
MATH 157: Mathematics in the world
Homework 5 (Due March 12th, 2019 at 1:00PM)

Please solve Problems 1-6 completely.

Problem 0

Please start thinking about whether you want to take a final exam, or to work on a final
project. Write a paragraph about your thoughts about it (you will indicate your decision
in HW6). Remember if you plan to do both, then the average of the two will be scored.
The details are the following:

• The final exam will only contain variations of problems from either the homework,
or problems from in-class worksheets that have been discussed.

• The final project is a paper to write (generally 5-10 pages, but there can be ex-
ceptions) about a topic related to the coursework, to be decided together with me
and Patrick; the choice of topic will be due together with HW7.

Problem 1

1. Try to write the following Fibonacci sequence as a fraction.

∞∑
k=0

Fkx
k

where F0 = 0, F1 = 1 and Fn is the n-th Fibonacci number.

2. Use similar arguments as in the class to find a closed formula for the Fibonacci
numbers. 1

1 The following identity may be useful:

1

(x− a)(x− b)
=

1

ab(a− b)

(
a

1 − x
b

− b

1 − x
a

)
The problem may involve finding roots of a polynomial Ax2 +Bx+C, I highly recommend to use symbols
a, b for the two roots during your computation, and substitute the actual values of the two roots only in the
last step. You may also want to use equalities ab = C/A and a+b = −B/A to simplify your computations.

1

Problem 2

Given integers k ≥ 2 and n ≥ 1, let Tk,n denote the number of ways of tiling a k × n
strip with k × 1 blocks. For example, we studies the case k = 2 in class and showed that
T2,n = Fn+1. In this problem, we will explore the sequences Tk,n for arbitrary values of k.
2

1. Find a recursive relation satisfied by Tk,n.

2. Compute Tk,n for 1 ≤ n ≤ k.

3. Use the previous two parts to find a closed formula for the generating function

fk(x) =
∑
n≥1

Tk,nx
n.

Problem 3

In this problem, we will introduce a new method of using generating functions to evaluate
the sums. Consider

an =

bn
2
c∑

k=0

(
n− k

k

)
,

and the generating function

f(x) =
∞∑
n=0

anx
n

1. By substituting the expressions of an, express f(x) as a double sum.

2. Switching the order of the inner sum and the outer sum, get a new expression of
f(x) as a double sum. Make sure to state clearly the range of the summations.

3. Evaluate the inner sum. 3

4. Get a closed formula for f(x) using the previous part.

5. Compare your formula with Problem 1, find a closed formula for the sum

an =

bn
2
c∑

k=0

(
n− k

k

)
.

2 If the two indices confuse you, you can imagine a fixed value of k and a new sequence Tn = Tk,n.
3You may use the following identity which is a variation of what we did in class:

x2 ·
∞∑

n=0

(
r + n

n

)
xn+2r = (

x2

1 − x
)r+1

2

Problem 4

Imagine we independently flip n ≥ 1 coins (not necessarily fair).

1. Show that if at least one coin is fair, then the probability of getting an even number
of heads is 1/2. 4

2. Prove the converse statement, that is, if the probability of obtaining an even number
of heads is 1/2, then at least one of the coins is fair.

Problem 5

1. Find a combinatoric proof of the equality

n∑
k=0

(
n

k

)2

=

(
2n

n

)
holds for all n ≥ 0. 5

2. Explain how your proof technique generalizes to show that

n∑
k=0

(
n

k

)(
m

k

)
=

(
m + n

n

)
for all integers m ≥ n ≥ 0.

Problem 6

In this problem, we will learn how to draw the Julia set using Python. First, we demon-
strate drawing a simple gradient image.

import numpy as np
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . image as mpimg

This func t i on con t r o l s the image va lue at p o s i t i o n x , y
f = lambda x , y : x + y

Form a matrix o f the va l u e s o f f

4 Hint: In class we used the expressions (p ± q)n where p = q = 1/2. Try to generalize the argument
using

∏n
i=1(pi ± qi) where pi + qi = 1.

5 We have already seen that
(
2n
n

)
is the number of paths from (0, 0) to (n, n) which only move in the

positive x and y directions. Given an integer k ≥ 0, how many of these paths pass through (k, n− k)?
Once you find the answer to this question, compare it to previous equalities we proved. This is a very

slick proof technique called double counting or counting two ways.

3

http://en.wikipedia.org/wiki/Double_counting_%28proof_technique%29

a = np . f romfunct ion (np . v e c t o r i z e (f) , (100 , 100))

Save the r e s u l t to an image
mpimg . imsave (” grad i en t . png” , a)

Show the image
p l t . imshow (a)
p l t . show ()

The result is the following image saved in gradient.png. 6

Second, we should explain how to use complex numbers in Python. Fortunately, this is
very easy and requires no additional setup. For example, the number 1+2i is written as 1
+ 2j. All basic arithmetic functions carry over to complex numbers automatically. If you
are interested in using some of the more advanced mathematical functions which typically
reside in the math module (e.g., log, exp), you should instead use the cmath module.

import cmath

z = 1 + 1 j

2 j
print (z ∗∗2)

(1.46869393992+2.28735528718 j)
print (cmath . exp (z))

It is important to understand that functions are first rate objects in Python. They can
be passed to other functions as arguments or returned as output. Consider the following
example.

This func t i on re turns the func t i on ” add i t i on by x”

6 The gradient matrix we constructed has values between 0 and 198. To choose actual RGB colors,
matplotlib uses what is called a colormap. In this case, the lowest values are blue, and the highest values
are red. You can experiment with different colormaps by adding an argument cmap to mpimg.imsave

or plt.imshow. For example, try plt.imshow(a, cmap=’hot’). See http://matplotlib.org/examples/

color/colormaps_reference.html for a complete list of the built in colormaps.

4

http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html

def add i t i on by (x) :
return lambda y : x + y

Given a func t i on f and an input va lue x , t h i s f unc t i on p r i n t s f (x)
def p r i n t v a l u e o f f u n c t i o n (f , x) :

print (f (x))

Prin t s 11
p r i n t v a l u e o f f u n c t i o n (add i t i on by (10) , 1)

We are now ready to describe the fractal images we plan to construct. 7 Given a
complex number c ∈ C, consider the function fc : C → C given by fc(z) = z2 + c. 8 The
image we would like to generate shades the point corresponding to a complex number z
according the behavior of the recursive sequence

z0 = z, zn+1 = fc(z).

Depending on the starting value z, the sequence may converge to 0, diverge, or even
stabilize to a fixed value.

Since infinite sequences are hard to study computationally, we need to simplify our
problem. First, we choose a threshold T > 0 (a real constant). Given an starting point
z, we will construct the sequence zn looking for elements satisfying |zn| > T (imagine this
corresponds to divergence). We will color z according to the smallest value n such that
|zn| > T . To avoid a potentially infinite loop when zn converges to 0, we will use a value
nmax for starting points z such that |zn| ≤ T for all n < nmax.

1. Our fist task is to translate between the image coordinates and complex numbers.
Imagine we would like to use a canvas of size xmax pixels by ymax pixels which should
be mapped to the complex rectangle

{a + bi | amin ≤ a ≤ amax, bmin ≤ b ≤ bmax}.

Write a function complexify(x, y, xmax, ymax, amin, amax, bmin, bmax) re-
turning the complex number a + ib. 9

2. Write a function compute value(z, f, T, nmax) which given a function f (imagine
f = fc for some c ∈ C), computes the value n associated with z, the threshold T ,

7 If you are interested in learning more about this topic, see http://en.wikipedia.org/wiki/Julia_set
and http://en.wikipedia.org/wiki/Mandelbrot_set.

8 In Python, that is f c = lambda c: (lambda z: z**2 + c).
9 This may sound confusing due to the large number of variables involved, but it is quite simple actually.

First, you can break the problem in two parts: determine a from x, xmax, amin, amax, and likewise for b. If
we focus on computing a, the task at hand is mapping the possible values x = 0, . . . , xmax−1 equidistantly
within the interval [amin, amax].

5

http://en.wikipedia.org/wiki/Julia_set
http://en.wikipedia.org/wiki/Mandelbrot_set

and nmax. See above for a detailed description of this process. 10

3. Write a function

draw fractal(f, filename, xmax, ymax, amin, amax, bmin, bmax, T, nmax)

which draws the fractal corresponding to the function f (and the rest of the auxiliary
arguments), and saves it in the file given by filename.

4. Use draw fractal to construct four images given by the following parameters. 11

f xmax ymax amin amax bmin bmax T nmax

fc, c = 1i 500 500 −0.1 0.1 −0.1 0.1 2 25
fc, c = −0.123 + 0.745i 500 500 −1 1 −1 1 100 30
fc, c = −0.75− 0.2i 500 500 −0.5 0.5 −0.5 0.5 10 100
fc, c = −0.75− 0.3i 500 500 −1 1 −1 1 10 130

10 While the functions fc produce many fascinating images, we could also use higher degree polynomials
as well as other trigonometric or transcendental functions. We are implementing compute value in a
generic manner, so we can potentially use it to plot other types of fractals.

11 On my computer, it takes about 5s to construct a 500 × 500 image. If you are trying to debug your
code, try using a lower resolution first (e.g., 100 × 100) until you get everything working.

It is worth noting that our implementation is easy to understand but rather inefficient. The simplest
way to make it faster is by modifying the functions compute value and complexify to operate on matrices
rather than single values. This operation is called vectorization and is one of the main tricks of mod-
ern high-performance computing. We were able to cheat numpy that our functions are vectorized using
np.vectorize.

6

5. (Extra credit) Draw up to 5 other fractals. Try using higher degree polynomials,
trigonometric functions, or other color maps. Be creative!

7

