
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 7: Curves

Introduction

Figure 1. The trajectory of a ball bouncing in an elliptical barrel is
a curve. It is a one dimensional object because it can be described by
one parameter. In this case we have a curve which is continuous but not
smooth. Still, we can use calculus to describe properties of the curve like
to see that it consists of pieces of parabola. By the way, on the left, with
gravity, this is a system we do not understand. The bouncing ball moves
chaotically. We do not have the tools for example to tell where the ball
is after 10100 bounces. To the right we see the situation without gravity.
Now, we could determine where the ball is after 10100 bounces.

7.1. Many geometric objects can be assigned a dimension. This number tells how
many parameters we need to describe the object. A point has dimension 0, a line has
dimension 1, a plane has dimension 2. This is formalized in linear algebra. Given
a matrix A, the number of leading 1 in rref(A) is the dimension of the image of A.
The number of free variables (columns without leading 1 in rref(A) is the dimension
of the kernel of A. For example, for A = [1, 2, 3] which is already in row reduced form,
we have one leading 1 and two free variables y and z. The equation 1 x + 2 y + 3
z = 0 describes a 2 dimensional object, a plane. If y, z are given, we can find x from
the equation. The image of the column vector v = AT is the line spanned by this
vector. This line is perpendicular to the plane and illustrates the fundamental theorem
of linear algebra assuring the kernel of A being perpendicular to the image of AT or
equivalently the kernel of AT being perpendicular to the image of A.
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7.2. Curves are objects of dimension 1. For example, the line spanned by a vector v
is written as the set of points r(t) = tv = [t, 2t, 3t]T . We call this a parametrization
of the line. The free variable t is called time. It determines, where we are located at
a fixed time t. At time t = 12 for example we are positioned at the point (12, 24, 36)
corresponding to the vector [12, 24, 36]T . 1 The vector v has the interpretation of a
velocity. It tells us how fast we move on the line. Of course, replacing v with 3v
would give us the same line but we would travel three times faster and would reach
the point (12, 24, 36) three times faster.

7.3. If the velocity can change direction and length, we can drive around on more
interesting paths. The frame work is to take three continuous functions x(t), y(t), z(t)
and look at the path (x(t), y(t), z(t)) in space. We write this in vector notation as
r(t) = [x(t), y(t), z(t)]T . Now, because we get tired always to write the T pointing
out that we use column vectors, we will just write r(t) = [x(t), y(t), z(t)]. Most of
the time, we assume the functions to be differentiable but the case of a ping-pong ball
bouncing off a table shows that also non-smooth curves can matter even in daily life.
Curves can be very complicated. Take a ping-pong ball and place it into an elliptic
container. The billiard path it traces is chaotic. In this lecture we look at curves given
by parameterizations, learn how to take derivative to get the velocity or acceleration.
We also learn how to integrate. This allows us to compute paths. We can for example
compute where a ball falling in a gravitational field is at time t.

Lecture

7.4. Given n continuous functions xj(t) of one variable t, we can look at the vector-
valued function r(t) = [x1(t), . . . , xn(t)]T . We call it a parametrized curve. An
example is r(t) = [3 + 2t, 4 + 6t] which is a line through the point (3, 4) and containing
the vector [2, 6]. 2 If t is in the parameter interval a ≤ t ≤ b, then the image
of r is {r(t) | a ≤ t ≤ b}, which defines a curve in Rn. The curve starts at the
point r(a) and ends at the point r(b). An other important example is the circle
r(t) = [cos(t), sin(t)], where t is in the interval [0, 2π]. Its image is a circle in the
plane R2. The parametrization r(t) contains more information than the curve itself:
the parabolic curve r(t) = [t, t2] defined on t ∈ [−1, 1] for example is the same as
the curve r(t) = [t3, t6] for ∈ [−1, 1], but in the second parametrization, the curve is
traveled with different speed. Curves in R3 can be admired in our physical space like
r(t) = [x(t), y(t), z(t)] = [t cos(t), t sin(t), t] which is a spiral. This particular curve is
contained in the cone x2 + y2 = z2.

7.5. If the functions t → xj(t) are differentiable, we can form the derivative r′(t) =
[x′1(t), . . . , x

′
n(t)]. While this technically is again a curve, we think of r′(t) as a vector

attached to the point r(t) and say that r′(t) is tangent to r(t). The length |r′(t)|
of the velocity is called the speed of r. If also higher derivatives of the functions
xj(t) exist, we can form the second derivative r′′(t) called the acceleration or third
derivative r′′′(t) = r(3)(t) called the jerk. Then come snap r(4)(t), crackle r(5)(t) and
pop r(6)(t) and the Harvard r(7)(t) introduced in the fall of 2016 in a multi-variable
exam.

1We can associate any vector v with a point. Think of the vector as connecting 0 with the point.
2To reduce clutter, we write row vectors [2, 6, 1] rather than column vectors [2, 6, 1]T



7.6. Given the first derivative function r′(t) as well as the initial point r(0), we can get
back the function r(t) thanks to the fundamental theorem of calculus. Because
of Newton’s law which tells that a mass point of mass m subject to a force field F
depending on position and velocity satisfies the Newtonian differential equation
mr′′(t) = F (r(t), r′(t)), the following result is important:

Theorem: r(t) is uniquely determined from r′′(t) and r(0) and r′(0).

Proof. In each coordinate we get x′k(t) =
∫ t
0
x′′k(s) ds+ x′k(0) and xk(t) =

∫ t
0
x′k(s) ds+

xk(0). We have just applied twice the fundamental theorem of calculus. �

A special case is if r′′(t) is constant. A special case is the free fall situation. The
coordinate functions are then quadratic. Assume r′′(t) = [0, 0,−10], and r′(0) = [0, 0, 0]
and r(0) = [0, 0, 20], then r(t) = [0, 0, 20 − 5t2]. If you jump from 20 meters into a
pool, you need t = 2 seconds to hit the water.

7.7. Given a curve r(t) for which the velocity r′(t) is never zero, we can form the
unit tangent vector T (t) = r′(t)/|r′(t)|. If T ′(t) is never zero, we can then form
N(t) = T ′(t)/|T ′(t)|, the normal vector. The vector B = T × N is called the
binormal vector. The scalar |T ′(t)|/|r′(t)| is called the curvature of the curve.

Theorem: In R3, we have K = |T ′|/|r′| = |r′ × r′′|/|r′|3.

Proof. We will do this computation in class. �

7.8. Even if r(t) is perfectly smooth, the curvature can become infinite. Lets look
at the example r(t) = [t2, t3, 0]. Then r′(t) = [2t, 3t2, 0] and r′′(t) = [2, 6t, 0] and
r′(t)× r′′(t) = [0, 0, 6t2]. The curvature is (6/t)(4 + 9t2)−3/2 which has a singularity at
t = 0.

7.9. Even when r(t) is perfectly smooth and never zero, the normal vector can depend
in a discontinuous way on t. Example: r(t) = [t, t3/3]. Now r′[t] = [1, t2] and T (t) =
[0, t2]/

√
1 + t4. We see that T ′(t) takes different signs in the second coordinate. After

normalization we have limt→0,t>0N(t) = [0, 1] and limt→0,t<0N(t) = [0,−1]. At the
inflection point of the graph of the cube function, the concavity has changed from
concave down to concave up. This has changed the direction of the normal vector N .

7.10. Side remark. We have looked at parametrized vectors only. If the entries
Aij(t) of a matrix depend on times we have a matrix valued curve A(t). This appears
in differential equations, in quantum mechanics (operators moving in time) or - most
importantly - in moving pictures! A movie is just a matrix valued curve.

7.11. Side remark. A planar curve r(t) = [x(t), y(t)]T in the plane defined on
t ∈ [0, 2π] is called a simple closed curve if r(0) = r(2π) and there are no values
0 ≤ s 6= t < 2π for which r(t) = r(s). For a smooth curve, meaning that the first
two derivatives exist, we can look at the polar angle α(t) of the vector r′(t). Define
the signed curvature of the curve as κ(t) = α′(t)/|r′(t)|. We have |κ(t)| = K(t).

The Hopf Umlaufsatz tells
∫ 2π

0
κ(t) dt = 2π. In the case of the circle for example,

κ(t) = 1.
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7.12. Side remark. We can verify that any curve r(t) parametrized on [a, b] such that
r′(t) 6= 0 for all t ∈ [a, b] can be parametrized as R(t) on [a, b] such that |R′(t)| = 1 for
all t. Proof: we look for a monotone function s(t) such that the derivative of r(s(t)) has
length 1. This means we want |r′(s(t))|s′(t) = 1. In other words, look for a function
s(t) such that s′(t) = 1/|r′(s(t))| = F (s(t)) and s(a) = 0. This is what we call a
differential equation. There is a general existence theorem for differential equations
(proven later) which assures that there exists a unique solution s(t). End of proof.
The result is very intuitive. You can drive from r(a) to r(b) along the curve traced by
r(t) by just keeping the speed 1. This gives your your new parametrization. Your new
time interval will be [0, L] where L is the arc length (the length of your trip). We will
come to arc length computation in the next lesson.

7.13. Side remark. Continuous curves can be complicated: If you look at the pollen
particle in a microscope, it moves erratically on a curve which is nowhere differentiable
as it is constantly bombarded with air molecules which bounce it around. This is
Brownian motion. There are also Peano curves or Hilbert curves [0, 1]→ [0, 1]2

or space filling Hilbert curves r(t) : [0, 1]→ Q = [0, 1]3 which cover every point of the
cube Q. These curves define a continuous bijection from [0, 1] to [0, 1]3. (The inverse
is not continuous. Still, the construction shows that there are the same number of
points in [0, 1] than in [0, 1]3).

Figure 2. The four first stages in the construction of a space filling curve.

Examples

7.14. Assuming the Newton equations mr′′(t) = F (t), find the path r(t) of a body
of mass m = 1/2 subject to a force F (t) = [sin(t), cos(t),−10] with r(0) = [3, 4, 5]
and r′(0) = [1, 2, 7]. Solution: we have r′′(t) = [2 sin(t), 2 cos(t),−20]. Integration
gives r′(t) = [−2 cos(t), 2 sin(t),−20t] + [c1, c2, c3]. Fixing the constants gives r′(t) =
[3− 2 cos(t), 2 + 2 sin(t), 7− 20t]. A second integration gives r(t) = [3t− 2 sin(t), 2t−
2 cos(t), 7t− 10t2] + [c1, c2, c3] with other constants C = [c1, c2, c3]. Comparing r(0) =
[0,−2, 0]+[c1, c2, c3] = [3, 4, 5] gives r(t) = [3+3t−2 sin(t), 6+2t−2 cos(t), 5+7t−10t2].

7.15. Let r(t) = [L cos(t), L sin(t), 0]. Then r′(t) = [−L sin(t), L cos(t), 0] and r′′(t) =
[−L cos(t),−L cos(t), 0] and r′(t) × r′′(t) = [0, 0, L2] and |r′(t)| = L so that |r′(t) ×
r′′(t)|/|r′(t)|3 = 1/L. A circle of radius L has curvature 1/L!

7.16. A closed simple curve C in R3 is a knot. For any positive integer n,m we can
look at the torus knot r(t) = [(3 + cos(mt)) cos(nt), (3 + cos(mt)) sin(nt), sin(mt)].

The total curvature of a knot is defined as
∫ 2π

0
K(t) dt. See Figure 3. 3

3A general theorem of Fay and Milnor assures that a knot of total curvature ≤ 4π is trivial.



Figure 3. Torus knots T (2, 3), T (7, 3), T (12, 13) and T (30, 43). Their
total curvatures are 38.6, 245.6, 487.2, 2167.3.

Figure 4. Villarceau circles obtained when slicing a bagel. Given a
two surfaces, it can be tough to find the intersection.
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Homework

Problem 7.1: You sit on a bench at A = r(0) = [0, 0, 3] near the frozen
Charles located between Winthrop and Elliot and chip stones aiming at
B = [0,−300, 15], a point near the Harvard business school. In order not
to get into trouble, we assume everything happens in our imagination and
that the stone is friction-free. You use a sling shot and throw with initial
velocity r′(0) = [0,−24, 61], assume the gravitational acceleration to be
r′′(t) = [0, 0,−10] at all times and use meters for distance and seconds
for time. At which point does the stone reach the 15 meter height mark
while descending? [ Optional: you like a challenge and want to bounce off
on the ice surface at C = [0,−200, 0] and reach the point B. What initial
velocity v at A does achieve this? ]

Problem 7.2: We want to produce a logo for a new company and
experiment. Draw the curve r(t) = [cos(t), sin(t)] + [cos(11t), sin(9t)]/4
and find the velocity, acceleration, and curvature at t = 0.

Problem 7.3: Parametrize the curve r(t) obtained by intersecting the
cylinder x2/9 + y2/4 = 1 with the plane z = x+ 5y.

Problem 7.4: Verify that the torus knot r(t) = [x(t), y(t), z(t)] =
[(2+cos(mt)) cos(nt), (2+cos(mt)) sin(nt), sin(mt)] lives on the torus (3+
x2 + y2 + z2)2 − 16(x2 + y2) = 0.

Problem 7.5: You slice a bagel in a non-standard way. Let us assume
that the bagel is given by (x2 + y2 + z2 + 16)2 − 100(x2 + y2) = 0. Verify
that if we intersect this torus with the plane 3x = 4z, then we get the
Villarceau circles r(t) = [4 cos(t), 3 + 5 sin(t), 3 cos(t)] as well as the
circle r(t) = [4 cos(t),−3 + 5 sin(t), 3 cos(t)].

Figure 5. The scenery for our imaginary dream sling shot experiment.
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