
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 35: General Stokes

Introduction

35.1. Having seen a fundamental theorem (FTC) in dimension 1, two theorems (FTLI,
GREEN) in dimension two and three theorems (FTLI,STOKES,GAUSS) in dimension
3, we expect 4 theorems in dimensions 4. This is indeed the case, but how do we
formulate such a theory? How would you formulate this in 4 dimensions where points
have coordinates (x, y, z, w)?

Figure 1. A page from Einstein’s Zürich notebook features tensors.

35.2. Élie Cartan introduced forms. In three dimensions, a 0-form is just a scalar
function f(x, y, z). A 1-form is F = Pdx + Qdy + Rdz, where P,Q,R are scalar
functions and dx, dy, dz are formal expressions. A 2-form is an expression of the form
F = Pdydz + Qdzdx + Rdxdy, where dx, dy, dz are again symbols but satisfy rules
like dxdy = −dydx, dxdz = −dzdx and dydz = −dzdy. A 3-form finally is written
as fdxdydz, where dxdydz as a volume form. Most calculus books treat 0-forms and
3-form f as a scalar functions and 1-forms and 2-forms as vector fields. But what
is dx? It is a linear map from R3 → R which maps a vector [v1, v2, v3] to v1. The
expression dxdy as a multi-linear anti-symmetric map from R3 × R3 to R: the object
dxdy assigns to two vectors v, w the determinant of the matrix v, w, [0, 0, 1]T as column
vectors. which is equal to v×w · k = v1w2− v2w1. Switching v and w changes the sign
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so that dxdy = −dydx and especially dxdx = 0. The object dxdydz is a multi-linear
map from R3×R3×R3 to R assigning to 3 vectors u, v, w the determinant of the matrix
in which u, v, w are the columns. Again, switching two elements changes the sign. For
example dxdydz = −dxdzdy, or dxdxdz = 0.

35.3. Breaking away from notions like cross product, we get now objects which can
be defined in arbitrary dimensions Rn. A k-form is a rule which at every point defines
a multi-linear and anti-symmetric map to the reals. Let us look how this is defined in
4 dimensions: a 0-form is a scalar function f . It assigns to every point (x, y, z, w) a
number f(x, y, z, w). A 1-form is an expression F = Pdx+Qdy +Rdz + Sdw which
can be thought of as a vector field F = [P,Q,R, S]. A 2-form is an expression F =
Adxdy+Bdxdz+Cdxdw+Pdydz+Qdydw+Rdzdw. It is a field with 6 components.
A 3-form is an expression F = Adydzdw + Bdxdzdw + Cdxdydw + Ddxdydz. As it
is a field with 4 components we can again see it as a “vector field”. A 4-form is an
expression F = fdxdydzdw. As it has only one component, we can again think of it
as a “scalar function” even so this a lie. A 4-form is a different object than a 0-form.

35.4. The exterior derivative produces from a k form a (k + 1)-form. First define
the 1-form df = fxdx+ fydy + fzdz + fwdw for a 0-form f , then use this for general k
forms. Given a 1-form F = Pdx+Qdy+Rdz+Sdw define dF = (Pxdx+Pydy+Pzdz+
Pwdw)dx + (Qxdx + Qydy + Qzdz + Qwdw)dy + (Rxdx + Rydy + Rzdz + Rwdw)dz +
(Sxdx + Sydy + Szdz + Swdw)dw which simplifies to dF = (Qx − Py)dxdy + (Rx −
Pz)dxdz + (Sx − Pw)dxdw + (Ry − Qz)dydz + (Sy − Qw)dydw + (Rw − Sz)dwdz. If
F = Adxdy + Bdxdz + Cdxdw + Pdydz + Qdydw + Rdzdw is 2-form, then dF =
(Axdx+Aydy +Azdz +Awdw)dxdy + (Bxdx+Bydy +Bzdz +Bwdw)dxdz + (Cxdx+
Cydy+Czdz+Cwdw)dxdw+(Pxdx+Pydy+Pzdz+Pwdw)dydz+(Qxdx+Qydy+Qzdz+
Qwdw)dydw+(Rxdx+Rydy+Rzdz+Rwdw)dzdw simplifies to (Px−By+Az)dxdydz+
(Qx − Cy + Aw)dxdydw + (Rx − Cz + Bw)dxdzdw + (Ry − Qz + Pw)dydzdw. Finally
for F = Adydzdw +Bdxdzdw +Cdxdydw +Ddxdydz we have dF = (Axdx+Aydy +
Azdz+Awdw)dydzdw+(Bxdx+Bydy+Bzdz+Bwdw)dxdzdw+(Cxdx+Cydy+Czdz+
Cwdw)dxdydw+(Dxdx+Dydy+Dzdz+Dwdw)dxdydz = (Ax+By+Cz+Dw)dxdydzdw.

35.5. We can integrate a (k + 1)-form dF over a (k + 1)-manifold G and a k-form F
over the k-manifold dG, the boundary dG of G. We write

∫
G
dF . To see the general

Stokes theorem
∫
G
dF =

∫
dG
F , we need to know that a tensor is. Machine learning

can justify to introduce the concept. 1 Let E be a space of column vectors and E∗ a
space of row vectors.

A (p, q)-tensor on E as a multi-linear map from (E∗)p × (Eq) to R.

Column vectors are tensors of the type (1, 0), row vectors are tensors of the type (0, 1),
matrices are tensors of the type (1, 1). The k-th Jacobean derivative of a function f is
a tensor of type (0, k). A tensor of type (0, 3) for example as a 3-dimensional array of
numbers Aijk. It defines a multi-linear map assigning to every triplet of vectors u, v, w
the number

∑
i,j,k Aijku

ivjvk. 2 A k-form on a manifold attaches a (0, k) tensor at
every point.

1There is a “tensor flow” library for example.
2Albert Einstein would just write Aijku

ivjvk and not bother about the summation symbol.
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35.6. E = Rn = M(n, 1) is the space of column vectors. Its dual E∗ = M(1, n)
is the space of row vectors. To get more general objects we treat vectors as maps.
A row vector is a linear map F : E → R defined by F (u) = Fu and a column vector
defines a linear map F : E∗ → R by F (u) = uF . A map F (x1, . . . , xn) of several
variables is called multi-linear, if it is linear in each coordinate. The set T pq (E) of all
multi-linear maps F : (E∗)p × Eq → R is the space of tensors of type (p, q). We
have T 1

0 (E) = E and T 0
1 (E) = E∗. The space T 1

1 (E) can naturally be identified with
the space M(n, n) of n×n matrices. Indeed, given a matrix A, a column vector v ∈ E
and a row vector w ∈ E∗, we get the bi-linear map F (v, w) = wAv. It is linear in v
and in w. In other words, it is a tensor of type (1, 1).

35.7. Let Λq(E) be the subspace of T 0
q (E) which consists of tensors F of type (0, q) such

that F (x1, . . . xq) is anti-symmetric in x1, . . . , xq ∈ E: this means F (xσ(1), . . . , xσ(q)) =
(−1)σf(x1, . . . , xq) for all i, j = 1, . . . , q, where (−1)σ is the sign of the permutation
σ of {1, . . . , n}. If the Binomial coefficient B(n, q) = n!/(q!(n − q)!) counts the
number of subsets with q elements i1 < · · · < iq of {1, . . . , n} and E has dimension n,
then Λq(E) has dimension B(n, q). A map F : E → T pq (E) is called a (p, q)-tensor

field. The set T 1
0 (E) is the space of vector fields. If g : Rm → Rn is a smooth

map, then F = dkg is a tensor field of type (0, k). A k-form is a (0, k)-tensor field
F with F (x) ∈ Λk(E). A 2-form in R3 for example attaches to x ∈ R3 a bi-linear,
anti-symmetric map F (x)(u, v) = −F (x)(v, u). One writes Pdydz + Qdxdz + Rdxdy
where dydz(u, v) = u2v3 − u3v2, dxdz(u, v) = u1v3 − u3v1, dxdy(u, v) = u1v2 − v1u2.

35.8. The exterior derivative d : Λp → Λp+1 is defined for f ∈ Λ0 as df = fx1dx1 +
· · · + fxndxn and d(fdxi1 · · · dxip) =

∑
i fxidxidxi1 · · · dxip . For F = Pdx + Qdy for

example, it is (Pxdx + Pydy)dx + (Qxdx + Qydy)dy = (Qx − Py)dxdy which is the
curl of F . If r : G ⊂ Rm → Rn is a parametrization, then S = r(G) is a m-surface
and δS = r(δG) is its boundary in Rn. If F ∈ Λp(Rn) is a p-form on Rn, then
r∗F (x)(u1, . . . , up) = F (r(x))(dr(x)(u1), dr(x)(u2), . . . , dr(x)(up)) is a p-form in Rm

called the pull-back of r. Given a p-form F and an p-surface S = r(G), define the
integral

∫
S
F =

∫
G
r∗F . The general Stokes theorem is

Theorem:
∫
S
dF =

∫
δS
F for a (m− 1)-form F and m surface S in E.

35.9. Proof. As in the proof of the divergence theorem, we can assume that the region
G is simultaneously of the form gj(x1, . . . , x̂j, . . . xm) ≤ xj ≤ hj(x1, . . . , x̂j, . . . xm),
where 1 ≤ j ≤ n and that F = [0, . . . , 0, Fj, 0, . . . , 0]. The coordinate independent
definition of dF reduces the result to the divergence theorem in G. QED

Examples

35.10. For n = 1, there are only 0-forms and 1-forms. Both are scalar functions. We
write f for a 0-form and F = fdx for a 1-form. The symbol dx abbreviates the linear
map dx(u) = u. The 1-form assigns to every point the linear map f(x)dx(u) = f(x)u.
The exterior derivative d : Λ0 → Λ1 is given by df(x)u = f ′(x)u. Stokes theorem is the

fundamental theorem of calculus
∫ b
a
f ′(x)dx = f(b)− f(a).
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35.11. For n = 2, there are 0-forms, 1-forms and 2-forms. It is custom to write
F = Pdx+Qdy rather than F = [P,Q] which is thought of as a linear map F (x, y)(u) =
P (x, y)u1 + Q(x, y)u2. A 2-form is also written as F = fdxdy or F = fdx ∧ dy.
Here dxdy means the bi-linear map dxdy(u, v) = (u1v2 − u2v1). The 2-form de-
fines such a bi-linear map at every point (x, y). The exterior derivative dΛ0 → Λ1

is df(x, y)(u1, u2) = fx(x, y)u1 + fy(x, y)u2 which encodes the Jacobian df = [fx, fy],
a row vector. The exterior derivative of a 1-form F = Pdx + Qdy is dF (x, y)(u, v) =
(−1)1Py(x, y) det([u, v]) + (−1)2Qx(x, y) det([u, v]) which is (Qx − Py)dxdy. Using co-
ordinates is convenient as dF = Pydydx + Qxdxdy = (Qx − Py)dxdy using now that
dydx = −dxdy.

35.12. For n = 3, we write F = Pdx + Qdy + Rdz for a 1-form, and F = Pdydz +
Qdzdx + Rdxdy for a 2-form. Here dydz = dy ∧ dz are symbols representing bi-
linear maps like dydz(u, v) = u2v3 − v3u2. As a 2-form has 3 components, it can
be visualized as vector field. A 3-form fdxdydz defines a scalar function f . The
symbol dxdydz = dx ∧ dy ∧ dz represents the map dxdydz(u, v, w) = det([uvw]).
The exterior derivative of a 1-form gives the curl because d(Pdx + Qdy + Rdz) =
Pydydx+Pzdzdx+Qxdxdy+Qzdzdy+Rxdxdz+Rydydz which is (Ry−Qz)dydz+(Pz−
Rx)dzdx+(Qx−Py)dxdy. The exterior derivative of a 2-form Pdydz+Qdzdx+Rdxdy
is Pxdxdydz +Qydydzdx+Rzdzdxdy = (Px +Qy +Rz)dxdydz. To integrate a 2-form
F = x2yzdxdy + yzdydz + xzdxdz over a surface r(u, v) = [x, y, z] = [uv, u− v, u+ v]
with G = {u2 + v2 ≤ 1} we end up with integrating F (r(u, v)) · ru × rv. In order to
integrate dF for a 1-form F = Pdx + Qdy + Rdz we can also pull back F and get∫∫

G
Fv(r(u, v))ru − Fu(r(u, v)rv dudv.

35.13. For n = 4, where we have 0-forms f , 1-forms F = Pdx+Qdy+Rdz+Sdw and
2-forms F = F12dxdy+F13dxdz+F14dxdw+F23dydz+F24dydw+F34dzdw which are
objects with 6 components. Then 3-forms F = Pdydzdw + Qdxdzdw + Rdxdydw +
Sdxdydz and finally 4-forms fdxdydzdw.

Remarks

35.14. Historically, differential forms emerged in 1922 with Élie Cartan. Most text-
books introduce the Grassmannian algebra early and use the language of “chains” for
example which is the language used in algebraic topology. I myself taught the subject
in this old-fashioned way too, back in 1995. 3 It was Jean Dieudonné in 1972 who
freed the general Stokes theorem from chains and used first the coordinate free pull
back idea. This allowed us in this lecture to formulate the general Stokes theorem from
scratch on a single page with all definitions.

35.15. What is a differential form? We have seen a mathematically precise defi-
nition: a differential form is a kind of field: it defines a multi-linear anti-symmetric
function that is attached to each point of space. But what is the intuition and what
are ways to “visualize” and “see” and “understand” such an object? Here are four
paths. Maybe one of them helps:

3Caltech notes: https://people.math.harvard.edu/̃knill/teaching/math109 1995/geometry.pdf



A) Using Stokes one can see a form as a functional F , which assigns to am-dimensional
oriented surface S a number

∫
S
F ·dS such that

∫
−S F ·dS =

∫
S
(−F ) ·dS = −

∫
S
F ·dS.

4 This way of thinking about forms matches what we do in the discrete. If we have
a k-form on a graph, then this is a function on k-dimensional oriented complete sub-
graphs. Given a graph S we have

∫
S
F · dS =

∑
x∈S F (x), where the sum is over all

k-dimensional simplices in S.

B) One can understand differential forms better using arithmetic, the Grassmannian
algebra. This is done with the help of the tensor product, which induces an exte-
rior product F ∧G on Λp × Λq → Λp+q. This product generalizes the cross product
Λ1 ×Λ1 → Λ2 which works for n = 3 as there, the space of 1-forms Λ1 and 2-forms Λ2

can be identified. The exterior algebra structure helps to understand k-forms. We can
for example see a 2-form as an exterior product F ∧G of two 1-forms. We can think of
a 2-form for example as attaching two vectors at a point and identify two such frames
if their orientation and parallelogram areas match.

C) A third way comes through physics. We are familiar with manifestations of electo-
magnetism: we see light, we use magnets to attach papers to the fridge or have magnetic
forces keep the laptop lid closed. Electric fields are felt when combing the hair, as we
see sparks generated by the high electric field obtained by stripping away the electrons
from the head. We use magnetic fields to store information on hard drives and electric
fields to store information on a SSD hard drive. Non-visible electro-magnetic fields
are used when communicating using cell phones or connecting through blue-tooth or
wireless network connections. The electro-magnetic field E,B is actually a 2-form in
4-dimensions. The B(4, 2) = 6 components are (E1, E2, E3, B1, B2, B3).

D) A fourth way comes through discretization. When formulating Stokes on a
discrete network, everything is much easier: a k-form is just a function on oriented
k-dimensional complete subgraphs of a network. Start with a graph G = (V,E)
and orient the complete subgraphs arbitrarily. Given a k-form F , a function on k-
simplices has an exterior derivative at a k + 1 dimensional simplex x is defined as
dF (x) =

∑
y⊂x σ(y, x)F (y), where the sum is over all k-dimensional sub-simplices of

x and σ(y, x) = 1 if the orientation of y matches the orientation of x or −1 else. We
have for example seen that for a 1-form F , a function on edges, the exterior derivative
at a triangle x is the sum over the F values of the edges, where we add up the value
negatively if the arrow of the edge does not match the orientation of the triangle.

Applications

35.16. An electromagnetic field is determined by a 1-form A in 4-dimensional space
time. The electromagnetic field is F = dA. The Maxwell equations are dF = 0 (the
relation d ◦ d = 0 is seen in the homework). The second part of the Maxwell equations
are d∗F = j, where d∗ : Λp → Λp−1 is the adjoint and j is a 1-form encoding both the
electric charge and the electric current. We can always gauge with a gradient A + df
so that d∗(A + df) = 0 (Coulomb gauge). Using d∗A = 0, the Maxwell equations
reduced to the Poisson equation LA = (dd∗+ d∗d)A = j, where L is the Laplacian on

4David Bachman’s text on differential forms: “it is a thing which can be integrated”.
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1-forms. The electric current j defines the electromagnetic field F simply by inverting
the Laplacian. This is a bit tricky in the continuum, as the inverse is an integral
operator. 5 In the discrete it is just the inverse of the matrix L, which by the way is
always an invertible |E|× |E| matrix if the graph G = (V,E) is simply connected. And
there was light!

Homework

Problem 35.1: Given the 1-form F (x, y, z, w) = [x3, y5, z5, w2] = x3dx+
y5dy + z5dz + w2dw and the curve C : r(t) = [cos(t), sin(t), cos(t), sin(t)]
with 0 ≤ t ≤ π. Find the line integral

∫
C
F (r(t)) · dr.

Problem 35.2: Given the 1-form F = [xyz, xy, wx,wxy] = xyzdx +
xydy + wxdz + wxydw, find the curl dF . Now find

∫∫
S
dF over the 2-

dimensional surface S : x2 +y2 ≤ 1, z = 1, w = 1 which has as a boundary
the curve C : r(t) = [cos(t), sin(t), 1, 1]T , 0 ≤ t ≤ 2π. You certainly can use

the Stokes theorem. If you like to compute both sides of the theorem you can see how the theorem

works. The 2-manifold S is parametrized by r(t, s) = [s, t, 1, 1]T . The (rs ∧ rt)ij has 6 components,

where only one component (rs ∧ rt)12 is nonzero. This will match with the dF12 = Pdxdy part of the

6-component 2-form dF building the curl. We will have to integrate then over G = s2 + t2 ≤ 1.

Problem 35.3: Given the 2-form F = z4xdxdz + xyzw2dydw and the
3-sphere x2 + y2 + z2 + w2 = 1 oriented outwards. What is the integral∫∫∫

S
dF? To compute this 3D integral, you can use the general integral

theorem.

Problem 35.4: Given the 3-form F = xyzdxdydz + y2zdydzdw, find
the divergence dF . Now find the flux of F through the unit sphere x2 +
y2 + z2 + w2 = 1 oriented outwards.

Problem 35.5:
a) Take f(x, y, z, w). Check that F = df satisfies dF = 0.
b) Take F = F1dx+F2dy+F3dz +F4dw. Compute the curl G = dF and
check that dG = 0.
c) Take the 2-form F = F12dxdy + F13dxdz + F14dxdw + F23dydz +
F24dydw + F34dzdw. Write down the 3-form G = dF and check dG = 0.
d) Take the 3-form F = F1dydzdw + F2dxdzdw + F3dxdydw + F4dxdydz
and compute the 4-form G = dF . Check that dG = 0.

Oliver Knill, knill@math.harvard.edu, Math 22b, Harvard College, Spring 2022

5There are thick books about this like Jackson’s Electromagnetism, the bible of the topic.


