LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 37: Review: Geometries and Fields

LECTURE

37.1. The Integral theorems deal with geometries G and fields F'. Integration
pairs them in the form of Stokes theorem

deF = fdGF

which involves the boundary dG of GG and the exterior derivative dF' of F. One
can classify the theorems by looking at the dimension n of the underlying space and
the dimension m of the object G. In dimension n, there are n theorems:
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37.2. The Fundamental theorem of line integrals is a theorem about the gradient
V f. Tt tells that if C'is a curve going from A to B and f is a function (that is a 0-form),
then

Theorem: [, Vf-dr= f(B)— f(A)

In calculus we write the 1-form as a column vector field Vf. It actually is a 1-form
F = df, a field which attaches a row vector to every point. If the 1-form is evaluated at
r’(t) one gets df (r(t))(r'(t)) which is the matrix product. We integrate then the pull
back of the 1-form on the interval [a,b]. It is the switch from row vectors to column
vectors which leads to the dot product V f(r(t)) - 7/(t). For closed curves, the line
integral is zero. It follows also that integration is path independent.

37.3. Green’s theorem tells that if G C R? is a region bound by a curve C' having
G to the left, then

Theorem: [[, curl(F) dedy = [, F -dr
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FiGURE 1. Fundamental theorem of line integrals and Green’s theorem.

In the language of forms, F' = Pdx + Qdy is a 1-form and dF = (P,dz + P,dy)dx +
(Qudx + Qudy)dy = (Q, — Py)dzdy is a 2-form. We write this 2-form dF as Q, — P,
and treat it as a scalar function even so this is not the same as a 0-form, which is a
scalar function. If curl(F) = 0 everywhere in R? then F is a gradient field.

37.4. Stokes theorem tells that if S is a surface with boundary C' oriented to have
S to the left and F' is a vector field, then

Theorem: [, curl(F)-dS = [, F-dr

FIGURE 2. Stokes theorem and the Gauss theorem.

In the general frame work, the field F' = Pdx 4+ Qdy + Rdz is a 1-form and the 2-form
dF = (Pydx+ P,dy+ P,dz)dx + (Qdx + Q,dy + Q.dz)dy + (R,dx + Rydy + R.dz)dz =
(Qz — P))dzdy + (R, — Q.)dydz + (P, — R,)dzdx is written as a column vector field
curl(F) = [R, — Q., P, — R.,Q, — P,]*. To understand the flux integral, we need to
see what a bilinear form like dxdy does on the pair of vectors r,,r,. In the case dzdy
we have dxdy(ry, ) = Ty — Yuy wWhich is the third component of the cross product
Ty X 1y With 7, = [Ty, Yu, zu]T. Integrating dF over S is the same as integrating the
dot product of curl(F') - r, x r,. Stokes theorem implies that the flux of the curl of F
only depends on the boundary of S. In particular, the flux of the curl through a closed
surface is zero because the boundary is empty.



37.5. Gauss theorem: if the surface S bounds a solid E in space, is oriented out-
wards, and F' is a vector field, then

Theorem: [[[, div(F)dV = [[,F-dS

Gauss theorem deals with a 2-form F' = Pdydz + Qdzdx + Rdxzdy, but because a 2-
form has three components, we can write it as a vector field F' = [P, Q, R]T. We have
computed dF = (P,dx + P,dy + Q.dz)dydz + (Q.dx + Q,dy + Q.dz)dzdx + (R,dx +
R,dy + R.dz)dzdy, where only the terms P,dxdydz + Q,dydzdz + R,dzdxdy = (P, +
Qy + R.)dxdydz survive which we associate again with the scalar function div(F) =
P, +Q,+ R,. The integral of a 3-form over a 3-solid is the usual triple integral. For a
divergence free vector field F', the flux through a closed surface is zero. Divergence-free
fields are also called incompressible or source free.

REMARKS

37.6. We see why the 3 dimensional case looks confusing at first. We have three
theorems which look very different. This type of confusion is common in science: we
put things in the same bucket which actually are different: it is only in 3 dimensions
that 1-forms and 2-forms can be identified. Actually, more is mixed up: not only
are 1-forms and 2-forms identified, they are also written as vector fields which are
T} tensor fields. From the tensor calculus point of view, we identify the three spaces
THE) = E, T)(F) = A'Y(E) = E* and A*(F) C Ty. While we can still always identify
vector fields with 1-forms, this identification in a general non-flat space will depend
on the metric. In R*, the 2-forms have dimension 6 and can no more be written as a
vector. One still does. The electro-magnetic F is a 2-form in R* which we write as a
pair of two time-dependent vector fields, the electric field £ and the magnetic field B.

37.7. Geometries and fields are remarkably similar. On geometries, the boundary
operation d satisfies dod = 0. On fields the derivative operation d satisfies dod = 0.
‘Geometries” as well as “fields” come with an orientation: r, X r, = —r, X 7y,
dxdy = —dydx. The operations d and d look different because calculus deals with
smooth things like curves or surfaces leading to generalized functions. In quantum
calculus they are thickened up and d, d defined without limit. Fields and geometries
then become indistinguishable elements in a Hilbert space. The exterior derivative d
has as an adjoint d = d* which is the boundary operator. It is a kind of quantum field
theory as d generates while d* destroys a “particle”. d? = d* = 0 is a “Pauli exclusion”.

37.8. We can spin this further: a m-manifold S is the image of a parametrization
r: G C R™ — R". The Jacobian dr is a dual m-form, the exterior product of the m
vectors dry, up to dr,,, (think of m column vectors attached to r(u) € S). If we take
amap s:S CR" — R"™ and look at F' = ds, we can think of it as a m-form F' (think
of m row vectors attached to each point x in R™). The map s defines m x n Jacobian
ds(x), while the Jacobian dr(u) is the n x m matrix. Cauchy-Binet shows that the
flux of F' = ds through r(G) = S is the integral [, F = [, det(ds(r(u))dr(u)) du
= [ydet(ds(z)dr(s(x))). If s(r(u)) = u, then this is a geometric functional. So:
geometries GG can come from maps from a space A to a space B, while fields F' can
come from maps from B to A. The action integral fG F' generalizes the Polyakov
action [, det(dr’dr) = [, |dr|?, a case where F' and G are dual meaning s(r(u)) = .
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PROTOTYPE EXAMPLES

Problem: Compute the line integral of F(x,y,2) = [bz* + 2y, 635 +
12,725 + wy| along the path r(t) = [sin(5t),sin(2t),?/7?] from t = 0 to
t = 2m.

Solution: The field is a gradient field df with f = 2° 4+ 3® + 27 + ayz.
We have A = r(0) = (0,0,0) and B = r(27) = (0,0,4) and f(A4) =1
and f(B) = 47. The fundamental theorem of line integrals gives

JoVfdr=f(B)— f(A) =4".

Problem: Find the line integral of the vector field F'(z,y) = [z*+sin(z)+
y+ 5y, 4z + y°] along the cardioid r(t) = (1 +sin(¢))[cos(t), sin(¢)], where
t runs from ¢t = 0 to t = 27.

Solution: We use Green’s theorem. Since curl(F) = 3 — 5z, the line
integral is the double integral [[,3 — 5z dxdy. We integrate in polar
coordinates and get f Hsm(t)(?) — 5rcos(t))rdrdt which is 97/2. One
can short cut by noticing that by symmetry | fG —5z) dxdy = 0, so that

the integral is 3 times the area fo (1+sin(t))?/2 dt = 37 /2 of the cardioid.

Problem: Compute the line integral of F(z,y,2) =
(23 + xy,y,z] along the polygonal path C connecting the points
(0,0,0),(2,0,0),(2,1,0),(0,1,0).

Solution: The path C' bounds a surface S : r(u,v) = [u,v,0] param-
eterized on G = {(z,y)| = € [0,2],y € [0,1]}. By Stokes theorem, the
line integral is equal to the flux of curl(F)(z,y, z) = [0,0, —x] through S.
The normal vector of S is r, x r, = [1,0,0] x [0,1,0] = [0,0, 1] so that
[ Jgeurl(F)-dS = fo fo 0,0, —u] - [0,0, 1] dvdu = f02 fol —u dvdu = —2.

Problem: Compute the flux of the vector field F(x,y,z2) = [—z,y, 2
through the boundary S of the rectangular box G = [0, 3] x [—1, 2] x [1, 2].

’]

Solution: By the Gauss theorem, the flux is equal to the triple integral
of div(F) = 2z over the box: f03 f_21 ff 2z dzdydr = (3—0)(2—(-1))(4 —
1) =27.
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