
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 39: Keywords for the Final (see also Units 14+28)

Discrete Calculus

G = (V,E) graph with vertex set V and edge set E.

0-form: function on V . Discrete scalar function
1-form: function on oriented E. Discrete vector field
2-form: function on oriented triangles T .
d(f) = grad(f) is a function on edges a− > b defined by f(b)− f(a).
H = dF = curl(F ) is a function on triangles obtained by summing F along the triangle.
For a 1-form F , d∗F is a function on vertices. Add up the attached edge values.
For a 2-form H, d∗H is a function on edges. Add up the attached triangle values.

New People

Mentioned: Cartan, Maxwell, Stokes, Green, Gauss, Newton, Einstein, Kirchhoff,
Menger, Koch, Escher, Peirce

Partial Derivatives

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) linear approximation
Q(x, y) = L(x0, y0) + fxx(x− x0)2/2 + fyy(y − y0)2/2 + fxy(x− x0)(y − y0).
use L(x, y) to estimate f(x, y) near f(x0, y0). The result is f(x0, y0)+a(x−x0)+b(y−y0)
tangent plane: ax+ by + cz = d with a = fx, b = fy, c = fz, d = ax0 + by0 + cz0
estimate f(x, y) by L(x, y) or Q(x, y) near (x0, y0)
fxy = fyx Clairaut’s theorem for functions which are in C2.
ru(u, v), rv(u, v) tangent to surface parameterized by r(u, v)

Parametrization

r : G ⊂ Rm → Rn, dr Jacobian
g = drTdr first fundamental form, |dr| = √g distortion factor.
curl(F )(r(u, v)) · (ru × rv) = Fu · rv − Fv · ru important formula

Partial Differential Equations

fxy = fyx Clairaut
ft = fxx heat equation
ftt − fxx = 0 wave equation
fx − ft = 0 transport equation
fxx + fyy = 0 Laplace equation
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ft + ffx = fxx Burgers equation
dF ∗ = j, dF = 0, Maxwell equations
div(F ) = 4πσ, Gravity equation

Gradient

∇f(x, y) = [fx, fy]
T , ∇f(x, y, z) = [fx, fy, fz]

T , gradient
Dvf = ∇f · v directional derivative
d
dt
f(r(t)) = ∇f(r(t)) · r ′(t) chain rule
∇f(x0, y0) is orthogonal to the level curve f(x, y) = c containing (x0, y0)
∇f(x0, y0, z0) is orthogonal to the level surface f(x, y, z) = c containing (x0, y0, z0)
d
dt
f(x+ tv) = Dvf by chain rule

(x− x0)fx(x0, y0) + (y − y0)fy(x0, y0) = 0 tangent line
(x− x0)fx(x0, y0, z0) + (y − y0)fy(x0, y0, z0) + (z − z0)fz(x0, y0, z0) = 0 tangent plane
Dvf(x0, y0) is maximal in the v = ∇f(x0, y0)/|∇f(x0, y0)| direction
f(x, y) increases in the ∇f/|∇f | direction at points which are not critical points
if Dvf(x) = 0 for all v, then ∇f(x) = 0
f(x, y, z) = c defines y = g(x, y), and gx(x, y) = −fx(x, y, z)/fz(x, y, z) implicit diff

Extrema

∇f(x, y) = [0, 0]T , critical point
D = det(d2f) = fxxfyy − f 2

xy discriminant.

Morse: critical point and D 6= 0, in 2D looks like x2 + y2, x2 − y2,−x2 − y2
f(x0, y0) ≥ f(x, y) in a neighborhood of (x0, y0) local maximum
f(x0, y0) ≤ f(x, y) in a neighborhood of (x0, y0) local minimum
∇f(x, y) = λ∇g(x, y), g(x, y) = c, λ Lagrange equations
∇f(x, y, z) = λ∇g(x, y, z), g(x, y, z) = c, λ Lagrange equations
second derivative test: ∇f = (0, 0), D > 0, fxx < 0 local max, ∇f = (0, 0), D >
0, fxx > 0 local min, ∇f = (0, 0), D < 0 saddle point
f(x0, y0) ≥ f(x, y) everywhere, global maximum
f(x0, y0) ≤ f(x, y) everywhere, global minimum

Double Integrals∫∫
R
f(x, y) dydx double integral∫ b

a

∫ d

c
f(x, y) dydx integral over rectangle∫ b

a

∫ d(x)

c(x)
f(x, y) dydx bottom-top region∫ d

c

∫ b(y)

a(y)
f(x, y) dxdy left-right region∫∫

R
f(r, θ) r drdθ polar coordinates∫∫

R
|ru × rv| dudv surface area∫ b

a

∫ d

c
f(x, y) dydx =

∫ d

c

∫ b

a
f(x, y) dxdy Fubini∫∫

R
1 dxdy area of region R∫∫

R
f(x, y) dxdy signed volume of solid bound by graph of f and xy-plane

Triple Integrals



∫∫∫
R
f(x, y, z) dzdydx triple integral∫ b

a

∫ d

c

∫ v

u
f(x, y, z) dzdydx integral over rectangular box∫ b

a

∫ g2(x)

g1(x)

∫ h2(x,y)

h1(x,y)
f(x, y) dzdydx type I region∫∫∫

R
f(r, θ, z) r dzdrdθ integral in cylindrical coordinates∫∫∫

R
f(ρ, θ, φ) ρ2 sin(φ) dρdφdθ integral in spherical coordinates∫ b

a

∫ d

c

∫ v

u
f(x, y, z) dzdydx =

∫ v

u

∫ d

c

∫ b

a
f(x, y, z) dxdydz Fubini

V =
∫∫∫

E
1 dzdydx volume of solid E

M =
∫∫∫

E
σ(x, y, z) dxdydz mass of solid E with density σ

Line Integrals

F (x, y) = [P (x, y), Q(x, y)]T vector field in the plane
F (x, y, z) = [P (x, y, z), Q(x, y, z), R(x, y, z)]T vector field in space∫
C
F · dr =

∫ b

a
F (r(t)) · r ′(t) dt line integral

F (x, y) = ∇f(x, y) gradient field = potential field = conservative field

Fundamental theorem of line integrals

FTLI: F (x, y) = ∇f(x, y),
∫ b

a
F (r(t)) · r ′(t)) dt = f(r(b))− f(r(a))

closed loop property
∫
C
F dr = 0, for all closed curves C

always equivalent: closed loop property, path independence and gradient field
mixed derivative test curl(F ) 6= 0 assures F is not a gradient field
in simply connected regions: curl(F ) = 0 implies that field F is conservative
Conservative field: can not be used for perpetual motion.

Green’s Theorem

F (x, y) = [P,Q]T , curl in two dimensions: curl(F ) = Qx − Py

Green’s theorem: C boundary of R, then
∫
C
F · dr =

∫∫
R

curl(F ) dxdy
Area computation: Take F with curl(F ) = Qx−Py = 1 like F = [−y, 0]T or F = [0, x]T

Green’s theorem is useful to compute difficult line integrals or difficult 2D integrals

Flux integrals

F (x, y, z) vector field, S = r(R) parametrized surface
ru × rv dudv = dS is a 2-form on surface∫ ∫

S
F · dS =

∫ ∫
S
F (r(u, v)) · (ru × rv) dudv flux integral

Stokes Theorem

F (x, y, z) = [P,Q,R]T , curl([P,Q,R]T ) = [Ry −Qz, Pz −Rx, Qx − Py]
T = ∇× F

Stokes’s theorem: C boundary of surface S, then
∫
C
F · dr =

∫∫
S

curl(F ) · dS
Stokes theorem allows to compute difficult flux integrals or difficult line integrals

Grad Curl Div

∇ = [∂x, ∂y, ∂z]
T , F = ∇f , curl(F ) = ∇× F , div(F ) = ∇ · F

div(curl(F )) = 0 and curl(grad(f)) = 0
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div(grad(f)) = ∆f Laplacian
incompressible = divergence free field: div(F ) = 0 everywhere. Implies F = curl(H)
irrotational = curl(F ) = 0 everywhere. Implies F = grad(f)

Divergence Theorem

div([P,Q,R]T ) = Px +Qy +Rz = ∇ · F
divergence theorem: solid E, boundary S then

∫∫
S
F · dS =

∫∫∫
E

div(F ) dV
the divergence theorem allows to compute difficult flux integrals or difficult 3D integrals

Some topology

simply connected region D: can deform any closed curve within D to a point
interior of a region D: points in D for which small neighborhood is still in D
boundary of curve C: the end points of the curve
boundary of S points on surface not in the interior of the parameter domain
boundary of solid G: points in G which are not in the interior of D
closed surface: a surface without boundary like a sphere
closed curve: a curve with no boundary like a knot

Some surface parameterizations

sphere of radius ρ: r(u, v) = [ρ cos(u) sin(v), ρ sin(u) sin(v), ρ cos(v)]T

graph of function f(x, y): = r(u, v) = [u, v, f(u, v)]T

example: Paraboloid: r(u, v) = [u, v, u2 + v2]T .
plane containing P and vectors u, v: r(s, t) = P + su+ tv
surface of revolution: distance g(z) of z − axis : r(u, v) = [g(v) cos(u), g(v) sin(u), v]T

example: Cylinder: r(u, v) = [cos(u), sin(u), v]T

example: Cone: r(u, v) = [v cos(u), v sin(u), v]T

example: Paraboloid: r(u, v) = [
√
v cos(u),

√
v sin(u), v]T

Integration for integral theorems

Double and triple integral:
∫∫

G
f(x, y)dA,

∫∫∫
G
f(x, y, z)dV .

Line integral:
∫ b

a
F (r(t)) · r ′(t) dt

Flux integral:
∫ ∫

S
F (r(u, v)) · (ru × rv) dudv

Differential forms

A tensor of type (p, q) is a multi-linear map (E∗)p × Eq → R.
A k-form is a field, which attaches at every point a multi-linear anti-symmetric map
of k variables.
F = 5x3dydz + 7 sin(y)xdxdz + 3 cos(xy)dxdy is an example of a 2-form. In calculus
this is identified with a vector field F = [5x3, 7 sin(y)x, 3 cos(xy)].
The exterior derivative of a term like F = Pdxdy is dF = (Pxdx+Pydy+Pzdz)dxdy =
Pzdzdxdy = Pzdxdydz.
The General Stokes theorem tells

∫
G
dF =

∫
dG
F , where dG is the boundary of

G.
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