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Unit 37: Review: Geometries and Fields

Lecture

37.1. The Integral theorems deal with geometries G and fields F . Integration
pairs them in the form of Stokes theorem∫

G
dF =

∫
dG
F

which involves the boundary dG of G and the exterior derivative dF of F . One
can classify the theorems by looking at the dimension n of the underlying space and
the dimension m of the object G. In dimension n, there are n theorems:

37.2. The Fundamental theorem of line integrals is a theorem about the gradient
∇f . It tells that if C is a curve going from A to B and f is a function (that is a 0-form),
then

Theorem:
∫
C
∇f · dr = f(B)− f(A)

In calculus we write the 1-form as a column vector field ∇f . It actually is a 1-form
F = df , a field which attaches a row vector to every point. If the 1-form is evaluated at
r′(t) one gets df(r(t))(r′(t)) which is the matrix product. We integrate then the pull
back of the 1-form on the interval [a, b]. It is the switch from row vectors to column
vectors which leads to the dot product ∇f(r(t)) · r′(t). For closed curves, the line
integral is zero. It follows also that integration is path independent.

37.3. Green’s theorem tells that if G ⊂ R2 is a region bound by a curve C having
G to the left, then

Theorem:
∫∫

G
curl(F ) dxdy =

∫
C
F · dr
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Figure 1. Fundamental theorem of line integrals and Green’s theorem.

In the language of forms, F = Pdx + Qdy is a 1-form and dF = (Pxdx + Pydy)dx +
(Qxdx + Qydy)dy = (Qx − Py)dxdy is a 2-form. We write this 2-form dF as Qx − Py
and treat it as a scalar function even so this is not the same as a 0-form, which is a
scalar function. If curl(F ) = 0 everywhere in R2 then F is a gradient field.

37.4. Stokes theorem tells that if S is a surface with boundary C oriented to have
S to the left and F is a vector field, then

Theorem:
∫∫

S
curl(F ) · dS =

∫
C
F · dr

Figure 2. Stokes theorem and the Gauss theorem.

In the general frame work, the field F = Pdx+Qdy +Rdz is a 1-form and the 2-form
dF = (Pxdx+Pydy+Pzdz)dx+(Qxdx+Qydy+Qzdz)dy+(Rxdx+Rydy+Rzdz)dz =
(Qx − Py)dxdy + (Ry − Qz)dydz + (Pz − Rx)dzdx is written as a column vector field
curl(F ) = [Ry − Qz, Pz − Rx, Qx − Py]T . To understand the flux integral, we need to
see what a bilinear form like dxdy does on the pair of vectors ru, rv. In the case dxdy
we have dxdy(ru, rv) = xuyv − yuxv which is the third component of the cross product
ru × rv with ru = [xu, yu, zu]

T . Integrating dF over S is the same as integrating the
dot product of curl(F ) · ru × rv. Stokes theorem implies that the flux of the curl of F
only depends on the boundary of S. In particular, the flux of the curl through a closed
surface is zero because the boundary is empty.



37.5. Gauss theorem: if the surface S bounds a solid E in space, is oriented out-
wards, and F is a vector field, then

Theorem:
∫∫∫

E
div(F ) dV =

∫∫
S
F · dS

Gauss theorem deals with a 2-form F = Pdydz + Qdzdx + Rdxdy, but because a 2-
form has three components, we can write it as a vector field F = [P,Q,R]T . We have
computed dF = (Pxdx + Pydy + Qzdz)dydz + (Qxdx+ Qydy +Qzdz)dzdx+ (Rxdx+
Rydy +Rzdz)dxdy, where only the terms Pxdxdydz +Qydydzdx+Rzdzdxdy = (Px +
Qy + Rz)dxdydz survive which we associate again with the scalar function div(F ) =
Px +Qy +Rz. The integral of a 3-form over a 3-solid is the usual triple integral. For a
divergence free vector field F , the flux through a closed surface is zero. Divergence-free
fields are also called incompressible or source free.

Remarks

37.6. We see why the 3 dimensional case looks confusing at first. We have three
theorems which look very different. This type of confusion is common in science: we
put things in the same bucket which actually are different: it is only in 3 dimensions
that 1-forms and 2-forms can be identified. Actually, more is mixed up: not only
are 1-forms and 2-forms identified, they are also written as vector fields which are
T 1
0 tensor fields. From the tensor calculus point of view, we identify the three spaces
T 1
0 (E) = E, T 0

1 (E) = Λ1(E) = E∗ and Λ2(E) ⊂ T 0
2 . While we can still always identify

vector fields with 1-forms, this identification in a general non-flat space will depend
on the metric. In R4, the 2-forms have dimension 6 and can no more be written as a
vector. One still does. The electro-magnetic F is a 2-form in R4 which we write as a
pair of two time-dependent vector fields, the electric field E and the magnetic field B.

37.7. Geometries and fields are remarkably similar. On geometries, the boundary
operation d satisfies d◦d = 0. On fields the derivative operation d satisfies d◦d = 0.
‘Geometries” as well as “fields” come with an orientation: ru × rv = −rv × ru,
dxdy = −dydx. The operations d and d look different because calculus deals with
smooth things like curves or surfaces leading to generalized functions. In quantum
calculus they are thickened up and d, d defined without limit. Fields and geometries
then become indistinguishable elements in a Hilbert space. The exterior derivative d
has as an adjoint d = d∗ which is the boundary operator. It is a kind of quantum field
theory as d generates while d∗ destroys a “particle”. d2 = d2 = 0 is a “Pauli exclusion”.

37.8. We can spin this further: a m-manifold S is the image of a parametrization
r : G ⊂ Rm → Rn. The Jacobian dr is a dual m-form, the exterior product of the m
vectors dru1 up to drum (think of m column vectors attached to r(u) ∈ S). If we take
a map s : S ⊂ Rn → Rm and look at F = ds, we can think of it as a m-form F (think
of m row vectors attached to each point x in Rn). The map s defines m× n Jacobian
ds(x), while the Jacobian dr(u) is the n ×m matrix. Cauchy-Binet shows that the
flux of F = ds through r(G) = S is the integral

∫
G
F =

∫
G

det(ds(r(u))dr(u)) du
=

∫
S

det(ds(x)dr(s(x))). If s(r(u)) = u, then this is a geometric functional. So:
geometries G can come from maps from a space A to a space B, while fields F can
come from maps from B to A. The action integral

∫
G
F generalizes the Polyakov

action
∫
G

det(drTdr) =
∫
G
|dr|2, a case where F and G are dual meaning s(r(u)) = u.
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Prototype examples

Problem: Compute the line integral of F (x, y, z) = [5x4 + zy, 6y5 +
xz, 7z6 + xy] along the path r(t) = [sin(5t), sin(2t), t2/π2] from t = 0 to
t = 2π.

Solution: The field is a gradient field df with f = x5 + y6 + z7 + xyz.
We have A = r(0) = (0, 0, 0) and B = r(2π) = (0, 0, 4) and f(A) = 1
and f(B) = 47. The fundamental theorem of line integrals gives∫
C
∇f dr = f(B)− f(A) = 47.

Problem: Find the line integral of the vector field F (x, y) = [x4+sin(x)+
y+5xy, 4x+y3] along the cardioid r(t) = (1+sin(t))[cos(t), sin(t)], where
t runs from t = 0 to t = 2π.

Solution: We use Green’s theorem. Since curl(F ) = 3 − 5x, the line
integral is the double integral

∫∫
G

3 − 5x dxdy. We integrate in polar

coordinates and get
∫ 2π

0

∫ 1+sin(t)

0
(3 − 5r cos(t))rdrdt which is 9π/2. One

can short cut by noticing that by symmetry
∫∫

G
(−5x) dxdy = 0, so that

the integral is 3 times the area
∫ 2π

0
(1+sin(t))2/2 dt = 3π/2 of the cardioid.

Problem: Compute the line integral of F (x, y, z) =
[x3 + xy, y, z] along the polygonal path C connecting the points
(0, 0, 0), (2, 0, 0), (2, 1, 0), (0, 1, 0).

Solution: The path C bounds a surface S : r(u, v) = [u, v, 0] param-
eterized on G = {(x, y)| x ∈ [0, 2], y ∈ [0, 1]}. By Stokes theorem, the
line integral is equal to the flux of curl(F )(x, y, z) = [0, 0,−x] through S.
The normal vector of S is ru × rv = [1, 0, 0] × [0, 1, 0] = [0, 0, 1] so that∫ ∫

S
curl(F ) · dS =

∫ 2

0

∫ 1

0
[0, 0,−u] · [0, 0, 1] dvdu =

∫ 2

0

∫ 1

0
−u dvdu = −2.

Problem: Compute the flux of the vector field F (x, y, z) = [−x, y, z2]
through the boundary S of the rectangular box G = [0, 3]× [−1, 2]× [1, 2].

Solution: By the Gauss theorem, the flux is equal to the triple integral
of div(F ) = 2z over the box:

∫ 3

0

∫ 2

−1

∫ 2

1
2z dzdydx = (3− 0)(2− (−1))(4−

1) = 27.
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