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MATH 22B

Unit 32: Stokes theorem

Introduction

32.1. Stokes theorem is a mountain peak in mathematics. You have not really
lived before having climbed that mountain. The theorem was developed first in a
physics context but it is important for other reasons. First, it is a place where many
multi-variable concepts come together: it involves curves, surfaces, the dot and cross
products, various derivatives like Jacobean or gradient, integrals or coordinate changes.
If you master this theorem you own the bulk of this course. The theorem is also a
prototype for a method in science: a theorem helps to solve problems which otherwise
would be inaccessible. We will see quite many integrals which are not reachable without
the theorem. Also, like mountain climbing, it produces some satisfaction top-out on

something that important. The theorem is also beautiful
∫
G
dF =

∫
dG
F and so art.

Figure 1. The Matterhorn in the southern part of Switzerland.
Starting in the Hörnli hut (3262 meters, vectors, lines planes, curves,
surfaces) one reaches the Solvay Bivouac at (4003 meters, extrema, La-
grange, integration) and arrives at the peak (4478 meters, Green, Stokes
and Gauss). Image source: Wikimedia, CC BY-SA).

32.2. Proving the theorem was an exam problem given by George Stokes. James
Clerk Maxwell who was a student there would later use it to formulate the Maxwell
equations dF = 0, d∗F = j for the electromagnetic field F and charge-current

j. When space-time R4 is split into space and time, there are 4 equations. One of them
is curl(E) = − ∂

∂t
B/c. It explains how an electric potential

∫
C
Edr emerges from

flux changes of a magnetic field B when turning a wire C, allowing us to generate
electricity from motion. When reversed, it turns electricity back into mechanical
energy. Think about Stokes theorem next time you are using an electric motor!
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Lecture

32.3. Given a C1 surface S = r(G) in R3 using a parametrization r = [x, y, z] and a
C1 vector field F = [P,Q,R], we can form the flux integral∫∫

S

F · dS =

∫∫
G

F (r(u, v)) · ru × rv dudv .

For F = [P,Q,R], the curl is defined as ∇ × F = [Ry − Qz, Pz − Rx, Qx − Py]. The
Stokes theorem tells that if C = r(I) is the boundary of S = r(G) and I is oriented
so that G is to the left of C, then

Theorem:
∫∫

S
curl(F ) · dS =

∫
C
F · dr.

32.4. Proof. The key is the following “important formula”

curl(F )(r(u, v)) · (ru × rv) = Fu · rv − Fv · ru.

This is straightforward and done in class. Now define the field F̃ (u, v) = [P̃ , Q̃] =
[F (r(u, v)) · ru(u, v), F (r(u, v)) · rv(u, v)] in the uv-plane. The 2-dimensional curl of F̃
is Q̃u − P̃v = Fu · rv − Fv · ru as we can see by using Clairaut ruv = rvu. The Stokes
theorem is now a direct consequence of Green’s theorem proven last time. QED. 1

Figure 2. The paddle wheel measures curl. The boundary C has S
“to the left”. The pant surface illustrates a “cobordism”. You definitely
need to contemplate Stokes the next time you dress up your underpants!

Examples

32.5. Problem: Compute the flux of F (x, y, z) = [0, 0, 8z2]T through the upper half
unit sphere S oriented outwards. Solution: we parametrize the surface as r(u, v) =
[cos(u) sin(v), sin(u) sin(v), cos(v)]T . Because ru×rv = − sin(v)r, this parametrization
has the wrong orientation! We continue nevertheless and just change the sign at the
end. We have F (r(u, v)) = [0, 0, 8 cos2(v)]T so that∫ 2π

0

∫ π/2

0

−[0, 0, 8 cos2(v)]T · [cos(u) sin2(v), sin(u) sin2(v), cos(v) sin(v)]T dvdu .

1Mathematicians say: “we pulled back the field from R3 to R2 along the parametrization”.



The flux integral is
∫ 2π

0

∫ π/2
0

- 8 cos3(v) sin(v) dvdu which is 2π · 8 cos4(v)/4|π/20 = −4π.
The flux with the outward orientation is +4π. We could not use the Stokes theorem
here because we don’t deal with the flux of the curl but the flux of F itself.

32.6. Problem: What is the value of
∫
C
F · dr if F = [sin(sin(x)) + z2, ey + x3 +

y2, sin(y2) + z2] and C is the unit polygon (0, 0, 0)→ (1, 0, 0)→ (1, 1, 0)→ (0, 1, 0)→
(0, 0, 0)? Solution: use Stokes theorem. The curl of F is [2y cos(y2), 2z, 3x2]. The
surface S : r(u, v) = [u, v, 0] with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 has C as boundary. Stokes
allows to compute

∫∫
S

curl(F ) · dS instead. Since ru × rv = [0, 0, 1], the flux integral

is
∫ 1

0

∫ 1

0
3u2dvdu = 1. The computation of the line integral would have been more

painful.

32.7. Problem: Compute the flux of the curl of F (x, y, z) = [0, 1, 8z2]T through the
upper half sphere S oriented outwards. Solution: Great, it is here, where we can use
Stokes theorem

∫∫
S

curl(F ) · dS =
∫
C
F · dr, where C is the boundary curve which

can be parametrized by r(t) = [cos(t), sin(t), 0]T with 0 ≤ t ≤ 2π. Before diving into
the computation of the line integral, it is good to check, whether the vector field is
a gradient field. Indeed, we see that curl(F ) = [0, 0, 0]. This means that F = ∇f
for some potential f implying by the fundamental theorem of line integrals that∫
C
F · dr = 0. But wait a minute, if the curl of F is zero, couldn’t we just have seen

directly that the flux of the curl through the surface is zero? Yes, we could have seen
that before: for a gradient field, the flux of the curl of F through a surface is always
zero, for the simple reason that the curl of such a field is zero.

32.8. Problem. What is the flux of the curl of F (x, y, z) = [sin(xyz), zecos(x+y), zx5 +
z22] through the lower ellipsoid S given by x2/4 + y2/9 + z2/16 = 1, z < 0? Solution:
by Stokes theorem, it is the line integral

∫
C
F · dr. Through the boundary r(t) =

[2 cos(t), 3 sin(t), 0]. But in the xy-plane z = 0, the field F is zero. The result is zero.

32.9. Problem: What is the flux of the curl of F through an ellipsoid x2/4 + y2/9 +
z2/16 = 1? Solution: We can cut the ellipsoid into two parts to get two surfaces with
boundary. The upper part S+ = {(x, y, z) ∈ S, z > 0} has the boundary C+ : r(t) =
[2 cos(t), 3 sin(t), 0] which matches the orientation of the surface. Stokes theorem tells
that

∫∫
S+

curl(F ) · dS =
∫
C+
F · dr. The lower part S− = {(x, y, z) ∈ S, z < 0} has

the boundary C− : r(t) = [2 cos(t),−3 sin(t), 0] which matches the orientation of the
lower part. Stokes theorem tells that

∫∫
S−

curl(F ) · dS =
∫
C−
F · dr. Together we have∫

C−
F · dr +

∫
C+
F · dr = 0 as the line integrals have just different signs. The result is

zero.
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Remarks

32.10. The left hand side of the important formula (it “imports” the curl) 2 is
defined only in three dimensions. But the right hand side also makes sense in Rn.
It is tr((dF )∗dr), where * rotates the 2-frame by 90 degrees. The Stokes theorem for
2-surfaces works for Rn if n ≥ 2. For n = 2, we have with x(u, v) = u, y(u, v) = v
the identity tr((dF )∗dr) = Qx − Py which is Green’s theorem. Stokes has the general

structure
∫
G
δF =

∫
δG
F , where δF is a derivative of F and δG is the boundary of G.

Theorem: Stokes holds for fields F and 2-dimensional S in Rn for n ≥ 2.

32.11. Why are we interested in Rn and not only in R3? One example is that 2-
dimensional surfaces appear as “paths” which a moving string in 11 dimension traces.
More important maybe is that statisticians work by definition in high dimensional
spaces. When dealing with n data points, one works in Rn. Why would you care
about theorems like Stokes in statistics? As a matter of fact, integral theorems in
general allow to simplify computations. As we have seen in Green’s theorem, when
computing the sum over all the curls, there are cancellations happening in the inside.
Integral theorems “see these cancellations” and allow to bypass and ignore stuff
which does not matter.

32.12. The fundamental theorem of line integrals
∫ b
a

tr(df(r(t))dr(t))dt = f(r(b)) −
f(r(a)) holds also in Rn. The flux integral∫∫

G

tr(F ∗(r(u, v))dr(u, v)) dudv

is the analogue of a line integral in two dimensions. Written like this, we don’t need
the cross product. And not yet the language of differential forms.

32.13. Stokes deals with “fields” and “space”. What happens if the field is space

itself, that is if F ∗ = dr? It is of interest. For m = 1, and F = drT , then
∫ b
a
|dr|2 dt is

the action integral in physics. A general Maupertius principle assures that it is

equivalent to the arc length
∫ b
a
|dr| dt in the sense that minimizing arc length between

two points is equivalent to minimize the action integral (which is more like the energy
one uses to get from the first point to the second). Now, in two dimensions we have∫∫

G
tr(drTdr) dudv. We can compare this with

∫∫
G

det(drTdr) dudv which is called

the Nambu-Goto action, which resembles the surface area
∫∫

G

√
det(drTdr) dudv

also called the Polyakov action. Nature likes to minimize. Free particles move on
shortest paths, minimize the arc length. Maupertius tells that minimizing the length∫ B
A
|r′(t)| dt of a path equivalent to minimizing

∫ B
A
r′(t) · r′(t) dt which essentially is

the integrated kinetic energy or gasoline use to go from A to B. For the purpose of
minimizing stuff this also works for two dimensional actions. Minimizing the surface
area

∫∫
G
|ru × rv| dudv among all surfaces connecting two one dimensional curves is

equivalent to minimize
∫∫

G
|ru × rv|2 dudv. Also in higher dimensions, Nambu-Goto

and Polyakov are equivalent.

2I learned the “important formula” from Andrew Cotton-Clay in 2009:
http://www.math.harvard.edu/archive/21a fall 09/exhibits/stokesgreen



Homework

Problem 32.1: Use Stokes to find
∫
C
F · dr, where F (x, y, z) =

[12x2y, 4x3, 12xy+e(e
z)] and C is the curve of intersection of the hyperbolic

paraboloid z = y2 − x2 and the cylinder x2 + y2 = 1, oriented counter-
clockwise as viewed from above.

Problem 32.2: Evaluate the flux integral
∫ ∫

S
curl(F ) · dS, where

F (x, y, z) = [xey
2

z3 + 2xyzex
2+z, x+ z2ex

2+z, yex
2+z + zex]T

and where S is the part of the ellipsoid x2 + y2/4 + (z + 1)2 = 2, z > 0
oriented so that the normal vector points upwards.

Problem 32.3: Find the line integral
∫
C
F dr, where C is the circle of

radius 3 in the xz-plane oriented counter clockwise when looking from the
point (0, 1, 0) onto the plane and where F is the vector field

F (x, y, z) = [4x2z + x5, cos(ey),−4xz2 + sin(sin(z))]T .

Use a convenient surface S which has C as a boundary.

Problem 32.4: Find the flux integral
∫∫

S
curl(F )·dS, where F (x, y, z) =

[y + 2 cos(πy)e2x + z2, x2 cos(zπ/2)− π sin(πy)e2x, 2xz + (z − 1)22]T

and S is the surface parametrized by

r(s, t) = [(1− s1/3) cos(t)− 4s2, (1− s1/3) sin(t), 5s]T

with 0 ≤ t ≤ 2π, 0 ≤ s ≤ 1 and oriented so that the normal vectors point
to the outside of the thorn.

Figure 3. Problem 32.4 is a thorny problem! You might definitely
have to discuss this with somebody else.

Problem 32.5: Assume S is the surface x22 + y8 + z6 = 100 and
F = [ee

22z
, 22x2yz, x− y − sin(zx)]. Explain why

∫∫
S

curl(F ) · dS = 0.
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Appendix: Applications

32.14. A region E in Rn is called simply connected if it is connected and for every
closed loop C in E there is a continuous deformation Cs of C within G such that
C0 = C and C1(t) = P is a point. For example, C(t) = [cos(t), sin(t), 0] can be
deformed in E = R3 to a point with Cs(t) = [(1− s) cos(t), (1− s) sin(t), 0] as C1(t) =
P = [0, 0, 0] for all t. Each Euclidean space Rn is simply connected. The region
G = {x2+y2 > 0} ⊂ R3 is not simply connected as the circle C : r(t) = [cos(t), sin(t), 0]
winding around the z-axis can not be pulled together to a point within G. The region
G = {x2 + y2 + z2 > 0} ⊂ R3 is simply connected, but G = {x2 + y2 > 0} in R2 is not.
Remember that F was called irrotational if curl(F ) = 0 everywhere.

Theorem: If F is irrotational on a simply connected E then F = ∇f in E.

32.15. Proof: since E is simply connected and curl(F ) = 0, every closed loop C can be
filled in by a surface S =

⋃
0≤s≤1Cs which has the boundary C. Stokes theorem gives∫

S
F · dr =

∫∫
S

curl(F ) · dS = 0. The closed loop property implies path independence.
A potential f can be obtained by fixing a base point p in E, then define for any other
point x a path Cpx going from p to x. The potential function f is then defined as
f(x) =

∫
Cpx

F · dr. QED

32.16. The field F (x, y, z) = [−y/(x2+y2), x/(x2+y2), 0] is defined everywhere except
on the z-axis. The domain E, where F is defined is not simply connected. There is no
global function f which is a potential for F .

32.17. The notion of “simply connectedness” is important in topology. The first solved
Millenium problem, the Poincaré conjecture, is now a theorem. It tells that a
3-dimensional manifold which is simply connected is topologically equivalent to the
3-sphere {x2 + y2 + z2 + w2 = 1} ⊂ R4. In two dimensions, the result was known
for a long time already, because the structure of 2-dimensional connected manifolds is
known.

Electromagnetism

32.18. The Maxwell-Faraday equation in electromagnetism relates the electric
field E and the magnetic field B with the partial differential equation curl(E) =
− d
dt
B. Given a surface S, the flux integral

∫∫
S
B · dS is called the magnetic flux

of B through the surface. If we integrate the Maxwell-Faraday equation, we see that∫∫
S

curl(E) ·dS is equal to minus the rate of change of the magnetic flux − d
dt

∫∫
S
B ·dS.

Stokes theorem now assures that
∫∫

S
curl(E) · dS =

∫
C
E · dr is the line integral of the

electric field along the boundary. But this is electric potential or voltage. We see:

We can generate an electric potential by changing the magnetic flux.

32.19. Changing the magnetic flux can happen in various ways. We can generate a
changing magnetic field by using alternating current. This is how transformers
work. An other way to change the flux is to rotate a wire in a fixed magnetic field.
This is the principle of the dynamo:



Figure 4. The dynamo, implemented using the ray tracer Povray.
Electric current is generated by moving a wire in a fixed magnetic field.

32.20. The vector field A(x, y, z) = [−y,x,0]
(x2+y2+z2)3/2

is called the vector potential of a

magnetic fieldB = curl(A). The picture shows some flow lines of this magnetic dipole
field B. Problem: Find the flux of B through the lower half sphere x2 + y2 + z2 =
1, z ≤ 0 oriented downwards. Solution: Since we have an integral of the curl of the
vector field A, we use Stokes theorem and integrate A(r(t)) along the boundary
curve r(t) = [cos(t),− sin(t), 0]. First of all, we have A(r(t)) = [sin(t), cos(t), 0]. The

velocity is r ′(t) = [− sin(t), cos(t), 0]. The integral is
∫ 2π

0
−1 dt = −2π.

Figure 5. The flux of the magnetic field B through a surface can be
computed with Stokes by computing a line integral of the vector potential
A.

32.21. Here are all the four magical Maxwell equations for the electric field E
and magnetic field B related to the charge density σ and the electric current j.
The constant c is the speed of light. (By using suitable coordinates, one can assume
c = 1.)

div(E) = 4πσ, div(B) = 0, c · curl(E) = −Bt, c · curl(B) = Et + 4πj .

Fluid dynamics

32.22. If F is the fluid velocity field and C is a closed curve, then
∫
C
F · dr is called

the circulation of F along C. The curl of F is called the vorticity of F . A vortex
line is a flow line of curl(F ). Given a curve C, we can let any point in C flow along
the vorticity field. This produces a vortex tube S. The flux of the vorticity though
a surface S is the vortex strength of F through S. Stokes theorem implies the
Helmholtz theorem.
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Theorem: If Cs flows along F , then
∫
Cs
F · dr stays constant.

32.23. Proof: Let C be a closed curve and Cs(t) be the curve after letting it flow using
a deformation parameter s. The deformation produces a tube surface S =

⋃t
s=0Cs

which has the boundary C and Ct. Since the curl of F is always tangent to the
surface S, the flux of the curl of F through S is zero. Stokes theorem implies that∫
C
F ·dr−

∫
Cs
F ·dr = 0. The negative sign is because the orientation of Cs is different

from the orientation of C if the surface has to be to the left.

Figure 6. The Helmholtz theorem assures that the circulation along
a flux tube is constant. This is a direct application of Stokes theorem:
because the curl of F is tangent to the tube, there is no flux through the
tube.

Complex analysis

32.24. An application of Green’s theorem is obtained, when integrating in the complex
plane C. Given a function f(z) = u(z) + iv(z) from C → C and a closed path C

parametrized by r(t) = x(t) + iy(t) in C, define the complex integral
∫ b
a
(u(x(t) +

iy(t)) + iv(x(t) + iy(t)))(x′(t) + iy′(t)) dt. This is
∫ b
a
u(r(t))x′(t) − v(r(t))y′(t) dt +

i
∫ b
a
v(r(t))x′(t) + u(r(t))′(t) dt. These are two line integrals. The real part is F =

[u,−v], the imaginary part is F = [v, u]. Assume C bounds a region G, then Green’s
theorem tells that the first integral is

∫∫
G
−vx − uydxdy and the second integral is∫∫

G
ux − vy dxdy. It turns out now that for nice functions f like polynomials, the

Cauchy-Riemann differential equations ux = vy, vx = −ux hold so that these line

integrals are zero. We have therefore

Theorem: If f is a polynomial and C a closed loop,
∫
C
f(z) dz = 0
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