LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 39: Keywords for the Final (see also Units 14+28)

Discrete Calculus \
G = (V, E) graph with vertex set V' and edge set FE.
0-form: function on V. Discrete scalar function
1-form: function on oriented E. Discrete vector field
2-form: function on oriented triangles T
d(f) = grad(f) is a function on edges a— > b defined by f(b) — f(a).
H = dF = curl(F) is a function on triangles obtained by summing F along the triangle.
For a 1-form F', d*F is a function on vertices. Add up the attached edge values.
For a 2-form H, d*H is a function on edges. Add up the attached triangle values.

New People ‘

Mentioned: Cartan, Maxwell, Stokes, Green, Gauss, Newton, Einstein, Kirchhoff,
Menger, Koch, Escher, Peirce

Partial Derivatives \

L(z,y) = f(wo,y0) + [0, y0)(x — x0) + fy(xtb Y0)(y — o) linear approximation

Q(xa 3/) = L(l’o, yO) + fxm(x - :CO)Q/Z + fyy(y - y0)2/2 + fa:y(x - $0)<y - yO)

use L(z,y) to estimate f(z,y) near f(xq,yo). The result is f(zo, yo)+a(x—x0)+b(y—1o)
tangent plane: ax + by +cz =d with a = f,,b= f,,c = f., d = axo + byy + c2o
estimate f(ma y) by L(l‘, y) or Q(l’, y) near (x(]a yO)

fzy = [ye Clairaut’s theorem for functions which are in C?.

ro(u,v), r,(u,v) tangent to surface parameterized by r(u,v)

Parametrization
r: G CR™ — R" dr Jacobian
g = dr™dr first fundamental form, |dr| = ,/g distortion factor.
curl(F)(r(u,v)) - (ry X ry) = F, - 1, — F, - 7, important formula

Partial Differential Equations

fay = fyz Clairaut

fi = fuz heat equation

fi — foe = 0 wave equation

fz — f: = 0 transport equation
fzz + fyy = 0 Laplace equation
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ft+ ffz = fzz Burgers equation
dF* = j,dF = 0, Maxwell equations
div(F') = 4wo, Gravity equation

i

Gradient

Vi(z,y) = [fo, f]" VI(@,y,2) = [fa, fy, f:]", gradient
D, f =V f-wv directional derivative

r(t)) = Vf(r(t))-r'(t) chain rule

i

dt

V f(xo,y0) is orthogonal to the level curve f(x,y) = ¢ containing (zo, yo)
(
(

f (o, o, z0) is orthogonal to the level surface f(x,y, z) = ¢ containing (zo, o, 20)
x + tv) = D, f by chain rule

(z — 2o) fa(z0, Y0) + (¥ — yo) fy(20, yo) = 0 tangent line
(z — 20) fe (w0, Y0, 20) + (¥ — Y0) fy (20, Yo, 20) + (2 — 20) f-(T0, Yo, 20) = O tangent plane
D, f(xo,yo) is maximal in the v = V f(zo, y0)/|V f (20, yo)| direction
f(z,y) increases in the V f/|V f| direction at points which are not critical points
if D,f(z) =0 for all v, then Vf(z) =
f(z,y,z) = c defines y = g(x,y), and g,.(z,y) = —fu(x,y,2)/ f.(x,y, z) implicit diff

Jobbbobooooo

Extrema \
Vf(z,y) =[0,0]T, critical point
D = det(d*f) = foafyy — f7, discriminant.
Morse: critical point and D # 0, in 2D looks like 22 + 32, 2% — 2, —22 — 1/
f(zo,y0) > f(z,y) in a neighborhood of (xg, y) local maximum
f(zo,y0) < f(z,y) in a neighborhood of (xg,y) local minimum
Vf(z,y) = AVg(z,y),g9(x,y) = ¢, A Lagrange equations
Vf(z,y,z) = AVg(x,y,2),9(x,y,z) = ¢, A Lagrange equations
second derivative test: Vf = (0,0),D > 0, f; < 0 local max, Vf = (0,0),D >
0, fzz > 0 local min, Vf = (0,0), D < 0 saddle point
f(zo,y0) > f(z,y) everywhere, global maximum
f(zo,v0) < f(z,y) everywhere, global minimum

Double Integrals

f f Jr (x,y) dydx double integral
f f flx y) dydx integral over rectangle

f f de) g (z,y) dydx bottom-top region

f fb(y) f(z,y) dxdy left-right region

f f R [r]drdf polar coordinates
I/ R ’Tu X m| dudv surface area

1P f(wy) dyde = [*[° f(z,y) drdy Fubini

ffR dxdy area of region R
f f R (x,y) dzdy signed volume of solid bound by graph of f and zy-plane
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Triple Integrals




(x,y, z) dzdydx triple integral

wf(@y,2) dzdy

f f [ f(x,y, z) dzdydz integral over rectangular box

f gz(x) f ;yy) f(x,y) dzdydz type I region

If f - r 0,z) [r] dzdrdf integral in cylindrical coordinates
[J[5 f(p,0,0) | p*sin(¢) | dpdpdf integral in spherical coordinates
fa fc fu f(z,y,2) dzdydz = fuv fcd f;f(x,y,z) dxdydz Fubini

V= [[[,[1] dzdydx volume of solid E
M = f f f B o(x,y, z) dedydz mass of solid E with density o

Line Integrals

F(x,y) = [P(z,y),Q(z,y)]T vector field in the plane

F(z,y,z) = [P(x, y,2),Q(z,y, 2), R(x,y,2)]" vector field in space

Jo F-dr = f F(r(t))-r'(t) dt line integral

F(z,y) = Vf(z,y) gradient field = potential field = conservative field

Fundamental theorem of line integrals ‘

FTLL: F(z,y) = Vf(z,y), [, F(r(t)) -7 '(t) dt = f(r(b)) = f(r(a))

closed loop property | o I dr =0, for all closed curves C

always equivalent: closed loop property, path independence and gradient field
mixed derivative test curl(F') # 0 assures F' is not a gradient field

in simply connected regions: curl(F') = 0 implies that field F' is conservative
Conservative field: can not be used for perpetual motion.

Green’s Theorem \
F(z,y) = [P,Q]", curl in two dimensions: curl(F) = Q, — P,
Green’s theorem: C' boundary of R, then [, F -dr = [[, curl(F) dzdy
Area computation: Take F' with curl(F) = Q,— P, = 1 like F = [—y,0]" or F = [0, z]"
Green’s theorem is useful to compute difficult line integrals or difficult 2D integrals

Flux integrals ‘

F(z,vy, z) vector field, S = r(R) parametrized surface

ru X 1y dudv = dS is a 2-form on surface
[JgF-dS=[ [ F(r(u,v))- (ry xr,) dudv flux integral

Stokes Theorem ‘
F(I7y7 Z) = [P7QaR]T7 CUI'I([P, Q?R]T) = [Ry - QZ?PZ - Rx)Qaj - Py]T =VxUF
Stokes’s theorem: C' boundary of surface S, then [, F -dr = [[,curl(F) - dS
Stokes theorem allows to compute difficult flux integrals or difficult line integrals

Grad Curl Div |
V =10:,0,,0.]", F=Vf, cwl(F) =V x F,div(F) =V - F
div(curl(F)) =0 and curl(grad(f)) =0

JU, b, UUb -, DOUU ., bbbbotd -, Dol -, bbb oo ot



Linear Algebra and Vector Analysis

div(grad(f)) = Af Laplacian
incompressible = divergence free field: div(F') = 0 everywhere. Implies F' = curl(H)
irrotational = curl(F’) = 0 everywhere. Implies F' = grad(f)

Divergence Theorem ‘

div([P,Q,R")=P.+Q,+ R.=V - F
divergence theorem: solid £, boundary S then [[, F-dS = [[[, div(F) dV
the divergence theorem allows to compute difficult flux integrals or difficult 3D integrals
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topology ‘

simply connected region D: can deform any closed curve within D to a point
interior of a region D: points in D for which small neighborhood is still in D
boundary of curve C": the end points of the curve

boundary of S points on surface not in the interior of the parameter domain
boundary of solid G: points in G which are not in the interior of D

closed surface: a surface without boundary like a sphere

closed curve: a curve with no boundary like a knot
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surface parameterizations ‘

sphere of radius p: r(u,v) = [pcos(u) sin(v), psin(u) sin(v), p cos(v)]*

graph of function f(x,y): = r(u,v) = [u,v, f(u,v)]"

example: Paraboloid: r(u,v) = [u, v, u? + v*]T.

plane containing P and vectors u,v: r(s,t) = P 4 su + tv

surface of revolution: distance g(z) of z — axis : r(u,v) = [g(v) cos(u), g(v) sin(u), v
example: Cylinder: 7(u,v) = [cos(u), sin(u), v]"

example: Cone: r(u,v) = [vcos(u),vsin(u),v]"

example: Paraboloid: r(u,v) = [y/v cos(u), /v sin(u), v]"

}T

Integration for integral theorems

Double and triple integral: [[, f(x,y)dA, [[[, f(z,y,z)dV.
Line integral: f: F(r(t))-r'(t) dt
Flux integral: [ [, F(r(u,v)) - (ry X 1) dudv

Differential forms \

JU0 U0, b, bbbbbbbb -, oot - bbb -, bod

A tensor of type (p,q) is a multi-linear map (E*)? x F9 — R.
A k-form is a field, which attaches at every point a multi-linear anti-symmetric map

of k variables.
F = b523dydz + 7sin(y)zdxdz + 3 cos(zy)drdy is an example of a 2-form. In calculus

this is identified with a vector field F' = [523, 7sin(y)z, 3 cos(zy)].

The exterior derivative of a term like F' = Pdxdy is dF = (Pydx + P,dy+ P,dz)dzdy =
P.dzdxdy = P,dxdydz.

The General Stokes theorem tells fG dF = | 4 | where dG is the boundary of
G.
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