
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 38: Review: Calculus in Hyperspace

Geometries

38.1. The four dimensional Euclidean space R4 = M(4, 1) is the space of column
vectors with four real components X = [x, y, z, w]T . If we think of such a vector as
a point, we also write X = (x, y, z, w). The dot product = inner product allows

as usual to define length |X| =
√
X ·X, the distance |X − Y | and the angles

cos(α) = (X · Y )/(|X||Y |) between vectors. The Cartesian coordinate system has
now four axes which are perpendicular to each other. Historically, as R4 is also the space
of quaternions, it is custom to label the coordinate directions as 1 = [1, 0, 0, 0], i =
[0, 1, 0, 0], j = [0, 0, 1, 0], k = [0, 0, 0, 1]. A vector [3, 4, 5, 1] for example is then written
also as 3 + 4i + 5j + k. We will however keep the vector-form. We will come back in
the last section of this document about why quaternions are natural.

38.2. The kernel of the 1 × 4 matrix A = [a, b, c, d] defines the linear hyperplane
ax+by+cz+dw = 0. It is a 3-dimensional linear space. An example is the coordinate
hyperplane x = 0, which consists of all points {(0, y, z, w) , y, z, w ∈ R}. More
generally, the solution space ax + by + dz + dw = e is an affine hyperplane. The
kernel of a 2 × 4 matrix is in general, as an intersection of two hyperplanes, a 2-
dimensional plane, which we just call a plane. The kernel of a 3 × 4 matrix A is in
general a line. Geometrically, it is the intersection of three hyperplanes.

38.3. A symmetric 4×4 matrix B, a row vector A ∈M(1, 4) and a constant e define the
hyper quadric X ·BX+AX = e. For a diagonal matrix B = Diag(a, b, c, d), this gives
the quadric ax2+by2+cz2+dw2 = e. Examples are the 3-sphere x2+y2+z2+w2 = 1,
the hyper paraboloid x2 + y2 + z2 = w, the 3-cylinder x2 + y2 + z2 = 1 which is the
product of a 2-sphere and a line. Or the cylinder-plane x2+y2 = 1 which can be seen
as the product of the 1-sphere with a 2-plane. There are three types of hyperboloids like
x2 +y2 +z2−w2 = 1 x2 +y2−y2−z2 = 1 or x2−y2−z2−w2 = 1. One could call them
1-hyper-hyperboloids, 2-hyper-hyperboloids and 3-hyper-hyperboloids, using
the Morse index as a label. There is still 1-hyperbolic-paraboloid x2 + y2 − z2 = w
but there are more degenerate surfaces like x2 − y2 = w. The two-dimensional torus
T2 can be realized here as a quadratic surface. It is the intersection of x2 + y2 =
1, z2 + w2 = 1. This is the flat torus. We can not realize the two-dimensional torus
in a flat way in our three dimensional space R3. In hyper-space, it can. There is also
a three dimensional torus T3. To get a parametrization, start with the 2-torus
parametrization r(φ, θ) = [(3 + cos(φ)) cos(θ),(3 + cos(φ)) sin(θ), sin(φ)] then expand
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the circle to get a hyper-torus r(φ, θ, ψ) = [(3 + cos(φ)) cos(θ), (3 + cos(φ)) sin(θ),
(3 + sin(φ)) cos(ψ), (3 + sin(φ)) sin(ψ)]T , You see that for every fixed ψ we have a
2-torus. We can compute 4|dr| = 18 + 6 cos(φ) + 6 sin(φ) + sin(2φ) which is always
positive and so verifies that the map from T3 to R4 is locally injective. We can also
easily check that if ψ or θ is fixed we get a translated scaled version of the 2-torus. If
φ is fixed, we get the flat 2-torus mentioned above.

38.4. In single variable calculus, one looks at graphs {(x, y) | y = f(x)} of functions of
one variable. In multi-variable, one adds graphs {(x, y, z) | z = f(x, y)} of functions of
two variables. The graph of a function w = f(x, y, z) is now a 3-dimensional space.
Paraboloids like w = x2 + y2 + z2 or w = x2 + y2− z2 are graphs. An other example is
the three dimensional bell hyper-surface w = f(x, y, z) = π−3/2e−x

2−y2+z2 , where
the constant has been chosen so that the hyper-volume 0 ≤ w ≤ f(x, y, z) is equal
to 1. For obvious reasons, we usually do not draw the graph of a function of three
variables as we would have to draw in 4 dimensions. Now, in hyperspace, we can do
that.

38.5. Spaces can be parametrized in the same way as we parametrized curves or sur-
faces in three dimensions. A curve is defined by four real functions x(t), y(t), z(t), w(t)
of one variables and written as r(t) = [x(t), y(t), z(t), w(t)]T . A surface is parametrized
by r(u, v) = [(x(u, v), y(u, v), z(u, v), w(u, v)]. A hypersurface is now defined by
r(u, v, t) = [x(u, v, t), y(u, v, t), z(u, v, t), w(u, v, t)].

38.6. A coordinate change is defined by a map from R4 to R4 given by four differ-
entiable functions: r(u, v, s, t) = [x(u, v, s, t), y(u, v, s, t), z(u, v, s, t), w(u, v, s, t)]. We
have seen already the parametrization r(φ, θ1, θ0) = [cos(φ) cos(θ1), cos(φ) sin(θ1),
sin(φ) cos(θ2), sin(φ) sin(θ2)] of the unit 3-sphere= hyper-sphere x2+y2+z2+w2 =
1. Because z = x2+y2+z2 is a cylinder, there is also a natural cylindrical coordinate
system in four dimensions. It is given by r(ρ, φ, θ, w) = [ρ sin(φ) cos(θ), ρ sin(φ) sin(θ),
ρ cos(φ), w]. If we write down the Jacobian matrix and compute the determinant we
get ρ2 sin(φ) as in spherical coordinates.

Fields

38.7. A scalar function f(x, y, z, w) is also called a 0-form. A vector field is denoted
by F = [P,Q,R, S]T and a 1-form F = [P,Q,R, S] is written as F = Pdx + Qdy +
Rdz + Sdw. A 2-form F has 6 components: F = Adxdy + Bdxdz + Cdxdw +
Pdydz+Qdydz+Rdzdw. A 3-form again has four components Pdydzdw+Qdxdzdw+
Rdxdydw+Sdxdydz and a 4-form is again completely determined by a scalar function
f because F = fdxdydzdw.

38.8. The exterior derivatives are computed by using the anti-commutation rule
like dxdy = −dydx and df = fxdx + fydy + fzdz + fwdw and extending this to terms
like Pdydz = dPdydz = (Pxdx+Pydy+Pzdz +Pwdw)dydz = Pxdxdydz +Pwdwdydz.
For a 1 form F = Pdx+Qdy +Rdz + Sdw we have
dF = Pxdxdx+Pydydx+Pzdzdx+Pwdwdx +Qxdxdy+Qydydy+Qzdzdy+Qwdwdy
+Rxdxdz + Rydydz + Rzdzdz + Rwdwdz +Sxdxdw + Sydydw + Szdzdw + Swdwdw

which simplifies to expression with 6 terms. We have ddF = 0 because every term
like Pyzdzdydx is paired with a term like Pzydydzdx which cancel. For a 2-form



F = Adxdy + Bdxdz + Cdwdx + Pdydz + Qdydw + Rdzdw, we have dF = (Azdz +
Awdw)dxdy+(Bydy+Bwdw)dxdz+(Cydy+Czdz)dwdx+(Pxdx+Pwdw)dydz+(Qxdx+
Qzdz)dydw+ (Rxdx+Rydy)dzdw which simplifies to (Qz + Pw +Ry)dydzdw+ (Bw +
Cz + Rx)dxdzdw + (Aw + Qx + Cy)dxdydw + (Az + By + Px)dxdydz. For a 3-form
F = Pdydzdw + Qdzdwdx + Rdwdxdy + Sdxdydz we have dF = (Px − Qy + Rz −
Sw)dxdydzdw.

38.9. The gradient of a function f(x, y, z, w) is defined as ∇f(x, y, z, w) = dfT =
[fx, fy, fz, fw]T The curl of a vector field F (x, y, z, w) = [F1, F2, F3, F4]

T is the hyper-
field dF = [F12, F13, F14, F23, F24, F34]

T , where we have just chosen a lexigographic order
and where Fij = ∂xj

Fi − ∂xi
Fj. The hypercurl of a hyper vector field F (x, y, z, w) =

〈F12, F13, F14, F21, F23, F34] is a 3-form but can again be associated with a vector field
dF = [F234, F134, F124, F123]

T . The divergence of a vector field F = [P,Q,R, S] is a
4-form (Px +Qy +Rz + Sw)dxdydzdw but can again be associated with a scalar field.

38.10. Here are some properties which we have seen already. The gradient∇f = dfT is
perpendicular to the level surface f(x, y, z, w) = c. The curl of the gradient is zero. The
hypercurl of the curl is zero. The divergence of the hypercurl is zero. The divergence
of the gradient is the Laplacian (using the identifications, the divergence map can be
identified with the adjoint −d∗). The chain rule is d/dtf(r(t)) = ∇f(r(t)) · r′(t).

38.11. The line integral of a vector field F along a curve C is
∫
C
F (r(t)) · r′(t) dt.

The flux integral of a vector field F along a 2-dimensional surface is a flux integral.
The hyper flux integral of a hyper-field F along a surface . The hyper volume
integral of a function f on a solid G is

∫∫∫∫
G
f(x, y, z, w) dxdydzdw.

Theorems

38.12. The fundamental theorem of line integrals is

Theorem:
∫
∇f(r(t)) · r′(t) dt = f(r(b))− f(r(a)).

38.13. The Stokes theorem tells that for a surface S and 1 form F

Theorem:
∫∫

S
curl(F ) · dS =

∫
C
F · dr

38.14. The Hyper Stokes theorem assures that for a hypersurface S and a 2-form
F , the flux of the hypercurl of F through G (a 3D-integral) is the flux of F through
the boundary surface S (a 2D-integral)

Theorem:
∫∫∫

G
hypercurl(F ) · dG =

∫∫
S
F · dS

38.15. The divergence theorem assures that for a 3-form (identified as a vector field
F ) and a solid G with boundary hyper-surface S, we have

Theorem:
∫∫∫∫

G
div(F ) dV =

∫∫∫
S
F · dS.
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Quaternions

38.16. Hyperspace R4 is special: it is the only Euclidean space for which the unit
sphere is a non-Abelian Lie group. A Lie group G is a manifold r(Rm) ⊂ Rn 1

on which one has a group operation x ∗ y which has the property that for every y,
the maps x → x ∗ y and x → y ∗ x are smooth maps on G. To have a group (G, ∗)
we must have the property that (x ∗ y) ∗ z = x ∗ (y ∗ z) and that there is a 1-element
1∗x = x∗1 = x such that every element x has an inverse x−1 satisfying x∗x−1 = 1. The
circle {x2 + y2 = 1} = {z ∈ C||z| = 1} is an example of a group. This multiplication is
Abelian if x ∗ y = y ∗ x for all x, y ∈ G. The complex plane C = R2 is characterized
as the only Euclidean space Rn in which the unit sphere T1 = {|x| = 1} is an Abelian
Lie group. Why Lie groups? They are the dough, elementary particles are baked
from! Electromagnetism is built from T1 for example.

38.17. One can write a vector in R4 also as v = a+ib+jc+kd where i, j, k are symbols.
Hamilton noticed that when defining i2 = j2 = k2 = ijk = −1, the 4-dimensional space
becomes an algebra. An algebra is a linear space which also features a multiplication.
Now one has already M(2, 2), the space of 2 × 2 matrices, which is a 4-dimensional
algebra, but the algebra which Hamilton found is a division algebra: every non-zero
element can be inverted. This is not the case for M(2, 2). The matrix in which all
elements are 1 for example is non zero but it is also not invertible.

38.18. The algebra which Hamilton defined through the relations i2 = j2 = k2 = ijk =
−1 is called the quaternion algebra H. If v = a− ib− jc−kd, then |v|2 = v · v = vv,
where the right hand side is a quaternion multiplication. One can readily check that
|vw| = |v||w|. The reason is that quaternions v can be realized as complex 2 × 2-

matrices: if A(v) =

[
a+ ib c+ id
−c+ id a− ib

]
, then |v| = det(A(v)) and A(v)A(w) = A(vw).

Your favorite AI helps to check this last identity quickly.�
Import [ ” Quaternions ‘ ” ] ;
A[{ x , y , z , w } ] :={{x+I∗y , z+I∗w} ,{−z+I∗w, x−I∗y }} ;
Q=Quaternion [ a , b , c , d ]∗∗ Quaternion [ p , q , r , s ] ;
Simplify [A[{ a , b , c , d } ] .A[{p , q , r , s}]==A[ Table [Q [ [ k ] ] , { k , 4 } ] ] ]� �
38.19. An algebra with the property |v ∗w| = |v||w| is a normed division algebra.
By theorems of Hurwitz and Frobenius, there are only four: the reals R, the complex
C, the quaternions H and the octonions O. For an associative division algebra, the
unit sphere is a Lie group. Because the unit sphere of R has only two points, the
1-circle {|z| = 1} ⊂ C and the unit 3-sphere {|z| = 1} ⊂ H are the only spheres that
are Lie groups. There is a unique non-commutative one, the 3-sphere and a unique
commutative connected one, the 1-sphere.

Theorem: H is the only non-Abelian associative normed division algebra.

Oliver Knill, knill@math.harvard.edu, Math 22b, Harvard College, Spring 2022

1Manifolds can be described abstractly, but a theorem of John Nash assures that every manifold
can be embedded in some Rn. So, looking at images of maps r is no loss of generality!


