
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 34: Gauss theorem

34.1. The fastest way to compute the volume of a complicated solid is to use Gauss
theorem. It turns out that the flux of the vector field F = [x, 0, 0] through the boundary
surface S of a solid E is the volume. Gauss theorem equates this flux with the creation
of the field inside. If you draw out the vector field F = [x, 0, 0] you see that it expands
things out. Look at the unit cube. The field does not flow through the y=0,y=1 or
z=0 and z=1 faces because the field is parallel there. On x = 0, the field is zero. The
only face of the cuboid where some field passes is x = 1 and the field is leaving there.
So, something must be created inside. This creation of field is called divergence. If
F = [P,Q,R], then div(F ) = Px +Qy +Rz. In the case F = [x, 0, 0] we have constant
divergence 1. We have seen that

∫∫
E

div(F ) dV =
∫∫

S
F · dS. You can also see that

for fields like F = [0, x, 0] the total flux is zero as what comes in on one side goes out
on the other side. Any linear linear field F as a linear combination of fields in the
class [x, 0, 0], [y, 0, 0], [z, 0, 0], [0, x, 0], [0, y, 0], [0, z, 0], [0, 0, x], [0, 0, y], [0, 0, z] for which
the divergence theorem is satisfied.

Figure 1. The vector field F = [x, 0, 0] has constant divergence 1.
The flux through

∫∫
S
F dS through the boundary is

∫∫∫
E

div(F ) dV .
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34.2. Gauss law div(F ) = f = 4πGρ describes the gravitational field induced from a
mass density ρ and gravitational constant G. The picture is that mass is a source for
the field. We will see that with the help of the divergence theorem, this equation implies
Newton’s law of gravity F = MG/r2 induced by a mass M . Since the gravitational
field does not to allow perpetual motion, it is a gradient field and F = ∇V . The
combination ∆ = div(grad is called the Laplacian Gauss law now produces the Poisson
equation ∆V = f which determines potential V = ∆−1f from the mass density. The
inverse of ∆ also called Green function. Once we have such a description, we have now
gravity on any space with a Laplacian. We can study gravity on a surface like the
sphere or in Rn, where the force is proportional to 1/rn−1. We will see in the proof
part how we can so define gravity on any finite network.

Lecture

34.3. The divergence of a vector field F = [P,Q,R] in R3 is defined as div(F ) =
∇·F = Px+Qy+Rz. Let G be a solid in R3 bound by a surface S made of finitely many
smooth surfaces, oriented so the normal vector to S points outwards. The divergence
theorem or Gauss theorem is

Theorem:
∫∫∫

G
div(F ) dV =

∫∫
S
F · dS.

Figure 2. The boundary of a solid is oriented outwards. The diver-
gence measures the expansion of a box flowing in the field. The flux of
curl(F ) through a closed surface is 0. No field is created inside.

34.4. Proof. If G is a solid of the form G = {(x, y, z)|(x, y) ∈ U, g(x, y) ≤ z ≤
h(x, y)} and F = [0, 0, R], then

∫∫∫
G

div(F ) dV =
∫∫

U

∫ h(x,y)
g(x,y)

Rz dzdydx which is∫∫
G
R(x, y, h(x, y))− R(x, y, g(x, y)) dydx. The flux of F = [0, 0, R] through a surface

r(u, v) = [u, v, h(u, v)] is∫∫
G

[0, 0, R(u, v, h(u, v))] · [−gu, gv, 1]dvdu =

∫∫
G

R(x, y, h(x, y)) dxdy .

Similarly, the flux through the bottom surface is−
∫∫

G
R(x, y, g(x, y)) dxdy. In general,

write F = [P,Q,R] = [P, 0, 0] + [0, Q, 0] + [0, 0, R] to get the claim for solid which are
simultaneously bound by graphs of functions in x and y, or y and z or x and z. A
general solid can be cut into such solids.



34.5. The theorem gives meaning to the term divergence. The total divergence over a
small region is equal to the flux of the field through the boundary. If this is positive,
then more field leaves than enters and field is “generated” inside. The divergence
measures the expansion of the field. The field F (x, y, z) = [x, 0, 0] for example expands,
while f(x, y, z) = [−x, 0, 0] compresses. F (x, y, z) = [y, z, x] is “incompressible”.

34.6. The divergence theorem holds in any dimension m. If F = [F1, · · · , Fm] is the
vector field, then ∂x1F1 + ·+ ∂xmFm is defined as the divergence of F . If G is an m-
dimensional region with boundary S = s(G), then the flux of F through S is defined
as

∫
G
F (s(u)) · n(s(u))|ds(u)|, where n(s(u)) is a unit normal vector. This can be

explained a bit better using the language of differential forms which is introduced next
time.

34.7. The divergence of F = [P,Q] is defined as Px + Qy. If F⊥ = [Q,−P ] is the
turned vector field, then div(F⊥) = Qx − Py is the curl of F . Green’s theorem tells
that

∫∫
G

curl(F ) dxdy which is
∫∫

G
div(F⊥) dxdy is the line integral

∫
C
F ·dr. The line

integral for F is the flux integral for F⊥. The two dimensional divergence theorem is
Green’s theorem “turned”.

Examples

34.8. Problem: Compute the flux of F = [x, y, z] through the sphere of radius ρ
bounding a ballG, oriented outwards. Solution: As div(F ) = 3 we have

∫∫∫
G

div(F )dV =
3Vol(G) = 3 · 4πρ3/3. The flux through the boundary is

∫∫
S
F · dS. As in spherical

coordinates, F (r(φ, θ)) · rφ × rθ = ρ3 sin(φ), the flux is
∫ 2π

0

∫ π
0
ρ3 sin(φ) dφdθ = 4πρ3

also.

34.9. Problem: What is the flux of the vector field F (x, y, z) = [6x + y3, 3z2 +
8y, 22z + sin(x)] through the solid G = [0, 3] × [0, 3] × [0, 3] \ ([0, 3] × [1, 2] × [1, 2] ∪
[1, 2] × [0, 3] × [1, 2] ∪ [0, 3] × [0, 3] × [1, 2]) which is a cube with three perpendicular
cubic holes which is the first stage of the Menger sponge construction? Solution:
As div(F ) = 22 + 8 + 6 = 36, the result is 36 times the volume of the solid which is
36(27− 7) = 720.

Figure 3. The gravity inside the moon is such that an elevator crossing
the moon oscillates like a harmonic oscillator. The flux of F = [0, 0, z]
through a surface is the volume inside.
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34.10. Problem. How does the gravitational field look like inside the moon in dis-
tance ρ to the origin? Solution. A direct computation of summing up all the field
values F (x) =

∫∫
G

(x − y)/|x − y|3dy is difficult as we can not compute in spherical
coordinates. Fortunately we have the divergence theorem. The field F (x) has con-
stant length F (ρ) = |F (x)| for x on a sphere S(ρ) of radius ρ and points inwards. So∫∫

S(ρ)
F · dS = −4πρ2F (ρ). Gauss was able to write down the gravitational field as

a partial differential equation div(F (x)) = 4πσ(x) , where σ(x) is the mass density of

the solid. We see then with the divergence theorem that
∫∫∫

B(ρ)
4πσ(x) dx is equal to

−4πρ2F ∗ (ρ). Assuming σ to be constant, we have 4π(4πρ3/3)σ = −4πρ2F (ρ) which
gives F (ρ) = (4σ/3)ρ. The field grows linearly inside the body. If ρ is bigger than the
radius of the moon, then

∫∫∫
B(ρ)

4πσ(x) dx is 4πM , where M =
∫∫∫

G
σ(x) dx is the

mass of the moon. We see that in that case F (ρ) = M/ρ2, which is the Newton law.

34.11. Problem: Compute using the divergence theorem the flux of the vector field
F (x, y, z) = [2342434y, 2xy, 4yz]T through the unit cube [0, 1] × [0, 1] × [0, 1] which is
opened on the top. Solution: the divergence of F is 2x+ 4y. Integrating this over the
unit cube gives 1 + 2 = 3. The flux through all 6 faces is 3. The flux through the face
z = 1 is

∫ 1

0

∫ 1

0
4y dxdy = 2. We have to subtract this and get 3− 2 = 1.

34.12. Similarly as Green’s theorem allowed area computation using line integrals the
volume of a region can be computed as a flux integral: take a vector field F with
constant divergence 1 like F (x, y, z) = [0, 0, z]. We have

∫ ∫
S
[0, 0, z] · dS = Vol(G).

34.13. Example: For an ellipsoid x2/a2 + y2/b2 + z2/c2, where the parametrization is
r(φ, θ) = [a sin(φ) cos(θ), b sin(φ) sin(θ), c cos(φ)], we have [0, 0, c cos(φ)][ab sin(φ) cos(φ)] =
abc sin(φ) cos2(φ) leading to 2πabc2/3 = 4πabc/3.

34.14. A computer can determine the volume of a solid enclosed by a triangulated
surface by computing the flux of the vector field F = [0, 0, z] through the surface.
The vector field has divergence 1 so that by the divergence theorem, the flux gives
the volume. A computer stores a geometric object using triangles. Assume ABC is
that triangle. If n = AB × AC points outside the region, then the flux is F · n/2. A
computer can now add up all these values and get the volume.

Figure 4. A cow, a Klein bottle and a car from the Mathematica
example files and produce closed surfaces. The Klein bottle does not
have an interior however.



Homework

Problem 34.1: Use the divergence theorem to calculate the flux of
F (x, y, z) = [x3, y3, z3]T through the sphere S : x2 + y2 + z2 = 1, where
the sphere is oriented so that the normal vector points outwards.

Problem 34.2: Assume the vector field

F (x, y, z) = [5x3 + 12xy2, y3 + ey sin(z), 5z3 + ey cos(z)]T

is the magnetic field of the sun whose surface is a sphere of radius 3
oriented with the outward orientation. Compute the magnetic flux

∫∫
S
F ·

dS.

Problem 34.3: Find the flux of the vector field F (x, y, z) = [xy, yz, zx]T

through the solid cylinder x2 + y2 ≤ 1, 0 ≤ z ≤ 2.

Problem 34.4: Find the flux of F (x, y, z) = [x + y + z, x + z, z + y]T

through the Menger sponge Mn defined in the unit cube and take the limit
n→∞.

Figure 5. Approximations to the Menger sponge.

Problem 34.5: Compute the flux of the vector field F (x, y, z, w) =
[x+ 2y2, 3x+ 4z5, 6z + 8w9, 7w + 9x10]T through the three 3-sphere x2 +
y2 + z2 + w2 = 1 in R4, oriented outwards.
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