MATH 157: Mathematics in the world Notes 9 (February 26, 2019)

Fermat's Little Theorem

If p is a prime number and a is an integer such that (p, a) = 1, then

 $a^{p-1} \equiv 1 \mod p$

1. When p is not prime: example with 6

Is there a number $\phi(6)$ such that for every integer a for which (a, 6) = 1, we have $a^{\phi(6)} \equiv 1 \mod 6$?

2. When p is not prime: example with 8

Is there a number $\phi(8)$ such that for every integer *a* for which (a, 8) = 1, we have $a^{\phi(8)} \equiv 1 \mod 8$?

3. Case pq

Given two different primes p and q, is there a number $\phi(pq)$ such that for every integer a for which (a, pq) = 1, we have $a^{\phi(pq)} \equiv 1 \mod pq$?

4. One less than a perfect square

Find a prime number which is one less than a perfect square. How many can you find?

5. One more than a perfect square

Find a prime number which is one more than a perfect square. How many can you find?

RSA encryption

In the second half of the class we will learn the RSA encryption method.

1. Follow up

Show that if we have two numbers r, s such that $rs \equiv 1 \mod (p-1)(q-1)$, we have

 $(a^r)^s \equiv a \mod pq^1$

¹Hint: what happens to a^e when e is a multiple of (p-1)(q-1)? And what if it has remainder 1 modulo (p-1)(q-1)?

2. Example

Given r, finding s is a very complicated problem. Suppose pq = 143 and r = 7. Can you find an s such that $rs \equiv 1 \mod (p-1)(q-1)$?

3. The rules for RSA

So, here is how the RSA works.

Public keys	Private key
pq (but not p and q)	the exponent s
the exponent r	

So, if you want to send a message containing the number a, you instead send a message containing

```
a^r \mod pq,
```

that you can find easily using the public keys.

The only (efficient) way to recover a from there is to raise a^r to the s-th power, that can be done only by those in possess of the private key s.

4. Example

In the previous example, if we want to pass the message 5, we send the message

$$5^7 \mod 143 = 132.$$

If you send around the number 132, nobody will be able to tell that you started from 5! Unless they know the answer to Problem 2.

5. More complicated example

Let us try a more complicated example! Let us consider pq = 5561, and r = 17. If you go on our Canvas website, under /Files/Programs, you will find a simple Python script that does the encryption for you. The file name is encrypt.py. Please download them now! Below the code for Python 3:

import sys

number = int(sys.argv[1])encrypt = lambda x : pow(x, 17, 5561)

print("the_encrypted_number_is_%d" % (encrypt(number)))

Choose now a number n smaller than 50 (to avoid too long computations). To find its encryption, please go to a Terminal window, place yourselves in your download directory, and type

python encrypt.py n

Of course, I possess a decrypt.py script that decrypts your numbers, I challenge you to find it too! (Only a regular calculator allowed...)

6. Bonus question

Why am I really asking for n to be less than 50?

7. Challenge / Attendance question

I am going to annouce the date of the next attendance day in the following way. First I convert the message into a number using ASCII, and then apply the RSA encryption. The public keys:

 $pq = 51745591491973225412365621703221153183909453236989322964257132764511430700214408 \\ 13686049930484759262931383501447850795108402605037242364547055867469915091907034072859424 \\ 92559357950316199098929123854436863881449757322301807170117302776356126715070031755177228 \\ 03535877691997930747354215173158523449263280136685492160429173510516943220410872681676113 \\ 74580915484718843791545805783538426080582171765238087717576723934156448579527386015239652 \\ 33201875876367323531877985842000972464214144110086414534605032279572845555724439188718144 \\ 77452452967851903876859891357713 \\ \end{cases}$

r = 98698715324965192386409172309487128934678195123

 $\label{eq:message} Message = 388974170770198595091662368159148857596904243232477202896051623851607750683\\ 14259078280230982469271074174810178086887230626523936111137183336871318409012632114623533\\ 82088623575054196229838764229428535588650919635215582006988854853678615028546033658469060\\ 50699705433974604338914189194095561000988386963290982379434994715735445134399415109074207\\ 84769964204725812601551973573228717527309237779781314390680100345773082249880240215516547\\ 31819548967903052709473433074769827343655829405048815656121300951135010068660526734663899\\ 5061778065735773525246034488390999642$

I challenge you to figure out the message! You may use whatever method you know, except for hacking into my computer. You may use http://www.unit-conversion.info/texttools/ascii/ to convert text to numbers or numbers to text using ASCII. Feel free to send me encrypted email or encrypted Canvas post using the public keys given above to check if I truly possess the decrypt file!

When you encrypted your message, make the first character a lower case letter. This is to avoid start with 0 in the ASCII code, which will be discarded in the encryption file.

Extra

Number of 1 digits (given at a Google interview)

For *n* positive integer, let f(n) be the number of 1 digits that you need to write when writing all numbers from 1 to *n* in base 10. For instance, f(13) = 6 because of **1**,**1**0,**11**,**12**,**13**. What is the first number bigger than 1 for which f(n) = n?

Alternating number

We call a positive integer *alternating* if the digits are alternatively even and odd (for instance, 54769 is, 14320 is not). Find all positive integers n that have a multiple that is alternating.