
MATH 157: Mathematics in the world
Homework 7 (Due April 2rd, 2019 at 1:00PM)

Problem 1

We say that a random variable X has the Poisson distribution with parameter λ > 0 if it
takes values in the non-negative integers and

P(X = k) =
λke−λ

k!

for k ≥ 0. 1

1. Show that E(X) = λ.

2. Show that E(X(X − 1)) = λ2. Use this result to deduce that E(X2) = λ2 + λ and
V ar(X) = λ.

3. What is the probability that X is even? 2

4. Let X1 and X2 be independent Poisson variables with parameters λ1, λ2 > 0 respec-
tively. Show that the sum X = X1 + X2 is Poisson with parameter λ = λ1 + λ2.
3

5. Show that ifX1, . . . , Xn are Poisson variables with respective parameters λ1, . . . , λn >
0, then the sum X =

∑n
i=1Xi is Poisson with parameter λ =

∑n
i=1 λi.

4

1 It is not immediately obvious that the total probability is 1, that is,
∑
k≥0 P(X = k) = 1. This follows

from the expansion

ex =
∑
k≥0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ · · · .

2 Hint: Use the expansions of eλ and e−λ.
3 Hint: Evaluate the sum

P(X = k) =
∑

k1+k2=k
k1,k2≥0

P(X1 = k1, X2 = k2) =
∑

k1+k2=k
k1,k2≥0

P(X1 = k1) · P(X2 = k2).

4 Hint: Use induction and the previous part.
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Problem 2

The variance of a random variable X is given by

V ar(X) = E[(X − E(X))2].

We can generalize this notion by defining the covariance of two variables X and Y as

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))].

The correlation of X and Y is a normalized measure of covariance defined as

Cor(X,Y ) =
Cov(X,Y )√
V ar(X)V ar(Y )

.

Note that both covariance and correlation are symmetric in their inputs:

Cov(X,Y ) = Cov(Y,X), Cor(X,Y ) = Cor(Y,X).

1. Show that V ar(X) = E(X2)− E(X)2 5

2. Show that E(X)2 ≤ E(X2). 6

3. Show that Cov(X,Y ) = E(XY )− E(X)E(Y ).

4. Show that |Cor(X,Y )| ≤ 1. 7

5. Let X,Y be Random variables, find an expression of V ar(aX + bY ) in terms of
a, b, V ar(X), V ar(Y ) and Cov(X,Y ) and prove it.

Problem 3

In class, we talked a little about portfolio theory. In this exercise, we will explore the
application of correlation in modern portfolio theory . Before getting to the details of the
problem we will introduce some basic notions from finance.

The stock (shares) of a company are units of fractional ownership. For example, if a
company A issues 1 million shares, and an investor purchases 10, 000 of them, they will
own 1% of A. While smaller businesses are typically owned by only a few people, larger

5 Hint: You may use the formula E(aX + b) = aE(X) + b for constants a, b.
6 Hint: Use the two expressions for variance above together with the fact that if V ≥ 0 is a non-negative

random variable, then E(V ) ≥ 0.
Remark: This is a special case of Jensen’s inequality which states that if φ is a convex function, then

φ(E(X)) ≤ E(φ(X)) for all random variables X.
7 Hint: It suffices to show that Cov(X,Y )2 ≤ V ar(X)V ar(Y ). We can further reduce to the case that

E(X) = E(Y ) = 0 (adding a constant change the variance or covariance. The statement then reduces to
E(XY )2 ≤ E(X2)E(Y 2) which is the famous Cauchy-Schwartz inequality , a fact you can assume.
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companies prefer (or are forced to) allow public ownership. This means that anyone can
purchase the company’s stock, typically though an exchange.

By fractional ownership, the price of a share of A is related to the value of the entire
company; in turn, that is tied to the performance of the underlying business. Put differ-
ently, the stock price of A tracks the public’s expectation and enthusiasm for the same
company. If we believe A is going to perform well, we can express this view by purchasing
its stock. If the price goes up, we can later sell it back and profit from the transaction.
Ownership of some amount of stock is called a long (position) or going long.

While more counter-intuitive, there is a way to own a negative amount of stock. This
is called a short (position) or going short. Roughly speaking, the mechanics of a short
go as follows. Imagine stock A costs $100 today, and we believe the price will fall to $90
tomorrow. To profit $10 from this knowledge, we would like to buy −1 shares today and
sell them back tomorrow. First, we find someone who already owns 1 share of A and has no
plans to trade it during the next day (e.g., a long-term investor). We enter an agreement
with them to borrow this share today. After we receive the share from our lender, we sell
it to the market today, and earn $100. If the price goes down to $90 tomorrow, we will
buy it back and return the share to the lender. As you can see, this transaction earns us
$10. Putting the details of the transaction aside, the bottom line is that abstractly one
can own a negative amount of any asset. That said, short positions often increase risk, so
it is natural that some investors use long-only strategies.

When investing in larger quantities, the absolute price of a stock is rarely relevant.
The important piece of information is the relative change of price over time. The return
of a stock over a period of time is the relative change in value. For example, if the prices
today and tomorrow are respectively P0 and P1, the associated return is r = (P1−P0)/P0.
When multiple successive periods are studied, using the logarithmic return ln(P1/P0)
instead makes return figures additive. Note that the regular return is the first order
Taylor approximation to the logarithmic return, so for P1 relatively close to P0, we expect
that the two notions produce virtually identical figures.

The price of any stock in the future is an unknown, so we can model it as a random
variable. Likewise, future returns can also be treated as random variables. In this setting,
it is important to have measures for the expected return and its standard deviation, also
called the risk. The correlation of two stocks refers to the correlation of the returns of the
two stocks.

Our discussion so far was focused on a single stock, but the reality is there are quite
a few of them out there (there are around 4000 exchange traded companies in the US).
We are naturally led to the following guiding question: If you receive a large sum of
money, how would you distribute your investments? Even if we assume that we have
solved the extremely difficult problem of computing the expected returns of all stocks are
are interested in, their respective risks, and the associated correlation matrix, figuring the
amount we should invest in each is not trivial. This problem lies at the center of portfolio
theory which won the 1990 Nobel Prize in Economics for Harry Markowitz.

We will use this problem to illustrate the portfolio question for two stocks, A and B.

3

http://en.wikipedia.org/wiki/Public_company
http://en.wikipedia.org/wiki/Stock_exchange
http://en.wikipedia.org/wiki/Short_%28finance%29
http://en.wikipedia.org/wiki/Rate_of_return
http://en.wikipedia.org/wiki/Harry_Markowitz


Assume the expected return of A is 0.1 and of B is 0.2, their risks are respectively 0.1 and
0.2, and they have a correlation of 0.7. Suppose we have a total of $1 to invest in A and
B, and we would like to build portfolios which reflect the following scenarios. 8

1. Find the return-maximizing long-only portfolio.

2. Find the risk-minimizing portfolio. Find the risk-minimizing long-only portfolio. 9

3. How do the answers of the previous question change if the correlation is −0.7 instead?
10

4. Show that a portfolio can achieve arbitrarily large expected returns. What happens
to the risk as the returns increase?

5. Find the return-maximizing portfolio whose risk is bounded by 0.3.

6. The previous few parts should have convinced you that risk or returns alone rarely
tell the whole story. In practice, a better metric is the information ratio defined as
the ratio of expected returns to risk. 11

Find the portfolio with maximal information ratio.

Problem 4

If we choose n points randomly on a fixed circle, what is the probability they will lie in a
semicircle? 12

Problem 5

In class, we have used a geometric method to compute π. In this problem, we will write
a program to implement the method.

Given two independent uniform random variables X and Y , we have

P(X2 + Y 2 ≤ 1) =
π

4
.

8 We are assuming it is possible to own a fractional amount of a share. While this is not true in reality,
the problem goes away once investment capital grows.

The portfolio question boils down to finding numbers a and b (the holdings of A and B respectively)
such that a+ b = 1, and they are optimal in a pre-defined sense.

The answers to the following questions are often not nice round numbers, so feel free to use 3 decimal
point approximations.

9 You may find the Question 2 of this PSet helpful
10 The correlation is different only for this part.
11 The information ratio is closely related to another metric called the Sharpe ratio. While there are

some important differences between the two, the two notions agree within the simplified context of the
problem.

12 If you are doing this problem early, we will discuss this problem with n = 3 on Thursday.
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In class, we explained that this technique can be used to approximate π. The goal of the
present problem is to carry out this plan, and investigate the associated error with these
approximations.

Before going into the details of the task, we will take the opportunity to discuss some
of the advantages vector programming (using NumPy). Consider the following code.

import numpy as np
from t i m e i t import t i m e i t

n = 10∗∗6
t imes = 10

f1 = lambda : [ x∗∗2 for x in xrange (n ) ]
f 2 = lambda : np . arange (n)∗∗2

print ( t i m e i t ( f1 , number = times ) )
print ( t i m e i t ( f2 , number = times ) )

## Prin t s :
## 1.14829111099
## 0.0352470874786

The content of the two functions f1 and f2 is virtually identical. Each of them com-
putes the squares of the first 106 non-negative integers. The two lines involving timeit

run each of the functions 10 times, and print the time it takes to do so (in seconds). As
you can see f1 is significantly slower than f2. In fact, f1 is more than 30 times slower
than f2. The point is that using loops (e.g., while, for, list comprehension) is much slower
than the built-in functionality of NumPy. Of course, arange and the power operator **

are implemented using loops inside NumPy, but these are highly optimized and take ad-
vantage of modern CPU features not available to Python directly. In addition, we can
argue that the function f2 is conceptually simpler. The bottom line is one should always
use the available vector primitives when possible.

1. Write a function pi4(k, n) which returns a k × n matrix each of whose entries are
0 or 1, and the latter of these happens with probability π/4. Don’t use any loops.
Don’t use explicitly the value of π. 13

2. Write a function row cumulative mean which given a matrix X returns the row-wise,

13 Hint: np.random.rand returns a matrix of uniformly distributed random numbers in [0, 1) which you
can use for both X and Y . You can compare matrices with np.less, and change the type of a matrix with
astype.
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cumulative means. For example, if

X =

X11 X12 X13

X21 X22 X23

X31 X32 X33

 ,

then the output should be
X11

X11+X12
2

X11+X12+X13
3

X21
X21+X22

2
X21+X22+X23

3

X31
X31+X32

2
X31+X32+X33

3

 .

Don’t use any loops. 14

3. We can treat the output of pi4 as k × n tests, organized in k experiments (the
rows). Computing the row-wise cumulative means, we get a glimpse of how our
approximations of π/4 evolve as we run more and more tests.

Use n = 105 and k = 10, and plot the evolution of the approximations of π you get
from each of the experiments. Limit the y-axis interval to (π− 0.1, π+ 0.1). 15 You
can use a loop to draw the 10 curves here. What are the final approximations you
get from each of the 10 experiments?

4. Now that we have approximated π, we would like to investigate how the error evolves
as we use more and more tests. Use n = 105 and k = 100 to arrive at a matrix of
approximations for π/4. Plot the column-wise variance on a log-log scale. 16

The square root of the variance, also called standard deviation, is a good measure
of the error in an approximation. Produce the same plot as above with standard
deviations. Don’t use a loop to compute square roots.

14 The row-wise cumulative sums can be computed using np.cumsum. The result should then be divided
by a matrix of the form 1 2 3 · · ·

1 2 3 · · ·
...

...
...

. . .

 .

You can get this using np.fromfunction(lambda x, y: (1 + y), (k, n)).
15 See plt.ylim.
16 See np.var and plt.loglog.
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More generally, consider independent identically distributed random variables T1, . . . , Tn
such that Ti is 1 with probability p ∈ (0, 1) and 0 with probability 1 − p. If Sn =
1/n

∑n
i=1 Ti, then

V ar(Sn) =
1

n2
V ar(

n∑
i=1

Ti)

=
1

n2

n∑
i=1

V ar(Ti)

=
p(1− p)

n
.

The important observation is that the variance of Sn, the n-th approximation of p, is
O(1/n). This is evident from the log-log plot of the variance you produced. It is close to
a line with slope −1. Similarly, the standard deviation is also close to a line but the slope
is −1/2.

The bottom line is that in its simplest form the Monte Carlo method is very slow. If
we want to compute one more decimal place for our approximation, that is, reduce the
error by a factor of 10, the necessary computations increase by a factor of 100. The basic
form of Monte Carlo we presented is almost never used in practice. There are an array of
techniques which improve on this simple idea.
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