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Unit 8: Arc length

Introduction

Figure 1. A rather complicated knot curve r(t). Despite its complex-
ity, we can compute the length of the curve numerically by integrating
|r′(t)| over the parameter interval. In this case, the curve has diameter 14
and already a length of 1243. While a DNA double helix is 10 nanometer
wide, the total length of a human DNA is about 2 meters long.

8.1. In this lecture we really get into calculus as we use both differentiation as well as
integration to compute the length of curves. This unit is also a good point to brush
up some integration techniques. The main theoretical result is that if r′(t) is piecewise
continuous, then we can compute the length. Mathematically we will see that the

Riemann integral
∫ b
a
f(t) dt exists for every continuous function.
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8.2. In single variable calculus courses, one usually assumes that f is differentiable in
which case the proof is much simpler. So, in some sense, we want to illustrate here
also that calculus leads to real analysis which is close also to the core foundations of
mathematics. Both when computing derivatives or integrals we are using a notion of
“limit”. When we compute the length of a curve we split it into small pieces and add
up the lengths of these pieces. That his process gives a limiting finite end result is by
no means trivial. If we look at the motion of a pollen particle in a fluid and compute
the length by tracking smaller and smaller time intervals, the length actually diverges
to infinity.

Figure 2. A colorized electron microscope scan of pollen grains from
various plants, like sunflowers. This picture has been done by the Dart-
mouth Electron microscope facility and put into the public domain. By
the way, these particles are also an inspiration for surfaces.

Lecture

8.3. We assume in this lecture that curves are continuously differentiable meaning
that the velocity is continuous. We would write r ∈ C1([a, b],Rd). Given a parametrized
curve r(t) defined over an interval I = [a, b], its arc length is defined as

L =

∫ b

a

|r′(t)| dt .



For f(t) = |r′(t)| the integral is defined as the lim sup (we don’t know yet whether
lim exists), ∫ b

a

f(t) dt = lim sup
n→∞

Sn
n

= lim sup
n→∞

1

n

∑
a≤ k

n
<b

f(
k

n
) .

This Archimedes integral is a special Riemann integral. It satisfies min(f) ≤
(b− a)−1

∫ b
a
f(t) dt ≤ max(f). The intermediate value theorem implies that there

is y ∈ [a, b] such that f(y) = (b − a)−1
∫ b
a
f(t)dt. The minimum and maximum exists

by Bolzano’s extreme value theorem. Related to Bolzano is the Heine-Cantor
theorem assuring that a continuous function f on a closed finite interval [a, b] is
uniformly continuous: there exists a function M(t) satisfying limt→0M(t) = 0 with
|f(x) − f(y)| ≤ M(|x − y|) for all x, y ∈ [a, b]. Stronger is Lipschitz continuity,
which is M(t) = M · t for some constant M . The next proof shows in general that
continuous functions are Riemann integrable; the limsup is actually a limit:

Theorem: Arc length exists and is independent of the parameterization.

Proof. (i) To see parameter independence, assume a time change φ(t) with a monotone
smooth function φ : [a, b] → [φ(a), φ(b)]. If r(t) on [φ(a), φ(b)] and R(t) = r(φ(t)) on
[a, b] are the two parametrizations and f(t) = |r′(t)| and F (t) = |R′(t)| = |r′(φ(t))|φ′(t),
then by substitution, the arc length of r(t) is

∫ φ(b)

φ(a)
f(t) dt =

∫ b
a
f(φ(t))φ′(t) dt which is∫ b

a
F (t) dt, the arc length of R(t).

(ii) From (i) we can assume [a, b] = [0, 1]. By uniform continuity, there are Mn → 0
such that if |y − x| ≤ 1/n, then |f(y) − f(x)| ≤ Mn. The intermediate value
theorem, gives for every Ik = [xk, xk+1] = [k/n, (k+ 1)/n] ⊂ [0, 1], a yk ∈ Ik such that∫ xk+1

xk
f(x) dx = f(yk)/n. Now,

∫ 1

0
f(x) dx = (1/n)

∑
k f(yk) and |Sn/n−

∫ 1

0
f(x) dx| =

(1/n)|
∑

k[f(xk)− f(yk)]| ≤ (1/n)
∑

k |f(xk)− f(yk)| ≤ 1/n
∑

kMn = Mn → 0. �

Examples

8.4. The arc length of the circle r(t) = [R cos(t), R sin(t)] with t ∈ [0, 2π] is
∫ 2π

0
|r′(t)| dt =∫ 2π

0
R dt = 2πR.

8.5. The arc length of the parabola r(t) = [t, t2/2] with t ∈ [−1, 1] is
∫ 1

−1

√
1 + t2 dt.

We will do this integral in class. The result is
√

2 + arcsinh(1).

8.6. The arc length of the curve r(t) = [log(t),
√

2t, t2/2] for t ∈ [1, 2]. It is∫ 2

1

√
1/t2 + t2 + 2 dt =

∫ 2

1

(t+ 1/t) dt = log(2) + 3/2 .
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Illustrations

Figure 3. A polygon approximation of a curve produces a Riemann
sum approximation of the length integral.

Figure 4. A Riemann sum approximation of a continuous function
produces in the limit the “area under the curve”.

Figure 5. Brownian motion produces continuous paths which are not
differentiable. The arc length integral does not exist.



Homework

Problem 8.1: Find the arc length of the curve

r(t) = [12t, 8t3/2, 3t2] ,

where t ∈ [0, 7].

Problem 8.2: Find the arc length of the cycloid

r(t) = [t− sin(t), 1 + cos(t)]

from 0 to 2π. The upside down cycloid is the solution to the fa-
mous Brachistochrone problem, the curve along which a ball de-
scends fastest. Hint. You might want to use the double angle formula
2− 2 cos(t) = 4 sin2( t

2
).

Problem 8.3: Compute numerically the arc length of the knot r(t) =
[sin(4t), sin(3t), cos(5t), cos(7t)] from t = 0 to t = 2π. By drawing the first
coordinates only and using color as the fourth coordinate, we can see that
there are no non-trivial knots in R4. You can not tie your shoes in R4!

Problem 8.4: What is the relation between |
∫ 1

0
r′(t) dt| and∫ 1

0
|r′(t)| dt? Give an interpretation of both sides.

Problem 8.5: Find the arc length of the catenary r(t) = [t, cosh(t)],
where cosh(t) = (et + e−t)/2 is the hyperbolic cosine and t ∈ [−1, 1].
Hint. You can use the identity cosh2(t) − sinh2(t) = 1, where sinh(t) =
(et − e−t)/2 is the hyperbolic sine. We have cosh′ = sinh, sinh′ = cosh.

Galileo was the first to investigate the catenary. It is the curve, a freely hanging heavy rope describes, if the end points

have the same height. Galileo mistook the curve for a parabola. It was Johannes Bernoulli in 1691, who obtained

its true form after some competition involving Huygens, Leibniz and two Bernoullis. The name “catenarian” (=chain

curve) was first used by Huygens in a letter to Leibnitz in 1690.

Figure 6. The catenary and the cycloid.
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