
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Unit 39: Final Exam Practice A

Problems

Problem 39A.1) (10 points):
On the graph G in Figure 1 we are given a 1-form F on a graph
G = (V,E).
a) (3 points) Write the values of the curl dF . As a 2-form it is a function
on the set T of triangles.
b) (3 points) Compute the “discrete divergence” d∗F , which is a 0-form,
a function on the vertices.
c) (4 points) Find the value of the Laplacian d∗dF + dd∗F and enter the
values near the edges in Figure 2.
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Figure 1. A graph with a 1-Form F . Enter here the result for a) and b).

Figure 2. Enter here the result for c).
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Linear Algebra and Vector Analysis

Problem 39A.2) (10 points) Each question is one point:
a) Who formulated the law of gravity in the form the partial differential
equation div(F ) = 4πσ?
b) The expression 5xdxdzdx+ 77dydzdy+ 3dxdy+ 6dydx simplifies to ....
c) What value is

∫∫
S
[x, y, z] ·dS if S is the unit sphere oriented outwards?

d) What is the distance between the point (0, 0, 3) and the xy-plane?
e) Is it true that if |r′(t)| = 1 everywhere, then r′′(t) is perpendicular to
the velocity r′(t)?
f) What is the distortion factor |dr| for the change of coordinates r(u, v) =
[−2v, 3u]?
g) If r(u, v) parametrizes a surface in R3, is it true that ru × (ru × rv)
tangent to the surface?
h) Yes or no: if (0, 0, 0) is a maximum of f(x, y, z) then fxx(0, 0, 0) < 0.
i) Write down the quadratic approximation of 1 + x+ y + sin(x2 − y2)?
j) If S : f(x, y, z) = x2 + y2 + z2 = 1 is oriented outwards, then the flux
of ∇f through S is either negative, zero or positive. Which of the three
cases is it?

Problem 39A.3) (10 points) Each problem is 1 point:
a) Which of the triangles in Figure 3 is integrated over in∫ 1

0

∫ 1

y
f(x, y) dxdy?

b) We have seen a counter example for Clairaut’s theorem. This function
f(x, y) was in Ck but not in Ck+1. The integer k indicated how many
times we could differentiate f continuously. What was the k?
c) To what group of partial differential equations belongs div(E) =
4πj + Et?
d) Write down the Cauchy-Schwarz inequality.
e) Let G be the first stage of the Menger sponge (with 20 cubes from 27
cubes present). Is it simply connected?
f) Take a exterior derivative of the differential form F = sin(xz)dxdy.
g) Parametrize the surface x = z2 − y3.
h) Parametrize the curve obtained by intersecting of the ellipsoid x2/4 +
y2 + z2/9 = 1 with the plane y = 0.
i) What surface is given in spherical coordinates as sin(φ) cos(θ) = cos(φ)?
j) Write down the general formula for the area of a triangle with vertices
(0, 0, 0), (a, b, c), (u, v, w).

Problem 39A.4) (10 points):
a) (6 points) Find the equation of the plane which contains the line r(t) =
[1+t, 2+t, 3−t] and which is perpendicular to the plane Σ : x+2y−z = 4.
b) (4 points) What is the angle between the normal vectors of Σ and the
plane you just found?
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Figure 3. Four triangles

Problem 39A.5) (10 points):
a) (8 points) Find the critical points of the function f(x, y) = cos(x) +
y5−5y and classify them using the second derivative test. You can assume
that 0 ≤ x < 2π.
b) (2 points) Does the function f have a global maximum or a global
minimum?

Problem 39A.6) (10 points):
a) (5 points) Use the Lagrange method to find the maximum of f(x, y) =
y2 − x under the constraint g(x, y) = x+ x3 − y2 = 2.
b) (5 points) The Lagrange equations fail to find the maximum of f(x, y) =
y2 − x under the constraint g(x, y) = x3 − y2 = 0. Still, the Lagrange
theorem still allows you to find the maximum. How?

Problem 39A.7) (10 points):
a) (6 points) Find the tangent plane at the point P = (4, 2, 1, 1) of the
surface x2 − 2y2 + z3 + w2 = 2.
b) (4 points) Parametrize the line r(t) which passes through P which
is perpendicular to the hyper surface at that point. Then find (r(1) +
r(−1))/2.

Problem 39A.8) (10 points):
a) Estimate f(0.012, 0.023) for f(x, y) = log(1 + x + 3xy) using linear
approximation.
b) Estimate f(0.012, 0.023) for f(x, y) = log(1 + x+ 3xy) using quadratic
approximation.

Problem 39A.9) (10 points):
a) Lets look at the curve which satisfies the acceleration r′′(t) =
[−2 cos(t),−2 sin(t),−2 cos(t),−2 sin(t)], has the initial position [2, 0, 2, 0]
and initial velocity [0, 2, 0, 2]. Find r(t).
b) What is the curvature |T ′(t)|/|r′(t)| of r(t) at t = 0?
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Problem 39A.10) (10 points):
a) Integrate the function f(x, y) = x+x2−y2 over the region 1 < x2+y2 <
4, xy > 0.
b) Find the surface area of

r(t, s) = [cos(t) sin(s), sin(t) sin(s), cos(s)]

0 ≤ t ≤ 2π, 0 ≤ s ≤ t/2.

Problem 39A.11) (10 points):
Let E be the solid

x2 + y2 ≥ z2, x2 + y2 + z2 ≤ 9, y ≥ |x|.
a) (7 points) Integrate ∫∫∫

E

x2 + y2 + z2 dxdydz.

b) (3 points) Let F be a vector field

F = [x3, y3, z3]

Find the flux of F through the boundary surface of E, oriented outwards.

Figure 4. The solid in Problem 10.

Problem 39A.12) (10 points):
What is the line integral of the force field F (x, y, z, w) = [1, 5y4 + z, 6z5 +
y, 7w6]T +[y−w, 0, 0, 0]T along the path r(t) = [t3, sin(6t), cos(8t), sin(6t)]
from t = 0 to t = 2π. Hint. We have written the field by purpose as the
sum of two vector fields.

Problem 39A.13) (10 points):
Find the area of the region |x|2/5 + |y|2/5 ≤ 1. Use an integral theorem.



Problem 39A.14) (10 points):
What is the flux of the vector field F (x, y, z, w) = [x+cos(y), y+z2, 2z, 3w]
through the boundary of the solid E : 1 ≤ x ≤ 3, 3 ≤ y ≤ 5, 0 ≤ z ≤
1, 4 ≤ w ≤ 8 oriented outwards?

Problem 39A.15) (10 points):
Find the flux of the curl of the vector field

F (x, y, z) = [−z, z + sin(xyz), x− 3]T

through the twisted surface seen in Figure 3 is oriented inwards and
parametrized by

r(t, s) = [(3 + 2 cos(t)) cos(s), (3 + 2 cos(t)) sin(s), s+ 2 sin(t)] ,

where 0 ≤ s ≤ 7π/2 and 0 ≤ t ≤ 2π.

Figure 5. The boundary of the surface is made of two circles r(t, 0)
and r(t, 7π/2). The picture gives the direction of the velocity vectors of
these curves (which in each case might or might not be compatible with
the orientation of the surface).
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