LINEAR ALGEBRA AND VECTOR ANALYSIS

$\mathrm{MATH}\ 22\mathrm{B}$

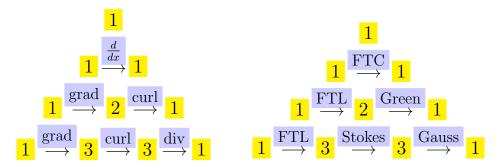
Unit 37: Review: Geometries and Fields

LECTURE

37.1. The Integral theorems deal with geometries G and fields F. Integration pairs them in the form of Stokes theorem

$$\int_G dF = \int_{dG} F$$

which involves the **boundary** dG of G and the **exterior derivative** dF of F. One can classify the theorems by looking at the dimension n of the underlying space and the dimension m of the object G. In dimension n, there are n theorems:



37.2. The **Fundamental theorem of line integrals** is a theorem about the gradient ∇f . It tells that if *C* is a curve going from *A* to *B* and *f* is a function (that is a 0-form), then

Theorem: $\int_C \nabla f \cdot dr = f(B) - f(A)$

In calculus we write the 1-form as a column vector field ∇f . It actually is a 1-form F = df, a field which attaches a row vector to every point. If the 1-form is evaluated at r'(t) one gets df(r(t))(r'(t)) which is the matrix product. We integrate then the **pull back** of the 1-form on the interval [a, b]. It is the switch from row vectors to column vectors which leads to the **dot product** $\nabla f(r(t)) \cdot r'(t)$. For closed curves, the line integral is zero. It follows also that integration is **path independent**.

37.3. Green's theorem tells that if $G \subset \mathbb{R}^2$ is a region bound by a curve C having G to the left, then

Theorem: $\iint_C \operatorname{curl}(F) \, dx \, dy = \int_C F \cdot dr$

Linear Algebra and Vector Analysis

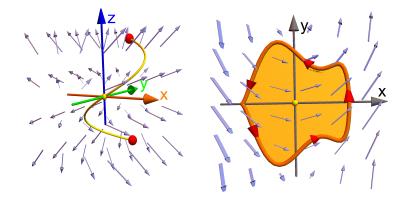


FIGURE 1. Fundamental theorem of line integrals and Green's theorem.

In the language of forms, F = Pdx + Qdy is a 1-form and $dF = (P_x dx + P_y dy)dx + (Q_x dx + Q_y dy)dy = (Q_x - P_y)dxdy$ is a 2-form. We write this 2-form dF as $Q_x - P_y$ and treat it as a scalar function even so this is not the same as a 0-form, which is a scalar function. If $\operatorname{curl}(F) = 0$ everywhere in \mathbb{R}^2 then F is a gradient field.

37.4. Stokes theorem tells that if S is a surface with boundary C oriented to have S to the left and F is a vector field, then

Theorem: $\iint_{S} \operatorname{curl}(F) \cdot dS = \int_{C} F \cdot dr$

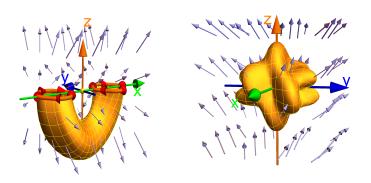


FIGURE 2. Stokes theorem and the Gauss theorem.

In the general frame work, the field F = Pdx + Qdy + Rdz is a 1-form and the 2-form $dF = (P_x dx + P_y dy + P_z dz)dx + (Q_x dx + Q_y dy + Q_z dz)dy + (R_x dx + R_y dy + R_z dz)dz = (Q_x - P_y)dxdy + (R_y - Q_z)dydz + (P_z - R_x)dzdx$ is written as a column vector field $\operatorname{curl}(F) = [R_y - Q_z, P_z - R_x, Q_x - P_y]^T$. To understand the flux integral, we need to see what a bilinear form like dxdy does on the pair of vectors r_u, r_v . In the case dxdy we have $dxdy(r_u, r_v) = x_u y_v - y_u x_v$ which is the third component of the cross product $r_u \times r_v$ with $r_u = [x_u, y_u, z_u]^T$. Integrating dF over S is the same as integrating the dot product of $\operatorname{curl}(F) \cdot r_u \times r_v$. Stokes theorem implies that the flux of the curl of F only depends on the boundary of S. In particular, the flux of the curl through a closed surface is zero because the boundary is empty.

37.5. Gauss theorem: if the surface S bounds a solid E in space, is oriented outwards, and F is a vector field, then

Theorem: $\iiint_E \operatorname{div}(F) \, dV = \iint_S F \cdot dS$

Gauss theorem deals with a 2-form F = Pdydz + Qdzdx + Rdxdy, but because a 2-form has three components, we can write it as a **vector field** $F = [P, Q, R]^T$. We have computed $dF = (P_x dx + P_y dy + Q_z dz)dydz + (Q_x dx + Q_y dy + Q_z dz)dzdx + (R_x dx + R_y dy + R_z dz)dxdy$, where only the terms $P_x dxdydz + Q_y dydzdx + R_z dzdxdy = (P_x + Q_y + R_z)dxdydz$ survive which we associate again with the scalar function div $(F) = P_x + Q_y + R_z$. The integral of a 3-form over a 3-solid is the usual triple integral. For a divergence free vector field F, the flux through a closed surface is zero. Divergence-free fields are also called **incompressible** or **source free**.

Remarks

37.6. We see why the 3 dimensional case looks confusing at first. We have three theorems which look very different. This type of confusion is common in science: we put things in the same bucket which actually are different: it is only in 3 dimensions that 1-forms and 2-forms can be identified. Actually, more is mixed up: not only are 1-forms and 2-forms identified, they are also written as vector fields which are T_0^1 tensor fields. From the tensor calculus point of view, we identify the three spaces $T_0^1(E) = E, T_1^0(E) = \Lambda^1(E) = E^*$ and $\Lambda^2(E) \subset T_2^0$. While we can still always identify vector fields with 1-forms, this identification in a general non-flat space will depend on the metric. In \mathbb{R}^4 , the 2-forms have dimension 6 and can no more be written as a vector. One still does. The electro-magnetic F is a 2-form in \mathbb{R}^4 which we write as a pair of two time-dependent vector fields, the electric field E and the magnetic field B.

37.7. Geometries and fields are remarkably similar. On geometries, the **boundary** operation d satisfies $d \circ d = 0$. On fields the derivative operation d satisfies $d \circ d = 0$. 'Geometries" as well as "fields" come with an orientation: $r_u \times r_v = -r_v \times r_u$, dxdy = -dydx. The operations d and d look different because calculus deals with smooth things like curves or surfaces leading to generalized functions. In quantum calculus they are thickened up and d, d defined without limit. Fields and geometries then become indistinguishable elements in a Hilbert space. The exterior derivative d has as an adjoint $d = d^*$ which is the boundary operator. It is a kind of quantum field theory as d generates while d^* destroys a "particle". $d^2 = d^2 = 0$ is a "Pauli exclusion".

37.8. We can spin this further: a *m*-manifold *S* is the image of a parametrization $r: G \subset \mathbb{R}^m \to \mathbb{R}^n$. The Jacobian dr is a dual *m*-form, the exterior product of the *m* vectors dr_{u_1} up to dr_{u_m} (think of *m* column vectors attached to $r(u) \in S$). If we take a map $s: S \subset \mathbb{R}^n \to \mathbb{R}^m$ and look at F = ds, we can think of it as a *m*-form *F* (think of *m* row vectors attached to each point *x* in \mathbb{R}^n). The map *s* defines $m \times n$ Jacobian ds(x), while the **Jacobian** dr(u) is the $n \times m$ matrix. Cauchy-Binet shows that the flux of F = ds through r(G) = S is the integral $\int_G F = \int_G \det(ds(r(u))dr(u)) du = \int_S \det(ds(x)dr(s(x)))$. If s(r(u)) = u, then this is a geometric functional. So: geometries *G* can come from maps from a space *A* to a space *B*, while fields *F* can come from maps from *B* to *A*. The action integral $\int_G F$ generalizes the Polyakov action $\int_G \det(dr^T dr) = \int_G |dr|^2$, a case where *F* and *G* are dual meaning s(r(u)) = u.

PROTOTYPE EXAMPLES

Problem: Compute the line integral of $F(x, y, z) = [5x^4 + zy, 6y^5 + xz, 7z^6 + xy]$ along the path $r(t) = [\sin(5t), \sin(2t), t^2/\pi^2]$ from t = 0 to $t = 2\pi$.

Solution: The field is a gradient field df with $f = x^5 + y^6 + z^7 + xyz$. We have A = r(0) = (0, 0, 0) and $B = r(2\pi) = (0, 0, 4)$ and f(A) = 1and $f(B) = 4^7$. The **fundamental theorem of line integrals** gives $\int_C \nabla f \, dr = f(B) - f(A) = 4^7$.

Problem: Find the line integral of the vector field $F(x, y) = [x^4 + \sin(x) + y + 5xy, 4x + y^3]$ along the cardioid $r(t) = (1 + \sin(t))[\cos(t), \sin(t)]$, where t runs from t = 0 to $t = 2\pi$.

Solution: We use Green's theorem. Since $\operatorname{curl}(F) = 3 - 5x$, the line integral is the double integral $\iint_G 3 - 5x \, dx dy$. We integrate in polar coordinates and get $\int_0^{2\pi} \int_0^{1+\sin(t)} (3 - 5r\cos(t))r dr dt$ which is $9\pi/2$. One can short cut by noticing that by symmetry $\iint_G (-5x) \, dx dy = 0$, so that the integral is 3 times the area $\int_0^{2\pi} (1+\sin(t))^2/2 \, dt = 3\pi/2$ of the cardioid.

Problem: Compute the line integral of $F(x, y, z) = [x^3 + xy, y, z]$ along the polygonal path *C* connecting the points (0, 0, 0), (2, 0, 0), (2, 1, 0), (0, 1, 0).

Solution: The path C bounds a surface S : r(u, v) = [u, v, 0] parameterized on $G = \{(x, y) | x \in [0, 2], y \in [0, 1]\}$. By Stokes theorem, the line integral is equal to the flux of $\operatorname{curl}(F)(x, y, z) = [0, 0, -x]$ through S. The normal vector of S is $r_u \times r_v = [1, 0, 0] \times [0, 1, 0] = [0, 0, 1]$ so that $\int \int_S \operatorname{curl}(F) \cdot dS = \int_0^2 \int_0^1 [0, 0, -u] \cdot [0, 0, 1] \, dv \, du = \int_0^2 \int_0^1 -u \, dv \, du = -2$.

Problem: Compute the flux of the vector field $F(x, y, z) = [-x, y, z^2]$ through the boundary S of the rectangular box $G = [0, 3] \times [-1, 2] \times [1, 2]$.

Solution: By the **Gauss theorem**, the flux is equal to the triple integral of div(F) = 2z over the box: $\int_0^3 \int_{-1}^2 \int_1^2 2z \, dz \, dy \, dx = (3-0)(2-(-1))(4-1) = 27$.

OLIVER KNILL, KNILL@MATH.HARVARD.EDU, MATH 22B, HARVARD COLLEGE, SPRING 2022