
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 36: A Discrete World

Introduction

36.1. The Maxwell equations dF = 0, d∗F = j allow to get the electro-magnetic

field F from the current j. The gravitational field is determined via the Gauss law

d∗F = ρ from the mass density ρ. With −∆ = d∗d, the Schrödinger equation

ihu′ = −∆u+ V u describes the motion of a quantum particles. On a space with a
derivative d, there is light, matter and a periodic system of atoms.
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Figure 1. The periodic systems of elements reflects the structure
of the eigenvalues and eigenvectors of the Hydrogen matrix L = K +
V = − ~2

2m
∆− e2

4πε0ρ
, where ∆ = divgrad, where m, e are mass and charge

of the electron and ~, ε0 are constants. The eigenvalues of L are ~2
2an2

with Bohr radius a = 4πε0~2
me2

and eigenvectors ψnlm = Rnl(ρ)Y m
l (θ, φ).

36.2. An important object in calculus is the Laplacian ∆f = div(grad(f)) which is
∆f = fxx + fyy + fzz. For graphs, it is the Kirchhoff matrix K = d∗d, where d∗ is
the transpose matrix of d. The matrix K = d∗d is a square matrix with non-negative
eigenvalues. Construct each column with Kev where ev is a basis vector. The 1-form
dev attaches to an edge connected to v the value −1. Then d∗dev is the function
on vertices which attaches to a vertex itself the negative of the vertex degree and
to each attached node value 1. The Schrödinger equation i~u′ = Ku is solved by
u(t) = U(t)u(0) = e−itK/~hu(0). You can watch it with:

K=Kirchhof fMatr ix [ WheelGraph [ 9 ] ] ; U[ t ] :=MatrixExp[−K∗ I∗ t ] ;
Animate [ MatrixPlot [Re [U[ t ∗ . 0 1 ] ] ] , { t , 0 , 2 0} ]
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Lecture

36.3. A 0-form f on a graph G = (V,E) is a function on the vertices V . We also
call it a scalar function. A 1-form is a function on the oriented edges E satisfying
F (a, b) = −F (b, a). Informally, as in the continuum, we think of a 1-form as a vector
field. The gradient F (a, b) = df(a, b) = f(b) − f(a) of a 0-form f is a 1 form F .
The curl of a vector field F is a 2-form. It is a function on triangles (a, b, c) given by
dF (a, b, c) = F (a, b) +F (b, c) +F (c, a) which can be seen as the line integral along the
boundary of the triangle. When describing p-forms for p > 0, orientation matters. To
fix it, just enumerate the vertices V and then choose the orientation of an edge (a, b)
with a < b or the orientation of a triangle (a, b, c) if a < b < c. The discrete Stokes
theorem

∫∫
S

curl(F ) · dS =
∫
C
F · dr told us that that the sum of the curls of F on

triangles of a surface S is equal to the line integral of F along the boundary C of S.

Figure 2. Examples of three dimensional graphs with 1,2,4 and 12
tetrahedra. The divergence dF (x) of a 2-form F is the sum over all
values F (y), where y ⊂ x runs over the triangular faces of x. The sum
of all divergences is the flux of F through the boundary because in the
inside the fluxes cancel. This is the divergence theorem for solids.

36.4. A tetrahedral graph is a collection of four nodes which all are connected to
each other. A 3-form on a graph G is a function on tetrahedral sub-graphs x of G. An
example is the divergence dF (x) of a 2-form F which is defined as the sum of the
F (y) values of the triangles y ⊂ x enclosing the tetrahedron x. As in the continuum,
the orientation plays a role. Here is the discrete divergence theorem for a solid G
is built by tetrahedra x and where the boundary surface S consists of triangles:

Problem A: Check that
∑

x∈G div(F )(x) =
∑

y∈S F (y).

Hint: prove by induction with respect to the number of tetrahedra. First check that
if G is a single tetrahedron, this is the definition of the divergence. Then see what
happens if a new tetrahedron is added.

36.5. We also have seen that the divergence of the curl of a vector field F is zero: we
had curl(F ) = [Ry − Qz, Pz − Rx, Qx − Py] and taking the x derivative of Ry − Qz is
Ryx −Qzx, the y derivative of Pz −Rx is Pzy −Rxy and the z-derivative of Qx − Py is
Qxz − Pyz. Adding them all up gives 0. In the discrete it is even simpler. Start with
a 1-form F on the edges of a graph. Then form the curls, which are functions on the
triangles, then add up all these curls. You check:

Problem B: Check: div(curl(F ))(x) = 0 of every F and tetrahedron x.



36.6. The general Stokes theorem is not much different. A p-simplex in G in a
complete sub-graph with p+ 1 nodes. This means we have all connected to each other.
A p-form is a function on the set of p-simplices x in G. The function value changes
if two elements switch. For example, F (x0, x1, x2) = F (x1, x2, x0) = F (x2, x0, x1) =
−F (x1, x0, x2) = −F (x0, x2, x1) = −F (x2, x1, x0).

36.7. The exterior derivative of p-form F is the (p+ 1)-form

dF (x0, . . . , xp+1) =

p+1∑
j=0

(−1)jF (x0, . . . , x̂j, . . . xp+1) .

Problem C: Check in general that ddF = 0.

36.8. The general Stokes theorem tells that for a m-dimensional graph G with bound-
ary S and a (m− 1)-form F we have

Theorem:
∑

x∈G dF (x) =
∑

y∈S F (y)

Gravity

36.9. The Newton equations d2

dt2
xk = −

∑
j Gmj/|xk − xj|2 with gravitational con-

stant G describe the motion of finitely many mass points with positions xk(t) ∈ R3

and mass mk. These classical laws govern the motion of planets in our solar system,
stars in a galaxy or galaxies in a galaxy cluster. While relativity modifies this
Newtonian picture slightly and produces corrections which for example manifest in
the perihelion advancement of Mercury, the Newtonian theory is amazingly accurate.
Gauss derived the gravitational inverse square force F from div(F ) = 4πσ, where σ is
the mass density. While divergence usually maps a 2-form to a 3-form, it is the adjoint
d∗ of the gradient d. In R3 it is equivalent. Now, L = div ◦ grad = d∗d : Λ0 → Λ0 is
called the Kirchhoff Laplacian. The Gauss law of gravity therefore is the Poisson
equation LV = 4πσ , where V is the gravitational potential, a 0−form. Since d∗ = 0
on 0-forms, we can also write L = dd∗+d∗d. Classical gravity gets from a mass density
σ the gravitational potential V and so the gravitational field as a gradient F = dV :

(d∗d+ dd∗)V = 4πσ defines the gravitational 1-form F = dV .

Electromagnetism

36.10. The Maxwell equations div(E) = 4πσ, div(B) = 0, curl(E) = −Bt, curl(B) =
Et+4πi become more elegant when written in four-dimensional space-time R4. There
are then two equations only. The first is dF = 0 which is evident from F = dA and
d2 = 0. The second is d∗F = 4πj, where j is the 4-current encoding both the charge
density σ as well as the electric current i. Now dF = 0 implies in a simply con-
nected region that F = dA, where A is an electro-magnetic potential. If d∗A = 0
(which can always be achieved by adding a gradient to A) we get the Poisson equation
LA = (dd∗ + d∗d)A = 4πj. This completely encodes the Maxwell equations; we can
look at it also in a discrete network. Classical electromagnetism in a world with charge
and current density j is the field F = dA, where A is obtained from
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(d∗d+ dd∗)A = 4πj defines the electromagnetic 2-form F = dA.

Quantum mechanics

36.11. In this last homework we deal with a small universe G. We call it Gaia, the
primordial deity of earth. In Greek mythology, Gaia was the daughter of Aether
the god of air and Hemera the goddess of light. We only create the gravitational
field, the electromagnetic field on G and some quanta, so there will be matter and
light in this world. But that mathematics is exactly as in the universe we live in: the
classical gravitational field is described with the language of Gauss which we have seen
to imply the Newton law of gravity. The electromagnetic field is formulated according
to Maxwell, but directly in space-time. We also look a bit at quantum mechanics as
the eigenvalues and eigenvectors of the Laplacian L play a role when looking at the
Wheeler De Witt equation, a time-independent Schrödinger equation in space time

(d∗d+ dd∗)F = λF defines a wave function F on p-forms.

36.12. The time dependent Schrödinger equation, as mentioned in the introduction
can also be studied. For graphs, it is an ordinary differential equation.

Beyond

36.13. The rest will be up to you: it remains to include the Fermionic constituents of
matter (quarks (building mesons and baryons) as well as leptons) and bosons (photons,
gluons, vector bosons and the Higgs) as well as a few other details called the Standard
model. Don’t complain about the homework, a former 22-student has solved a 10222

node homework assignment in less than 7 days ...

Figure 3. The Greek godess Gaia, seen in a Roman relief sculpture
from the “Ara Pacis Augustae” in Rome. (Image by Dr. Sarah E. Bond.)



Homework

Problem 36.1: Given the 1-form F in Figure 4b, find the 0-form f(x) =
d∗F (x) =

∑
e,e→x F (e). Check that

∑
x∈V d

∗F (x) = 0. (This conservation

law is a variant of the divergence theorem. (In the continuum, where 2-
forms and 1-forms are identified and 3-forms are equated with 0-forms, this
so called Kirchhoff law corresponds to the usual divergence theorem).

Problem 36.2: a) Given the 0-form f in Figure 4a, find F = df , then
compute d∗F = d∗df = Lf .
b) Given the 1-form F in Figure 4b, compute the 2-form dF .
c) Given the 2-form H in Figure 4c, find a 1-form F such that dF = H.
In classical terms, we look for a vector field F such that curl(F ) is a
given scalar field f (Classically this is done by solving Qx − Py = f with
F = [0,

∫ x
0
f(t) dt]T for example.)

Problem 36.3: Given the 0-form f in Figure 4d, check that this f
satisfies Kf = λf for some constant λ. This is called an eigenvalue of K.

Problem 36.4: Write down the 4× 4 Kirchhoff matrix K for the Gaia
world. What are the eigenvalues and eigenvectors of K?

Problem 36.5: a) The complete graph with 4 elements is the smallest
3-dimensional “world”. Find the Kirchhoff Matrix K of this graph and
compute its eigenvalues and eigenvectors. You can use the first line of
the Mathematica code below, which computes the Kirchhoff matrix of an
other graph and then its Schroedinger evolution.
b) If ψ is an eigenvector of K satisfying Kψ = λψ. Verify that ψ(t) =
e−itλ/~ψ solves the Schrödinger equation i~ψ′ = Kψ. Use a formula
seen earlier in this course to explain why quantum mechanics is called
“wave mechanics”.

K=Normal [ Kirchhof fMatr ix [ GridGraph [ { 1 0 , 1 0 } ] ] ] ;
U[ t ] :=MatrixExp[−K∗ I∗ t ] ; MatrixPlot [Abs [U [ 1 0 . 0 ] ] ]
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Figure 4. a) 0-form,b) 1-form, c) 2-form, d) eigenvector.
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Some linear algebra

36.14. On Gaia, the space of 0-forms is 4-dimensional, the space of 1-forms is 5 di-
mensional and the space of 2-forms is 2 dimensional.
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Figure 5.

36.15. We see the Dirac matrix D = d + d∗ to the left and the Laplacian L = D2 =
dd∗+ d∗d to the right. The first 4 columns contain the block d0 : Λ0 → Λ1 which is the
gradient, the top block in the middle 5 columns is d∗0, the divergence. The bottom block
is d1 : Λ1 → Λ2 the curl. The block in the last 2 columns is d∗1 : Λ2 → Λ1 each of the
triangles affects 3 adjacent edges. The number b0 is the dimension of the kernel of L0.
It is called the 0-th Betti number and counts the number of connectivity components
of G (we don’t have a multi-verse), the number b1 is the number of “holes”, there are
none. Gaia is simply connected.

Figure 6.

36.16. The gradient d is a matrix which maps a function on vertices to a function
on edges. It is a |E| × |V | matrix. In Mathematica, you can get d∗ with “Incidence
matrix”. Note that Mathematica distinguishes between directed and undirected graphs
and that the gradient is the transpose of d. To compute the Kirchhoffmatrix K, you
have to use the undirected graph. Then K = d∗d. Here is an example verifying
K = d∗d = divgrad.

G=Graph[{1−>2,2−>3,3−>4}]; d=Transpose [ Inc idenceMatr ix [G ] ] ;
K1=Kirchhof fMatr ix [ UndirectedGraph [G ] ] ; K2=Transpose [ d ] . d ;
Print [K1==K2 ] ; Print [MatrixForm [K1 ] ]
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