LINEAR ALGEBRA AND VECTOR ANALYSIS

$\mathrm{MATH}\ 22\mathrm{B}$

Unit 39: Keywords for the Final (see also Units 14+28)

|--|

G = (V, E) graph with vertex set V and edge set E.
0-form: function on V . Discrete scalar function
1-form: function on oriented E . Discrete vector field
2-form: function on oriented triangles T .
$d(f) = \operatorname{grad}(f)$ is a function on edges $a - > b$ defined by $f(b) - f(a)$.
$H = dF = \operatorname{curl}(F)$ is a function on triangles obtained by summing F along the triangle.
For a 1-form F , d^*F is a function on vertices. Add up the attached edge values.
For a 2-form H , d^*H is a function on edges. Add up the attached triangle values.

New People

Mentioned: Cartan, Maxwell, Stokes, Green, Gauss, Newton, Einstein, Kirchhoff, Menger, Koch, Escher, Peirce

Partial Derivatives

$L(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)$ linear approximation
$Q(x,y) = L(x_0,y_0) + f_{xx}(x-x_0)^2/2 + f_{yy}(y-y_0)^2/2 + f_{xy}(x-x_0)(y-y_0).$
] use $L(x, y)$ to estimate $f(x, y)$ near $f(x_0, y_0)$. The result is $f(x_0, y_0) + a(x-x_0) + b(y-y_0)$
1] tangent plane: $ax + by + cz = d$ with $a = f_x, b = f_y, c = f_z, d = ax_0 + by_0 + cz_0$
] estimate $f(x, y)$ by $L(x, y)$ or $Q(x, y)$ near (x_0, y_0)
] $f_{xy} = f_{yx}$ Clairaut's theorem for functions which are in C^2 .
] $r_u(u, v), r_v(u, v)$ tangent to surface parameterized by $r(u, v)$

Parametrization

] $r: G \subset \mathbb{R}^m \to \mathbb{R}^n, dr$ Jacobian
] $g = dr^T dr$ first fundamental form, $ dr = \sqrt{g}$ distortion factor.
] $\operatorname{curl}(F)(r(u,v)) \cdot (r_u \times r_v) = F_u \cdot r_v - F_v \cdot r_u$ important formula

Partial Differential Equations

$f_{xy} = f_{yx}$ Clairaut
$f_t = f_{xx}$ heat equation
$f_{tt} - f_{xx} = 0$ wave equation
$f_x - f_t = 0$ transport equation
$f_{xx} + f_{yy} = 0$ Laplace equation

Linear Algebra and Vector Analysis

$f_t + ff_x = f_{xx}$ Burgers equation
$dF^* = j, dF = 0$, Maxwell equations
$\operatorname{div}(F) = 4\pi\sigma$, Gravity equation

Gradient
$\nabla f(x,y) = [f_x, f_y]^T, \nabla f(x, y, z) = [f_x, f_y, f_z]^T$, gradient
$D_v f = \nabla f \cdot v$ directional derivative
$\frac{d}{dt}f(r(t)) = \nabla f(r(t)) \cdot r'(t)$ chain rule
$\widetilde{\nabla} f(x_0, y_0)$ is orthogonal to the level curve $f(x, y) = c$ containing (x_0, y_0)
$\nabla f(x_0, y_0, z_0)$ is orthogonal to the level surface $f(x, y, z) = c$ containing (x_0, y_0, z_0)
$\frac{d}{dt}f(x+tv) = D_v f$ by chain rule
$(x - x_0)f_x(x_0, y_0) + (y - y_0)f_y(x_0, y_0) = 0$ tangent line
$(x - x_0)f_x(x_0, y_0, z_0) + (y - y_0)f_y(x_0, y_0, z_0) + (z - z_0)f_z(x_0, y_0, z_0) = 0$ tangent plane
$D_v f(x_0, y_0)$ is maximal in the $v = \nabla f(x_0, y_0) / \nabla f(x_0, y_0) $ direction
$f(x,y)$ increases in the $\nabla f/ \nabla f $ direction at points which are not critical points
if $D_v f(x) = 0$ for all v, then $\nabla f(x) = 0$
$f(x, y, z) = c$ defines $y = g(x, y)$, and $g_x(x, y) = -f_x(x, y, z)/f_z(x, y, z)$ implicit diff

Extrema

$\nabla f(x,y) = [0,0]^T$, critical point
$D = \det(d^2 f) = f_{xx} f_{yy} - f_{xy}^2$ discriminant.
Morse: critical point and $D \neq 0$, in 2D looks like $x^2 + y^2$, $x^2 - y^2$, $-x^2 - y^2$
$f(x_0, y_0) \ge f(x, y)$ in a neighborhood of (x_0, y_0) local maximum
$f(x_0, y_0) \leq f(x, y)$ in a neighborhood of (x_0, y_0) local minimum
$\nabla f(x,y) = \lambda \nabla g(x,y), g(x,y) = c, \lambda$ Lagrange equations
$\nabla f(x, y, z) = \lambda \nabla g(x, y, z), g(x, y, z) = c, \lambda$ Lagrange equations
second derivative test: $\nabla f = (0,0), D > 0, f_{xx} < 0$ local max, $\nabla f = (0,0), D > 0$
$0, f_{xx} > 0$ local min, $\nabla f = (0, 0), D < 0$ saddle point
$f(x_0, y_0) \ge f(x, y)$ everywhere, global maximum
$f(x_0, y_0) \leq f(x, y)$ everywhere, global minimum

Double Integrals

$\iint_R f(x,y) dy dx$ double integral
$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$ integral over rectangle
$\int_{a}^{b} \int_{c(x)}^{d(x)} f(x, y) dy dx$ bottom-top region
$\int_{c}^{d} \int_{a(y)}^{b(y)} f(x, y) dx dy$ left-right region
$\iint_R f(r,\theta)[r] dr d\theta$ polar coordinates
$\iint_R r_u \times r_v \ du dv \ surface \ area$
$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy \text{ Fubini}$
$\iint_{R} 1 dx dy$ area of region R
$\iint_R f(x,y) dx dy$ signed volume of solid bound by graph of f and xy -plane

Triple Integrals

$\iiint_R f(x, y, z) dz dy dx$ triple integral
$\int_{a}^{b} \int_{c}^{d} \int_{u}^{v} f(x, y, z) dz dy dx$ integral over rectangular box
$\int_a^b \int_{g_1(x)}^{g_2(x)} \int_{h_1(x,y)}^{h_2(x,y)} f(x,y) dz dy dx \text{ type I region}$
$\iiint_R f(r, \theta, z)$ <u>r</u> $dz dr d\theta$ integral in cylindrical coordinates
$\iiint_R f(\rho, \theta, \phi) \left \rho^2 \sin(\phi) \right d\rho d\phi d\theta \text{ integral in spherical coordinates}$
$\int_{a}^{b} \int_{c}^{d} \int_{u}^{v} f(x, y, \overline{z}) dz dy dx = \int_{u}^{v} \int_{c}^{d} \int_{a}^{b} f(x, y, z) dx dy dz \text{ Fubini}$
$V = \iiint_E 1 dz dy dx$ volume of solid E
$M = \iint_E \sigma(x, y, z) \ dx dy dz$ mass of solid E with density σ

Line Integrals

$F(x,y) = [P(x,y), Q(x,y)]^T$ vector field in the plane
$F(x, y, z) = [P(x, y, z), Q(x, y, z), R(x, y, z)]^T$ vector field in space
$\int_{C} F \cdot dr = \int_{a}^{b} F(r(t)) \cdot r'(t) dt \text{ line integral}$
$\widetilde{F}(x,y) = \nabla \widetilde{f}(x,y)$ gradient field = potential field = conservative field

Fundamental theorem of line integrals

FTLI: $F(x, y) = \nabla f(x, y)$, $\int_a^b F(r(t)) \cdot r'(t) dt = f(r(b)) - f(r(a))$ closed loop property $\int_C F dr = 0$, for all closed curves C always equivalent: closed loop property, path independence and gradient field mixed derivative test curl $(F) \neq 0$ assures F is not a gradient field in simply connected regions: curl $(F) = 0$ implies that field F is conservative Conservative field: can not be used for perpetual motion.	
closed loop property $\int_C F dr = 0$, for all closed curves C always equivalent: closed loop property, path independence and gradient field mixed derivative test $\operatorname{curl}(F) \neq 0$ assures F is not a gradient field in simply connected regions: $\operatorname{curl}(F) = 0$ implies that field F is conservative Conservative field: can not be used for perpetual motion.	FTLI: $F(x,y) = \nabla f(x,y), \int_{a}^{b} F(r(t)) \cdot r'(t) dt = f(r(b)) - f(r(a))$
always equivalent: closed loop property, path independence and gradient field mixed derivative test $\operatorname{curl}(F) \neq 0$ assures F is not a gradient field in simply connected regions: $\operatorname{curl}(F) = 0$ implies that field F is conservative Conservative field: can not be used for perpetual motion.	closed loop property $\int_C F dr = 0$, for all closed curves C
mixed derivative test $\operatorname{curl}(F) \neq 0$ assures F is not a gradient field in simply connected regions: $\operatorname{curl}(F) = 0$ implies that field F is conservative Conservative field: can not be used for perpetual motion.	always equivalent: closed loop property, path independence and gradient field
in simply connected regions: $\operatorname{curl}(F) = 0$ implies that field F is conservative Conservative field: can not be used for perpetual motion.	mixed derivative test $\operatorname{curl}(F) \neq 0$ assures F is not a gradient field
Conservative field: can not be used for perpetual motion.	in simply connected regions: $curl(F) = 0$ implies that field F is conservative
	Conservative field: can not be used for perpetual motion.

[Green's Theorem	
	$F(x,y) = [P,Q]^T$, curl in two dimensions: $\operatorname{curl}(F) = Q_x - P_y$	
	Green's theorem: C boundary of R, then $\int_C F \cdot dr = \iint_R \operatorname{curl}(F) dxdy$	
	Area computation: Take F with $\operatorname{curl}(F) = Q_x - P_y = 1$ like $F = [-y, 0]^T$	or $F = [0, x]^T$
	Green's theorem is useful to compute difficult line integrals or difficult	2D integrals

Flux	t integrals
	F(x, y, z) vector field, $S = r(R)$ parametrized surface
	$r_u \times r_v du dv = dS$ is a 2-form on surface
	$\int \int_{S} F \cdot dS = \int \int_{S} F(r(u, v)) \cdot (r_u \times r_v) du dv \text{ flux integral}$

Stokes Theorem

$F(x, y, z) = [P, Q, R]^T$, $\operatorname{curl}([P, Q, R]^T) = [R_y - Q_z, P_z - R_x, Q_x - P_y]^T = \nabla \times F$
Stokes's theorem: C boundary of surface S, then $\int_C F \cdot dr = \iint_S \operatorname{curl}(F) \cdot dS$
Stokes theorem allows to compute difficult flux integrals or difficult line integrals

Grad Curl Div

$\nabla = [\partial_x, \partial_y, \partial_z]^T, F =$	$= \nabla f, \operatorname{curl}(I)$	$F(F) = \nabla \times F, \operatorname{div}(F) = \nabla \cdot F$
$\operatorname{div}(\operatorname{curl}(F)) = 0$	and	$\operatorname{curl}(\operatorname{grad}(f)) = 0$

Linear Algebra and Vector Analysis

$\operatorname{div}(\operatorname{grad}(f)) = \Delta f$ Laplacian
incompressible = divergence free field: $div(F) = 0$ everywhere. Implies $F = curl(H)$
irrotational = $\operatorname{curl}(F) = 0$ everywhere. Implies $F = \operatorname{grad}(f)$

$\operatorname{div}([P,Q,R]^T) = P_x + Q_y + R_z = \nabla \cdot F$
divergence theorem: solid E, boundary S then $\iint_S F \cdot dS = \iiint_F \operatorname{div}(F) dV$
the divergence theorem allows to compute difficult flux integrals or difficult 3D integrals

|--|

simply connected region D : can deform any closed curve within D to a point
interior of a region D : points in D for which small neighborhood is still in D
boundary of curve C : the end points of the curve
boundary of S points on surface not in the interior of the parameter domain
boundary of solid G : points in G which are not in the interior of D
closed surface: a surface without boundary like a sphere
closed curve: a curve with no boundary like a knot

Some surface parameterizations

L L	
	sphere of radius ρ : $r(u, v) = [\rho \cos(u) \sin(v), \rho \sin(u) \sin(v), \rho \cos(v)]^T$
	graph of function $f(x, y)$: = $r(u, v) = [u, v, f(u, v)]^T$
	example: Paraboloid: $r(u, v) = [u, v, u^2 + v^2]^T$.
	plane containing P and vectors $u, v: r(s, t) = P + su + tv$
	surface of revolution: distance $g(z)$ of $z - axis$: $r(u, v) = [g(v)\cos(u), g(v)\sin(u), v]^T$
	example: Cylinder: $r(u, v) = [\cos(u), \sin(u), v]^T$
	example: Cone: $r(u, v) = [v \cos(u), v \sin(u), v]^T$
	example: Paraboloid: $r(u, v) = [\sqrt{v}\cos(u), \sqrt{v}\sin(u), v]^T$

Integration for integral theorems

- Double and triple integral: $\iint_G f(x, y) dA$, $\iiint_G f(x, y, z) dV$. Line integral: $\int_a^b F(r(t)) \cdot r'(t) dt$ Flux integral: $\iint_S F(r(u, v)) \cdot (r_u \times r_v) du dv$

Differential forms

	A tensor of type (p,q) is a multi-linear map $(E^*)^p \times E^q \to \mathbb{R}$.
	A k-form is a field, which attaches at every point a multi-linear anti-symmetric map
	of k variables.
	$F = 5x^3 dy dz + 7 \sin(y) x dx dz + 3 \cos(xy) dx dy$ is an example of a 2-form. In calculus
	this is identified with a vector field $F = [5x^3, 7\sin(y)x, 3\cos(xy)]$.
	The exterior derivative of a term like $F = Pdxdy$ is $dF = (P_rdx + P_udy + P_zdz)dxdy =$
	$P_z dz dx dy = P_z dx dy dz.$
	The General Stokes theorem tells $\int_{a} dF = \int_{a} F$, where dG is the boundary of
	G
	G.

OLIVER KNILL, KNILL@MATH.HARVARD.EDU, MATH 22B, HARVARD COLLEGE, SPRING 2022