1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Name:

LINEAR ALGEBRA AND VECTOR ANALYSIS

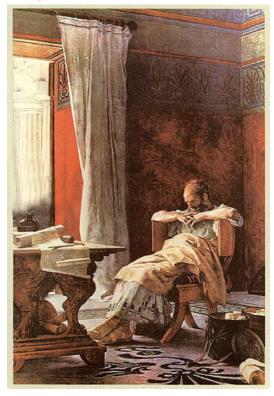
MATH 22B

Total:

Unit 28: Second Hourly (Practice A)

- You only need this booklet and something to write. Please stow away any other material and electronic devices. Remember the honor code.
- Please write neatly and give details. Except for problems 28.2 and 28.3, we want to see details, even if the answer should be obvious to you.
- Try to answer the question on the same page. There is also space on the back of each page.
- If you finish a problem somewhere else, please indicate on the problem page so that we find it.
- You have 75 minutes for this hourly.

Archimedes sends his good luck wishes. He unfortunately can not join us as he is "busy proving a new theorem". He just sent us his selfie. Oh well, these celebrities!



PROBLEMS

Problem 28A.1 (10 points):

- a) (4 points) Prove that if x^3 is irrational, then x is irrational.
- b) (3 points) Prove or disprove: the product of two odd integers is odd.
- c) (3 points) Prove or disprove: the sum of two odd integers is odd.

Solution:

- a) Use contradiction. Assume x is rational. Then x=p/q and so $x^3=p^3/q^3$ is rational too. This contradicts that x is irrational.
- b) If x = 2k + 1, y = 2l + 1 are odd, then xy = (4kl + 2k + 2l + 1) = 2m + 1 is odd with m = 2kl + k + l. The direct proof is better than the indirect.
- c) This is false. 1 is odd, 3 is odd but 1 + 3 is even.

Problem 28A.2 (10 points) Each question is one point:

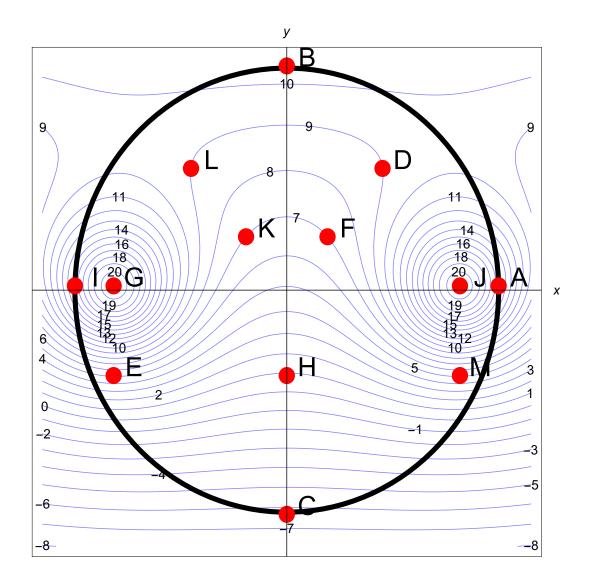
- a) What is the name of the partial differential equation $f_{tt} = f_{xx}$?
- b) The series $f(x) = \sum_{k=0}^{\infty} x^k/k! = 1 + x + x^2/2! + x^3/3! + \cdots$ represents a function. Which one?
- c) The implicit differentiation formula for f(x, y(x)) = 1 is $y'(x) = \dots$
- d) What is the name of the function $f(s) = \sum_{n=1}^{\infty} n^{-s}$?
- e) On a circular island there are exactly 3 maxima and one minimum for the height f. Assuming f is a Morse function, how many saddle points are there?
- f) Which mathematician first found the value for the volume of the ball $x^2 + y^2 + z^2 \le 1$?
- g) True or False: the directional derivative of f in the direction $\nabla f(x)/|\nabla f(x)|$ is negative at a point where ∇f is not zero.
- h) The equation $f(x+t) = e^{Dt}f = f(x) + f'(x)t + f''(x)t^2/2 + \cdots$ solves a partial differential equation. Which one?
- i) What is the formula for the surface area of a surface S parametrized by r(u, v) over a domain R?
- j) What is the integration factor (= distortion factor) when going to spherical coordinates (ρ, ϕ, θ) ?

- a) Wave,
- b) e^x
- c) $y' = -f_x/f_y$.
- d) Zeta function.
- e) 3
- f) Archimedes.
- g) False. Functions dance upwards.
- h) transport equation
- i) $\iint_R |r_u \times r_v| du dv$ j) $\rho^2 \sin(\phi)$.

Problem 28A.3 (10 points) Each question is two points:

We see the level curves of a Morse function f. The circle through ABC will sometimes serve as a constraint $g(x,y) = x^2 + y^2 = 1$. In all questions, we only pick points from A,B,C,D,E,F,G,H,I,J,K,L,M.

- a) Which points are local minima of f under the constraint g(x,y)=1.
- b) Which points are local maxima of f under the constraint g(x,y) = 1.
- c) At which points do we have $f_x(x,y) \cdot f_y(x,y) \neq 0$?
- d) At which points are $|\nabla f(x,y)|$ maximal?
- e) At which points are $|\nabla f(x,y)|$ minimal?



This was a slaughter house. Only two students got everything right!

- a) C
- b) BAI
- c) KF
- d) IA
- e) GJ

Problem 28A.4 (10 points):

a) (5 points) Find the tangent plane to the surface

$$f(x, y, z) = x^2y - x^3 + y^2 + z^4xy = -13$$

at the point (2, -1, 1).

b) (5 points) Estimate f(2.001, -0.99, 1.1) by linear approximation.

Solution:

The gradient of the function at the point is $[-17, 4, 8]^T$.

- a) The equation of the tangent plane is -17x + 4y 8z = -46
- b) We estimate -13 17 * 0.001 + 4 * 0.01 8 * 0.1 = -13.777.

Problem 28A.5 (10 points):

a) (5 points) Find the quadratic approximation Q(x,y) of

$$f(x,y) = 5 + x + y + x^2 + 3y^2 + \sin(xy) + e^x$$

at (x, y) = (0, 0).

b) (5 points) Estimate the value of f(0.001, 0.02) using quadratic approximation.

Solution:

- a) We get $Q(x,y) = 6 + 2x + y + 3x^2/2 + xy + 3y^2$.
- b) Evaluate this at the point gives 6.02322.

Problem 28A.6 (10 points):

a) (8 points) Classify the critical points of the function

$$f(x,y) = x^2 - y^3 + 2x + 3y$$

using the second derivative test.

b) (2 points) Does the function f(x,y) have a global minimum or global maximum?

- a) There is a minimum at (-1, -1) and a saddle at (-1, 1). The discriminant at the first point is 12, at the second point -12. f_{xx} is equal to 2 at both points.
- b) No global maximum, nor minimum: look at $f(0,y) = -y^3 + 3y$ which is unbounded below and above.

Problem 28A.7 (10 points):

Using the Lagrange optimization method, find the parameters (x, y) for which the area of an arch

$$f(x,y) = 2x^2 + 4xy + 3y^2$$

is minimal, while the perimeter

$$q(x, y) = 8x + 9y = 33$$

is fixed.

Solution:

First write down the Lagrange equations $\nabla f = \lambda \nabla g$ and eliminate λ .

$$4x + 4y = \lambda 8$$

$$4x + 6y = \lambda 9$$

$$8x + 9y = 33.$$

We end up with $(4x + 4y)9 = 8(4x + 6y)\lambda$. Eliminating λ gives y = x/3. Plugging this into the constraint gives x = 3, y = 1.

Problem 28A.8 (10 points):

a) (5 points) Find the moment of inertia

$$I = \iint_G (x^2 + y^2) \, dy dx$$

of the quarter disc $G = \{x^2 + y^2 \le 1, x \ge 0, y \le 0\}$.

b) (5 points) Evaluate the double integral

$$\int_1^e \int_{\log(x)}^1 \frac{y}{e^y - 1} \, dy dx \; ,$$

where log is the natural log as usual.

a) Use polar coordinates! For right half disc, we have

$$\int_0^1 \int_{-\pi/2}^0 r^3 \ d\theta dr = \pi/8 \ .$$

We wanted to see the right integral too.

The result is $|\pi/4|$.

b) Change the order of integration! It is important here to make a picture! We end up with the integral

$$\int_0^1 \int_1^{e^y} \frac{y}{e^y - 1} \, dx dy \, .$$

Now, the inner integral is no problem and gives y. The result is $\int_0^1 y \, dy = \boxed{1/2}$.

Problem 28A.9 (10 points):

Find the integral

$$\iiint_E f(x, y, z) \ dz dy dx$$

of the function

$$f(x, y, z) = x + (x^2 + y^2 + z^2)^4$$

over the solid

$$E = \{(x, y, z) \mid 1 \le x^2 + y^2 + z^2 \le 4, \ z \ge 0 \}.$$

Solution:

Use spherical coordinates: $\int_0^{2\pi} \int_0^{\pi/2} \int_1^2 (\rho \cos(\theta) \sin(\phi) + \rho^8) \rho^2 \sin(\phi) \ d\rho d\phi d\theta = 2\pi (2^1 1 - 1)/11.$

Problem 28A.10 (10 points):

Find the surface area of

$$r(x,y) = \begin{bmatrix} 2x \\ y \\ \frac{x^3}{3} + y \end{bmatrix}$$

with $0 \le x \le 2$ and $0 \le y \le x^3$.

Solution: $\int_0^2 \int_0^{x^3} \sqrt{x^4 + 8} \, dy dx. \text{ This gives } (24^{3/2} - 8^{3/2})/6.$