1 Ideas

The following prompts are merely suggestions, and in many cases I list more than
can reasonably be discussed in a single paper to give you multiple options to explore.
Please concentrate on explaining a few ideas well instead of superficially covering many.
Also, many of these suggestions involve comparing the speed of algorithms. To time
computations in Python, use the timeit module.

e P versus NP. Explain what P, NP, and NP-hard mean, what the P versus NP
problem is, and why it is important. The first four sections of this survey are
essential reading. The first two chapters of [2] will also be useful. (In lieu of an
expository paper, I will also accept any proof that resolves the P # NP conjecture.)

e There are some problems in computer science that can’t (?) be solved efficiently, such
as the traveling salesman problem or other combinatorial optimization problems.
In practice, a variety of probabilistic and heuristic approaches (that may not obtain
the true solution, but only a good substitute), such as simulated annealing, are
used. Find one of these “NP-complete” problems and report on practical methods
to find solutions or near-solutions. Chapter 7 and Part II of this book are good
starting points, but you will need to do some further research. Good intuition for
simulated annealing is given in [3].

e The practical use of RSA encryption depends on our ability to find large prime
numbers quickly. Figure out how this is done. (Hint: generate large random
numbers and test for primality.) Why can we test for primality quickly, but actually
factoring the numbers takes a long time? Report on one of your favorite primality
testing algorithms, such as AKS, Lucas, Miller-Rabin, or the Fermat test [11]. The
latter two are probabilistic. Explain what this means, and why it does or doesn’t
affect their day-to-day use. How fast do such algorithms run? Include both a
theoretical analysis and a practical demonstration in Python (e.g. of producing
keys for RSA).

e Suppose you want to factor a relatively large number n. What’s the best algorithm
for doing this? The naive approach of checking every prime up to /n (“trial
division”) is slow and bad. The state of the art here involves quite advanced
number theory (elliptic curves), but there are some very good and relatively simple
algorithms, such as the quadratic sieve and Pollard’s rho algorithm, that might
make for a good paper. Pick one algorithm, prove it works, discuss its performance
theoretically, and provide practical examples comparing its speed to trial division
in Python. (You might also discuss why trial division is so slow from a theoretical
perspective; a sketch of this argument is given on Wikipedia.)

e What is a block cipher? Describe an example. What are the best practices for
using them? (What should be avoided? Why is ECB bad?) Blog post (see bulleted
list).


https://www.scottaaronson.com/papers/pnp.pdf
http://www.algorist.com/
https://en.wikipedia.org/wiki/Trial_division
https://sockpuppet.org/blog/2013/07/22/applied-practical-cryptography/
https://sockpuppet.org/blog/2013/07/22/applied-practical-cryptography/

People often believe that if they encrypt a message twice, they get the double the
security. This is wrong. Report on the Data Encryption Standard, including its
technical details (at least in outline) and history, then explain why meet-in-the-
middle attacks mean that double DES is not much more secure than single DES,
and why this motivated the US government to adopt triple DES instead [5, 12, 0].

Explain what a Markov chain is, then the importance and implementation of Markov
Chain Monte Carlo methods (for instance the Metropolis algorithm). Program an
example (for example sampling from the Gibbs measure for the Ising model on a
lattice). The first two sections of this paper give a rapid introduction, while [8]
is more leisurely. The example could be from Bayesian statistics, combinatorial
optimization, code breaking [1], or statistical physics.

It is often the case that communication channels are not perfect and produce some
noise or error in the transmission. The naive solution is to transmit the message
multiple times for redundancy, but this is horribly inefficient. Explain Shannon’s
noisy channel coding theorem and/or your favorite efficient error-correcting code
[8]. (Linear codes might be a good starting point.) A similar idea is to explore a
good file compression algorithm.

The following list of ideas is too long for one paper, so pick and choose your favorites.
Any other interesting thoughts about password security are welcome.

Explain hash functions [6] and their relevance to computer passwords and data
integrity checking. What techniques can be used to make hashed passwords more
secure (e.g. salting)? What techniques can be used to break them? In this direction
you could research some combination of masking attacks, dictionary attacks, and
rainbow tables. For the latter, the original paper is here, but perhaps the Wikipedia
article is easier to read and provides a less technical starting point. (If you're
writing about rainbow tables, also explain what a space-time tradeoff is.) With
recent advances in computing power and parallel processing (e.g. GPUs), how
long and complex should a password be in order to be secure against a motivated
adversary? What methods are there for generating secure passwords? (For a fun
example, look up Diceware, and analyze its security against a brute force attack
mathematically.) How insecure is the average password in use today? What are
the social costs of weak passwords?

See here for an introductory talk. (It was given in 2011 and covers the basics well,
but be aware it is slightly out of date in the sense that insecure passwords and now
even more insecure due to the rise of GPUs.) There also exist real-world guides to
password storage and password cracking (especially [10]); try Googling terms and
ideas from them. Please use any information learned in this project responsibly
and ethically.

Do you know some quantum mechanics? Report on Shor’s algorithm for quantum
computers and explain why it makes certain encryption schemes (e.g. RSA) insecure
(assuming an adversary has access to a quantum computer).


https://en.wikipedia.org/wiki/Data_Encryption_Standard
http://statweb.stanford.edu/~cgates/PERSI/papers/MCMCRev.pdf
https://lasec.epfl.ch/pub/lasec/doc/Oech03.pdf
https://www.youtube.com/watch?v=CuAn7AVLoeA
https://security.stackexchange.com/a/118163
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://www.techsolvency.com/talks/2017-bsideslv/bslv17_ground1234_passwords-201-beyond-the-basics_royce-williams_2017-07-26.pdf

e The discrete random walk has a ton of fun properties you could write about. For
example, there is a connection between the discrete random walk and the discrete
heat equation. Explain it. (Brownian motion and the continuous heat equation are
also intimately related. Understanding this is more difficult but would also make
a good project.) Other ideas include proving that the random walk is recurrent
in dimensions d < 2 but transient in dimensions d > 3, or using random walk
techniques to prove Bertrand’s ballot theorem.

e Consider the following gambling strategy, called the martingale betting system: I
go to a casino and bet 100 dollars on roulette, choosing red. This gives me about a
1/2 chance of success. If I win, I have gained 100 dollars and leave happy. If not, I
double my bet to 200 dollars. If I win, I have gained 200 — 100 = 100 dollars, and
again I have gained 100 dollars and leave happy. If not, I double my bet again. ...
Is this a good betting strategy? You may investigate using either the optional
stopping theorem (and consider more general strategies) or through the long-term
behavior of a (biased) random walk.

In roulette, the casino has a slight inherent edge that makes my bet negative
expected value. If I can instead bet on a fair coin flip, does this change your
conclusion?

e Suppose | want to compute a million digits of 7 on my computer. What’s a good
way to do this? What ways should be avoided? How many digits can you find?
Both Wikipedia and [!] have a lot to say about this problem. Compare the speed
of various algorithms by using each to compute some fixed number of digits. Use
the Python module mpmath for high-precision arithmetic. You might also discuss
and implement “spigot” algorithms such as the Bailey—Borwein—Plouffe formula, or
provide commentary on historical methods of computation and the sociology of .
Some methods rely on advanced number theory, but some (such as the BBP formula
or certain Taylor series expansions) can be proved with elementary methods.

e Some claim there is a “hot hand” effect in basketball and other sports. Is there?
Investigate, explain the history of this problem, and render your judgment. This
blog post is a good starting point.

e Investigate what is known about the percolation problem in random graph theory
[3, 7]. State some important results, explain their meaning, and check them
empirically via simulation. This project is a great opportunity to make cool
pictures by simulating percolation clusters in Python. If you choose this topic
and don’t include pictures, I will be sad. (And don’t stop at two dimensions!)
(Unfortunately, the proofs in this area are rather technical, so I recommend against
including them.)

e Discuss auction theory [9] and its real world applications, for example to the design
of eBay and FCC wireless spectrum auctions. You should include an in-depth


http://www.math.uchicago.edu/~lawler/reu.pdf
http://www.math.uchicago.edu/~lawler/reu.pdf
https://en.wikipedia.org/wiki/Bertrand%27s_ballot_theorem
https://en.wikipedia.org/wiki/Martingale_(betting_system)
https://en.wikipedia.org/wiki/Hot_hand
https://statmodeling.stat.columbia.edu/2015/07/09/hey-guess-what-there-really-is-a-hot-hand/
https://statmodeling.stat.columbia.edu/2015/07/09/hey-guess-what-there-really-is-a-hot-hand/
https://en.wikipedia.org/wiki/Percolation_theory

discussion of at least one type of auction, for example the first-price sealed-bid
auction or Vickrey auction.

e For another project with an economic flavor, discuss the Stable marriage problem
and its applications (and variations?), for example assigning medical students to
residency positions, or public school students in New York City to schools.

e Probability on infinite sample spaces, such as an infinite sequence of coin flips, can
get strange. For example, there are sets of of sequences of coin flips to which we
cannot coherently assign a probability! In order words, we cannot take our set
F of measurable sets to be all subsets of 2. Want to learn more? Check out the
discussion of non-measurable sets in [13].

e Don’t like any of the ideas on this list? Propose your own!

References

1]

2]

[9]

[10]
[11]

Jorg Arndt and Christoph Haenel. Pi-unleashed. Springer Science & Business Media,
2001.

Sanjeev Arora and Boaz Barak. Computational complerity: a modern approach.
Cambridge University Press, 2009.

Béla Bollobas, Bela Bollobas, Oliver Riordan, and O RIORDAN. Percolation.
Cambridge University Press, 2006.

Jian Chen and Jeffrey S Rosenthal. Decrypting classical cipher text using markov
chain monte carlo. Statistics and Computing, 22(2):397-413, 2012.

Matt Curtin. Brute force: cracking the data encryption standard. Springer, 2007.

Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography engineering:
design principles and practical applications. John Wiley & Sons, 2011.

Geoffrey Grimmett. What is percolation? In Percolation, pages 1-31. Springer,
1999.

Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford
University Press, 2009.

Paul Milgrom and Paul Robert Milgrom. Putting auction theory to work. Cambridge
University Press, 2004.

Joshua Picolet and N LL.C. Hash crack: Password cracking manual, 2016.

Lasse Rempe-Gillen, Rebecca Waldecker, and Rebecca Waldecker. Primality testing
for beginners. American Mathematical Society, 2014.


https://en.wikipedia.org/wiki/First-price_sealed-bid_auction
https://en.wikipedia.org/wiki/Vickrey_auction
https://en.wikipedia.org/wiki/stable_marriage_problem

[12] Bruce Schneier. Applied cryptography: protocols, algorithms, and source code in C.
john wiley & sons, 2007.

[13] Elias M Stein and Rami Shakarchi. Real analysis: measure theory, integration, and
Hilbert spaces. Princeton University Press, 2009.



	Ideas
	References

