field F is called a gradient field if F (x) = ∇f(x) for some differen-
tiable function f . We think of f as the potential. The first major theorem in vector
calculus is the fundamental theorem of line integrals for gradient fields in Rn:

Theorem:
∫ b
a
∇f(r(t)) · r′(t) dt = f(r(b))− f(r(a)).

29.7. Proof: by the chain rule, ∇f(r(t)) · r′(t) = d
dt
f(r(t)). The fundamental

theorem of calculus now gives
∫ b
a

d
dt
f(r(t)) dt = f(r(b))− f(r(a)). QED.

29.8. As a corollary we immediately get path independence

If C1, C2 are two curves from A to B then
∫
C1
F · dr =

∫
C2
F · dr,

as well as the closed loop property:

If C is a closed curve and F = ∇f , then
∫
C
F · dr = 0.

29.9. Is every vector field F a gradient field? Lets look at the case n = 2, where
F = [P,Q]. Now, if this is equal to [fx, fy] = [P,Q], then Py = fxy = fyx = Qx. We
see that Qx − Py = 0. More generally, we have the following Clairaut criterion:

Theorem: If F = ∇f , then curl(F )ij = ∂xjFi − ∂xiFj = 0.

Proof: this is a consequence of the Clairaut theorem.

29.10. The field F = [0, x] for example satisfies Qx−Py = 1. It can not be a gradient
field. Now, if Qx − Py = 0 everywhere in the plane, how do we find the potential f?

Integrate fx = P with respect to x and add a constant C(y).

Differentiate f with respect to y and compare fy with Q. Solve for C(y).

29.11. Example: find the potential of F (x, y) = [P,Q] = [2xy2 + 3x2, 2x2y + 3y2].
We have f(x, y) =

∫ x
0

2xy2 + 3x2 dx + C(y) = x3 + x2y2 + C(y). Now fy(x, y) =
2x2y + C ′(y) = 2x2y + 3y2 so that C ′(y) = 3y2 or C(y) = y3 and f = x3 + x2y2 + y3.

29.12. Here is a direct formula for the potential. Let Cxy be the straight line path
which goes from (0, 0) to (x, y).

Theorem: If F is a gradient field then f(x, y) =
∫
Cxy

F · dr.



Linear Algebra and Vector Analysis

Figure 3. The vector field F = ∇f for f(x, y) = y2 + 4yx2 + 4x2.
We see the flow lines, curves with r′(t) = F (r(t)). Going with the flow
increases f because F (r(t)) · r′(t) = |∇f(t)|2 is equal to d/dtf(r(t)).

29.13. Proof: By the fundamental theorem of line integral, we can replace Cxy by a
path [t, 0] going from (0, 0) to (x, 0) and then with [x, t] to (x, y). The line integral is
f(x, y) =

∫ x
0

[P,Q] · [1, 0]dt +
∫ y
0

[P,Q] · [0, 1] dt =
∫ x
0
P (t, 0) dt +

∫ y
0
Q(x, t) dt. We see

that fy = Q(x, y). If we use the path going (0, 0) to (0, y) and to (x, y) instead, the line
integral is f(x, y) =

∫ y
0

[P,Q] · [0, 1]dt+
∫ x
0

[P,Q] · [1, 0] dt =
∫ y
0
Q(0, t) dt+

∫ x
0
P (t, y) dt.

Now, fx = P (x, y). QED.

Examples

29.14. Find
∫
C

[2xy2 + 3x2, 2x2y + 3y2] · dr for a curve r(t) = [t cos(t), t sin(t)] with
t ∈ [0, 2π]. Answer: we found already F = ∇f with f = x3 + x2y2 + y3. The curve
starts at A = (1, 0) and ends at B = (2π, 0). The solution is f(B)− f(A) = 8π3.

29.15. If F = E is an electric field, then the line integral
∫ b
a
E(r(t)) · r ′(t) dt is

an electric potential. In celestial mechanics, if F is the gravitational field, then∫ b
a
F (r(t)) · r ′(t) dt is a gravitational potential difference. If f(x, y, z) is a temper-

ature and r(t) the path of a fly in the room, then f(r(t)) is the temperature, which
the fly experiences at the point r(t) at time t. The change of temperature for the fly is
d
dt
f(r(t)). The line-integral of the temperature gradient ∇f along the path of the fly

coincides with the temperature difference.

29.16. A device which implements a non-gradient force field is called a perpetual
motion machine. It realizes a force field for which the energy gain is positive along
some closed loop. The first law of thermodynamics forbids the existence of such a
machine. It is informative to contemplate the ideas which people have come up and to
see why they don’t work. We will look at examples in the seminar.



29.17. Let F (x, y) = [P,Q] = [ −y
x2+y2

, x
x2+y2

]. Its potential f(x, y) = arctan(y/x) has

the property that fx = (−y/x2)/(1 + y2/x2) = P, fy = (1/x)/(1 + y2/x2) = Q. In the
seminar you ponder the riddle that the line integral along the unit circle is not zero:∫ 2π

0

[
− sin(t)

cos2(t) + sin2(t)
,

cos(t)

cos2(t) + sin2(t)
] · [− sin(t), cos(t)] dt =

∫ 2π

0

1 dt = 2π .

The vector field F is called the vortex.

Figure 4. The vortex vector field has a singularity at (0, 0). All the
curl is concentrated at (0, 0).
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Homework

Problem 29.1: Let C be the space curve r(t) = [cos(t), sin(t), sin(t)]
for t ∈ [0, π/2] and let F (x, y, z) = [y, x, 15]. Calculate the line integral∫
C
F · dr.

Problem 29.2: What is the work done by moving in the force field
F (x, y) = [2x3 + 1, 4π sin(πy4)y3] along the quartic y = x4 from (−1, 1) to
(1, 1)?

Problem 29.3: Let F be the vector field F (x, y) = [−y, x]/2. Compute
the line integral of F along the curve r(t) = [a cos(t), b sin(t)] with width
2a and height 2b. The result should depend on a and b.

Problem 29.4: Archimedes swims around a curve x22 +y22 = 1 in a hot
tub, in which the water has the velocity F (x, y) = [3x3 + 5y, 10y4 + 5x].
Calculate the line integral

∫
C
F · dr when moving from (1, 0) to (−1, 0)

along the curve.

Problem 29.5: Find a closed curve C : r(t) for which the vector field

F (x, y) = [P (x, y), Q(x, y)] = [xy, x2]

satisfies
∫
C
F (r(t)) · r ′(t) dt 6= 0.
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