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Preface 

Origin of This Text 

This text has evolved from mathematics courses in the Master of Science in 
Computational Finance (MSCF ) program at Carnegie Mellon University. The 
content of this book has been used successfully with stndents whose math­
ematics background consists of calculus and calculus-based probability. The 
text gives precise statements of results, plausibility arguments, and even some 
proofs, but more importantly, intuitive explanations developed and refined 
through classroom experience with this material are proYided. Exercises con­
clude every chapter. Some of these extend the theory and others are drawn 
from practical problems in quantitative finance. 

The first three chapters of Volume I have been used in a half-semester 
course in the MSCF program. The full Volume I has been used in a full­
semester course in the Carnegie Mellon Bachelor's program in Computational 
Finance. Volume II was developed to support three half-semester courses in 
the MSCF program. 

Dedication 

Since its inception in 1 994, the Carnegie Mellon Master's program in Compu­
tational F inance has graduated hundreds of students. These people, who have 
come from a variety of educational and professional backgrounds, have been 
a joy to teach. They have been eager to learn, asking questions that stimu­
lated thinking, working hard to understand the material both theoretically 
and practically, and often requesting the inclusion of additional topics. Many 
came from the finance industry, and were gracious in sharing their knowledge 
in ways that enhanced the classroom experience for all. 

This text and my own store of knowledge have benefited greatly from 
interactions with the MSCF students, and I continue to learn from the MSCF 
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alumni. I take this opportunity to express gratitude to these students and 
former students by dedicating this work to them. 
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Introduction 

Background 

By awarding Harry Markowitz, William Sharpe, and Merton Miller the 1990 
Nobel Prize in Economics, the Nobel Prize Committee brought to worldwide 
attention the fact that the previous forty years had seen the emergence of 
a new scientific discipline, the "theory of finance." This theory attempts to 
understand how financial markets work, how to make them more efficient, and 
how they should be regulated. It explains and enhances the important role 
these markets play in capital allocation and risk reduction to facilitate eco­
nomic activity. Without losing its application to practical aspects of trading 
and regulation, the theory of finance has become increasingly mathematical, 
to the point that problems in finance are now driving research in mathematics. 

Harry Markowitz's 1952 Ph.D. thesis Portfolio Selection laid the ground­
work for the mathematical theory of finance. Markowitz developed a notion 
of mean return and covariances for common stocks that allowed him to quan­
tify the concept of "diversification" in a market. He showed how to compute 
the mean return and variance for a given portfolio and argued that investors 
should hold only those portfolios whose variance is minimal among all portfo­
lios with a given mean return. Although the language of finance now involves 
stochastic (Ito) calculus, management of risk in a quantifiable manner is the 
underlying theme of the modern theory and practice of quantitative finance. 

In 1969, Robert Merton introduced stochastic calculus into the study of 
finance. Merton was motivated by the desire to understand how prices are 
set in financial markets, which is the classical economics question of "equi­
librium," and in later papers he used the machinery of stochastic calculus to 
begin investigation of this issue. 

At the same time as Merton's work and with Merton's assistance, Fis­
cher Black and Myron Scholes were developing their celebrated option pricing 
formula. This work won the 1997 Nobel Prize in Economics. It provided a 
satisfying solution to an important practical problem, that of finding a fair 
price for a European call option (i.e., the right to buy one share of a given 
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stock at a specified price and time) . In the period 1979-1983, Harrison, Kreps, 
and Pliska used the general theory of continuous-time stochastic processes to 
put the Black-Scholes option-pricing formula on a solid theoretical basis, and, 
as a result, showed how to price numerous other "derivative"' securities. 

Many of the theoretical developments in finance have found immediate 
application in financial markets. To understand how they are applied, we 
digress for a moment on the role of financial institutions. A principal function 
of a nation's financial institutions is to act as a risk-reducing intermediary 
among customers engaged in production. For example, the insurance industry 
pools premiums of many customers and must pay off only the few who actually 
incur losses. But. risk arises in situations for which pooled-premium insurance 
is unavailable. For instance, as a hedge against higher fuel costs, an airline 
may want to buy a security whose value will rise if oil prices rise. But who 
wants to sell such a security? The role of a financial institution is to design 
such a security, determine a "fair" price for it, and sell it to airlines. The 
security thus sold is usually "derivative" ( i .e . ,  its value is based on the value 
of other, identified securities). "Fair" in this context means that the financial 
institution earns just enough from selling the security to enable it to trade 
in other securities whose relation with oil prices is such that, if oil prices do 
indeed rise, the firm can pay off its increased obligation to the airlines. An 
"efficient" market is one in which risk-hedging securities are widely available 
at "fair" prices. 

The Black-Scholes option pricing formula provided. for the first time, a 
theoretical method of fairly pricing a risk-hedging security. If an investment 
bank offers a derivative security at a price that is higher than "fair," it may be 
underbid. If it offers the security at less than the "fair" price, it runs the risk of 
substantial loss. This makes the bank reluctant to offer many of the derivative 
securities that would contribute to market efficiency. In particular, the bank 
only wants to offer derivative securities whose "fair" price can be determined 
in advance. Furthermore, if the bank sells such a security, it must then address 
the hedging problem: how should it manage the risk associated with its new 
position? The mathematical theory growing out of the Black-Scholes option 
pricing formula provides solutions for both the pricing and hedging problems. 
It thus has enabled the creation of a host of specialized derivative securities. 
This theory is the subject of this text. 

Relationship between Volumes I and II 

Volume II treats the continuous-time theory of stochastic calculus within the 
context of finance applications. The presentation of this theory is the raison 
d'etre of this work. Volume I I  includes a self-contained treatment of the prob­
ability theory needed for stochastic calculus, including Brownian motion and 
its properties. 
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Volume I presents many of the same finance applications, but within the 
simpler context of the discrete-time binomial model. It prepares the reader 
for Volume II by treating several fundamental concepts, including martin­
gales, Markov processes, change of measure and risk-neutral pricing in this 
less technical setting. However, Volume II has a self-contained treatment of 
these topics, and strictly speaking, it is not necessary to read Volume I before 
reading Volume II. It is helpful in that the difficult concepts of Volume II are 
first seen in a simpler context in Volume I. 

In the Carnegie Mellon Master's program in Computational Finance, the 
course based on Volume I is a prerequisite for the courses based on Volume 
II. However, graduate students in computer science, finance, mathematics, 
physics and statistics frequently take the courses based on Volume II without 
first taking the course based on Volume I. 

The reader who begins with Volume II may use Volume I as a reference. As 
several concepts are presented in Volume II, reference is made to the analogous 
concepts in Volume I. The reader can at that point choose to read only Volume 
II or to refer to Volume I for a discussion of the concept at hand in a more 
transparent setting. 

Summary of Volume I 

Volume I presents the binomial asset pricing model. Although this model is 
interesting in its own right, and is often the paradigm of practice, here it is 
used primarily as a vehicle for introducing in a simple setting the concepts 
needed for the continuous-time theory of Volume II. 

Chapter 1, The Binomial No-Arbitrage Pricing Model, presents the no­
arbitrage method of option pricing in a binomial model. The mathematics is 
simple, but the profound concept of risk-neutral pricing introduced here is 
not. Chapter 2, Probability Theory on Coin Toss Space, formalizes the results 
of Chapter 1, using the notions of martingales and Markov processes. This 
chapter culminates with the risk-neutral pricing formula for European deriva­
tive securities. The tools used to derive this formula are not really required for 
the derivation in the binomial model, but we need these concepts in Volume II 
and therefore develop them in the simpler discrete-time setting of Volume I. 
Chapter 3, State Pr-ices, discusses the change of measure associated with risk­
neutral pricing of European derivative securities, again as a warm-up exercise 
for change of measure in continuous-time models. An interesting application 
developed here is to solve the problem of optimal (in the sense of expected 
utility maximization ) investment in a binomial model. The ideas of Chapters 
1 to 3 are essential to understanding the methodology of modern quantitative 
finance. They are developed again in Chapters 4 and 5 of Volume II. 

The remaining three chapters of Volume I treat more specialized con­
cepts. Chapter 4, American Derivative Securities, considers derivative secu­
rities whose owner can choose the exercise time. This topic is revisited in 
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a continuous-time context in Chapter 8 of Volume II. Chapter 5, Random 
Walk. explains the reflection principle for random walk. The analogous reflec­
tion principle for Brownian motion plays a prominent role in the derivation of 
pricing formulas for exotic options in Chapter 7 of Volume II. F inally, Chap­
ter 6, Interest-Rate-Dependent Assets, considers models with random interest 
rates, examining the difference between forward and futures prices and intro­
ducing the concept of a forward measure. Forward and futures prices reappear 
at the end of Chapter 5 of Volume II. Forward measures for continuous-time 
models are developed in Chapter 9 of Volume II and used to create forward 
LIBOR models for interest rate movements in Chapter 10 of Volume II. 

Summary of Volume II 

Chapter 1 ,  General Probability Theory, and Chapter 2. Information and Con­
ditioning, of Volume II lay the measure-theoretic foundation for probability 
theory required for a treatment of continuous-time models. Chapter I presents 
probability spaces, Lebesgue integrals, and change of measure. Independence, 
conditional expectations, and properties of conditional expectations are intro­
duced in Chapter 2. These chapters are used extensively throughout the text, 
but some readers. especially those with expo.'lure to probability theory, may 
choose to skip this material at the outset., referring to it as needed. 

Chapter 3, Brownian Motion, introduces Brownian motion and its proper­
ties. The most important of these for stochastic calculus is quadratic variation, 
presented in Section 3.4 .  All of this material is needed in order to proceed, 
except Sections 3 .6 and 3.7. which are used only in Chapter 7, Exotic Options 
and Chapter 8, Early Exercise. 

The core of Volume II is Chapter 4. Stochastic Calculus. Here the Ito 
integral is constructed and Ito's formula (called the ltO-Doeblin formula in 
this text) is developed. Several consequences of the lt6-Doeblin formula are 
worked out. One of these is the characterization of Brownian motion in terms 
of its quadratic variation (Levy's theorem) and another is the Black-Scholes 
equation for a European call price (called the Black-Scholes-Merton equation 
in this text). The only material which the reader may omit is Section 4. 7, 
Brownian Br·id_qe. This topic is included because of its importance in Monte 
Carlo simulation, but it is not used elsewhere in the t!'xt. 

Chapter 5, Risk-Neutral Pricing, st.at!'s and proves Girsanov's Theorem, 
which underlies change of measure. This permits a systematic treatment of 
risk-neutral pricing and the Fundamental Theorems of Asset Pricing (Section 
5 .4) .  Section 5.5. Dividend-Paying Stocb, is not used elsewhere in the text. 
Section 5.6, Forwards and Futures, appears later in Section 9.4 and in some 
exercises. 

Chapter 6. Connections with Partial Differential Equations, develops the 
connection between stochastic calculus and partial differential equations. This 
is used frequently in later chapters. 
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With the exceptions noted above, the material in Chapters 1-6 is fun­
damental for quantitative finance is essential for reading the later chapters. 
After Chapter 6, the reader has choices. 

Chapter 7, Exotic Options, is not used in subsequent chapters, nor is Chap­
ter 8, Early Exercise. Chapter 9, Change of Numemire, plays an important 
role in Section 1 0. 4, Forward LJBOR model, hut is not otherwise used. Chapter 
1 0, Term Structure Models, and Chapter 1 1 , Introduction to Jump Processes, 
are not used elsewhere in the text. 





1 

The Binomial No-Arbitrage Pricing Model 

1.1 One-Period Binomial Model 

The binomial asset-pricing model provides a powerful tool to understand ar­
bitmge pricing theory and probability. In this chapter, we introduce this tool 
for the first purpose, and we take up the second in Chapter 2. In this section, 
we consider the simplest binomial model, the one with only one period. This 
is generalized to the more realistic multiperiod binomial model in the next 
��. . 

For the general one-period model of Figure 1.1.1, we call the beginning of 
the period time zero and the end of the period time one. At time zero, we have 
a stock whose price per share we denote by So, a positive quantity known at 
time zero. At time one, the price per share of this stock will be one of two 
positive values, which we denote S1(H) and S1(T), the H and T standing 
for head and tail, respectively. Thus, we are imagining that a coin is tossed, 
and the outcome of the coin toss determines the price at time one. We do not 
assume this coin is fair (i.e., the probability of hea.d need not be one-half). 
We assume only that the probability of hea.d, which we call p, is positive, and 
the probability of tail, which is q = 1 - p, is also positive. 

/ 
St(H) = uSo 

So 

~ St(T) = dSo 

Fig. 1.1.1. General one-period binomial model. 
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The outcome of the coin toss, and hence the value which the stock price 
will take at time one, is known at t ime one but not at time zero. We shall 
refer to any quantity not known at time zero as random because it depends 
on t he random experiment of tossing a coin. 

We introduce the two positive numbers 

d= S1(T)_ 
So ( 1 . 1 . 1 )  

We assume that d < u: i f  we instead had d > u, we may achieve d < u by 
relabeling the sides of our coin. If d = u, the stock price at time one is not 
really random and the model is uninteresting. We refer to u as the up factor 
and d as the down factor. It is intuitively helpful to think of u as greater than 
one and to think of d as Jess than one, and hence the names up factor and 
down factor, but the mathematics we develop here does not require that these 
inequalities hold. 

We introduce also an interest rate 1". One dollar invested in the money 
market at time zero will yield 1 + r dollars at time one. Conversely, one dollar 
borrowed from the money market at time zero will result in a debt of 1 + r 
at time one. In particular, the interest rate for borrowing is the same as the 
interest rate for investing. It is almost always true that r � 0, and this is 
the case to keep in mind. However, the mathematics we develop requires only 
that r > -1. 

An essential feature of an efficient market is that if a trading strategy can 
turn nothing into something, then it must also run the risk of loss. Otherwise, 
there would be an arbitrage. More specifically. we define arbitrage as a trading 
strategy that begins with no money. has zero probability of losing money, 
and has a positive probability of making money. A mathematical model that 
admits arbitrage cannot be used for analysis. Wealth can be generated from 
nothing in such a model, and the questions one would want the model to 
illuminate are provided with paradoxical answers by the model. Real markets 
sometimes exhibit arbitrage. but this is necessarily fleeting; as soon as someone 
discovers it, trading takes places that removes it . 

In the one-period binomial model. to rule out arbitrage we must assume 

0 < d < 1 + 1" < 1/. ( 1 . 1 .2) 

The inequality d > 0 follows from the positivity of the stock prices and was 
already assumed. The two other inequalities in ( 1 . 1 .2) follow from the absence 
of arbitrage, as we now explain. If d � 1 + r, one could begin with zero wealth 
and at t ime zero borrow from the money market in order to buy stock. Even 
in the worst case of a tail on the coin toss, the stock at t ime one will be worth 
enough to pay off the money market debt and has a positive probability of 
being worth strictly more since u > d � 1 + r. This provides an arbitrage. 
On the other hand, if 1t :::; 1 + 1", one could sell the stock short and invest the 
proceeds in the money market. EVPn in the best case for the stock, the cost of 
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replacing it at time one will be less than or equal to the value of the money 
market investment, and since d < u :::; 1 + r, there is a positive probability 
that the cost of replacing the stock will be strictly less than the value of the 
money market investment. This again provides an arbitrage. 

We have argued in the preceding paragraph that if there is to be no arbi­
trage in the market with the stock and the money market account, then we 
must have (1.1.2). The converse of this is also true. If (1.1.2) holds, then there 
is no arbitrage. See Exercise 1.1. 

It is common to have d = �, and this will be the case in many of our 
examples. However, for the binomial asset-pricing model to make sense, we 
only need to assume ( 1.1. 2). 

Of course, stock price movements are much more complicated than indi­
cated by the binomial asset-pricing model. We consider this simple model for 
three reasons. First of all, within this model, the concept of arbitrage pric­
ing and its relation to risk-neutral pricing is clearly illuminated. Secondly, 
the model is used in practice because, with a sufficient number of periods, 
it provides a reasonably good, computationally tractable approximation to 
continuous-time models. Finally, within the binomial asset-pricing model, we 
can develop the theory of conditional expectations and martingales, which lies 
at the heart of continuous-time models. 

Let us now consider a European call option, which confers on its owner 
the right but not the obligation to buy one share of the stock at time one for 
the strike price K. The interesting case, which we shall assume here, is that 
81 (T) < K < 81 (H). If we get a tail on the toss, the option expires worthless. 
If we get a head on the coin toss, the option can be e:r:ercised and yields a 
profit of 81 (H)-K. We summarize this situation by saying that the option at 
time one is worth (81 -K)+, where the notation (···)+ indicates that we take 
the maximum of the expression in parentheses and zero. Here we follow the 
usual custom in probability of omitting the argument of the random variable 
81 . The fundamental question of option pricing is how much the option is 
worth at time zero before we know whether the coin toss results in head or 
tail. 

The arbitrage pricing theory approach to the option-pricing problem is to 
replicate the option by trading in the stock and money markets. We illustrate 
this with an example, and then we return to the general one-period binomial 
model. 

Example 1 . 1 . 1 . For the particular one-period model of Figure 1.1.2, let S(O) = 
4, u = 2, d = �. and r = l· Then St (H) = 8 and St(T) = 2. Suppose the 
strike price of the European call option is K = 5. Suppose further that we 
begin with an initial wealth X0 = 1.20 and buy Llo = � shares of stock at 
time zero. Since stock costs 4 per share at time zero, we must use our initial 
wealth X0 = 1.20 and borrow an additional 0.80 to do this. This leaves us 
with a cash position Xo- LloSo = -0.80 (i.e., a debt of 0.80 to the money 
market). At time one, our cash position will be (1 + r)(X0- Ll0S0) = -1 
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/ 
St(H) = 8 

So= 4 

~ St(T) = 2 

Fig. 1 . 1.2. Particular one-period binomial model. 

(i .e . ,  we will have a debt of 1 to the money market) .  On the other hand, at 
time one we will have stock valued at either �S1(H) = 4 or �S1(T) = 1 .  In 
particular, if the coin toss results in a head, the value of our portfolio of stock 
and money market account at time one will be 

1 
Xt(H) = 2st(H) + ( 1  + r)(X0- LloSo) = 3; 

if the coin toss results in a tail, the value of our portfolio of stock and money 
market account at time one will be 

1 
Xt(T) = 2sl (T) + ( 1 + r)(X0- LloSo) = 0. 

In either case. the value of the portfolio agrees with the value of the option 
at time one, which is either (St(H)- 5)+ = 3 or (S1(T)- 5)+ = 0. We have 
replicated the option by trading in the stock and money markets. 

The initial wealth 1.20 needed to set up the replicating portfolio described 
above is the no-arbitrage price of the option at time zero. If one could sell 
the option for more than this, say, for 1 . 2 1 ,  then the seller could invest the 
excess 0.01 in the money market and use the remaining 1 .20 to replicate the 
option. At time one, the seller would be able to pay off the option, regardless 
of how the coin tossing turned out, and still have the 0.0125 resulting from 
the money market investment of the excess 0.01 .  This is an arbitrage because 
the seller of the option needs no money initially, and without risk of loss has 
0.0125 at time one. On the other hand, if one c:oulrl buy the option above 
for less than 1 .20, say, for 1. 19, then one should buy the option and set up 
the reverse of the replicating trading strategy described above. In particular, 
sell short one-half share of stock, which generates income 2. Use 1 . 19 to buy 
the option, put 0.80 in the money market, and in a separate money market 
account put the remaining 0.01 . At time one, if there is a head, one needs 4 
to replace the half-share of stock. The option bought at time zero is worth 
3, and the 0.80 invested in the money market at time zero has grown to 1 .  
A t  time one, i f  there is a tail, one needs 1 t o  replace the half-share of stock. 



1.1 One-Period Binomial Model 5 
The option is worthless, but the 0.80 invested in the money market at time 
zero has grown to 1 .  In either case, the buyer of the option has a net zero 
position at time one, plus the separate money market account in which 0.01 
was invested at time zero. Again, there is an arbitrage. 

We have shown that in the market with the stock, the money market, and 
the option, there is an arbitrage unless the time-zero price of the option is 
1 .20. If the time-zero price of the option is 1 .20, then there is no arbitrage 
(see Exercise 1. 2). 0 

The argument in the example above depends on several assumptions. The 
principal ones are: 

• shares of stock can be subdivided for sale or purchase, 
• the interest rate for investing is the same as the interest rate for borrowing, 
• the purchase price of stock is the same as the selling price (i .e . ,  there is 

zero bid-ask spread), 
• at any time, the stock can take only two possible values in the next period. 

All these assumptions except the last also underlie the Black-Scholes-Merton 
option-pricing formula. The first of these assumptions is essentially satisfied 
in practice because option pricing and hedging (replication) typically involve 
lots of options. If we had considered 100 options rather than one option in 
Example 1 . 1 . 1 ,  we would have hedged the short position by buying ..10 = 50 
shares of stock rather than ..10 = � of a share. The second assumption is close 
to being true for large institutions. The third assumption is not satisfied in 
practice. Sometimes the bid-ask spread can be ignored because not too much 
trading is taking place. In other situations, this departure of the model from 
reality becomes a serious issue. In the Black-Scholes-Merton model, the fourth 
assumption is replaced by the assumption that the stock price is a geometric 
Brownian motion . Empirical studies of stock price returns have consistently 
shown this not to be the case. Once again, the departure of the model from 
reality can be significant in some situations, but in other situations the model 
works remarkably well. We shall develop a modeling framework that extends 
far beyond the geometric Brownian motion assumption, a framework that 
includes many of the more sophisticated models that are not tied to this 
assumption. 

In the general one-period model, we define a derivative security to be a 
security that pays some amount V1 (H) at time one if the coin toss results 
in head and pays a possibly different amount V1 (T) at time one if the coin 
toss results in tail. A European call option is a particular kind of derivative 
security. Another is the European put option, which pays off (K - Sl)+ at 
time one, where K is a constant. A third is a forward contract, whose value 
at time one is S1 - K. 

To determine the price V0 at time zero for a derivative security, we replicate 
it as in Example 1 .1 .1 .  Suppose we begin with wealth X0 and buy ..10 shares 
of stock at time zero, leaving us with a cash position X0- ..1080. The value 
of our portfolio of stock and money market account at time one is 
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X, = ..1oS, + (1 + r)(Xo- LloSo) = (1 + r)Xo + ..1o(S, -(1 + r)So). 

We want to choose X0 and ..10 so that XI( H) = V1 (H) and X1 (T) = V1 (T). 
(Note here that V1 (H) and V1 (T) are given quantities, the amounts the deriva­
tive security will pay off depending on the outcome of the coin tosses. At time 
zero, we know what the two possibilities V1 (H) and V1 (T) are; we do not know 
which of these two possibilities will be realized.) Replication of the derivative 
security thus requires that 

Xo + Llo (-1-S1(H)-So) = -1-V,(H), 1+r 1+r 

Xo + Llo (-1-S,(T)-So) = -1-VJ(T). 1+r 1+r 

(1.1.3) 

(1.1.4) 

One way to solve these two equations in two unknowns is to multiply the first 
by a number p and the second by q = 1 -p and then add them to get 

Xo + Llo c � r (PS1(H) + iiSt(T)]- So)= 1 � r [pV,(H) + qV,(T)]. 
(1.1.5) 

If we choose p so that 

1 So= -1 - [pS,(H) + ijS1(T)], +r (1.1.6) 

then the term multiplying Ll0 in (1.1.5) is zero, and we have the simple formula 
for Xo 

X0 = -1- [pVJ(H) + ijV,(T)]. 1+r 
We can solve for p directly from (1.1.6) in the form 

S0 = -1- [puSo + (1- p)dSo] = __§____ [(u- d)p + d]. 1+r 1+r 

This leads to the formulas 

_ 1+r-d p = ---:-­u-d ' 
u-1-r 

q=--­u-d 

(1.1. 7) 

(1.1.8) 

We can solve for Ll0 by simply subtracting (1.1.4) from (1.1.3) to get the 
delta-hedging formula 

Llo = V1(H)- V1(T)
. S1(H)- SJ(T) ( 1 . 1 .9) 

In conclusion, if an agent begins with wealth X0 given by (1.1.7) and at time 
zero buys Ll0 shares of stock, given by ( 1 . 1 .9), then at time one, if the coin toss 
results in head, the agent will have a portfolio worth V1(H), and if the coin 
toss results in tail, the portfolio will be worth VI(T). The agent has hedged a 
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short position in the derivative security. The derivative security that pays V1 
at time one should be priced at 

V0 = -
1
- [PV1(H) + qVJ(T)] 

1+r 
(1.1.10} 

at time zero. This price permits the seller to hedge the short position in the 
claim. This price does not introduce an arbitrage when the derivative security 
is added to the market comprising the stock and money market account; any 
other time-zero price would introduce an arbitrage. 

Although we have determined the no-arbitrage price of a derivative secu­
rity by setting up a hedge for a short position in the security, one could just 
as well consider the hedge for a long position. An agent with a long position 
owns an asset having a certain value, and the agent may wish to set up a 
hedge to protect against loss of that value. This is how practitioners think 
about hedging. The number of shares of the underlying stock held by a long 
position hedge is the negative of the number determined by (1.1.9). Exercises 
1.6 and 1. 7 consider this is more detail. 

The numbers p and q given by (1.1.8) are both positive because of the 
no-arbitrage condition (1.1.2}, and they sum to one. For this reason, we can 
regard them as probabilities of head and tail, respectivdy. They are not the 
actual probabilities, which we call p and q, but rather the so-called risk-neutral 

probabilities. Under the actual probabilities, the average rate of growth of the 
stock is typically strictly greater than the rate of growth of an investment in 
the money market; otherwise, no one would want to incur the risk associated 
with investing in the stock. Thus, p and q = 1 - p should satisfy 

1 
So< -

1 
- [pS 1 ( H ) +qSJ(T)], 
+ r  

whereas fj and ii satisfy (1.1.6}. H the average rate of growth of the stock were 
exactly the same as the rate of growth of the money market investment, then 
investors must be neutral about risk-they do not require compensation for 
assuming it, nor are they willing to pay extra for it. This is simply not the case, 
and hence p and ii cannot be the actual probabilities. They are only numbers 
that assist us in the solution of the two equations (1.1.3} and (1.1.4} in the 
two unknowns Xo and L\o. They assist us by making the term multiplying the 
unknown L\o in (1.1.5) drop out. In fact, because they are chosen to make the 
mean rate of growth of the stock appear to equal the rate of growth of the 
money market account, they make the mean rate of growth of any portfolio 
of stock and money market account appear to equal the rate of growth of the 
money market asset. If we want to construct a portfolio whose value at time 
one is V1, then its value at time zero must be given by (1.1. 7}, so that its 
mean rate of growth under the risk-neutral probabilities is the rate of growth 
of the money market investment. 

The concluding equation (1.1.10) for the time-zero price V0 of the deriva­
tive security V1 is called the risk-neutral pricing formula for the one-period 
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binomial model. One should not be concerned that the actual probabilities 
do not appear in this equation. We have constructed a hedge for a short po­
sition in the derivative security, and this hedge works regardless of whether 
the stock goes up or down. The probabilities of the up and down moves are 
irrelevant. What matters i!'i the size of the two possible moves (the values of 
u and d). In the binomial model, the prices of derivative securities depend 
on the set of possible stock price paths but not on how probable these paths 
are. As we shall see in Chapters 4 and 5 of Volume II, the analogous fact for 
continuous-time models is that prices of derivative securities depend on the 
volatility of stock prices but not on their mean rates of growth. 

1.2 Multiperiod Binomial Model 

We now extend the ideas in Section 1.1 to multiple periods. We toss a coin 
repeatedly, and whenever we get a head the stock price moves "up" by the 
factor u, whereas whenever we get a tail, the stock price moves "down" by 
the factor d. In addition to this stock, there is a money market asset with a 
constant interest rate r. The only assumption we make on these parameters 
is the no-arbitrage condition ( 1.1.2). 

So 

Fig. 1.2.1. General three-period model. 

We denote the initial stock price by S0, which is positive. We denote the 
price at time one by S1 (H) = uSo if the first toss results in head and by 
S1 (T) = dS0 if the first toss results in tail. After the second toss, the price 
will be one of: 
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S2(H H) = uS1(H) = u2S0, S2(HT) = dS1(H) = duSo, 

S2(TH) = uS1(T) = udSo, S2(TT) = dS1(T) =�So. 

After three tosses, there are eight possible coin sequences, although not all of 
them result in different stock prices at time 3. See Figure 1.2.1. 

Example 1.2.1. Consider the particular three-period model with So= 4, u = 
2, and d = 4. We have the binomial "tree" of possible stock prices shown in 
Figure 1.2.2. 0 

Fig. 1.2.2. A particular three-period model. 

Let us return to the general three-period binomial model of Figure 1.2.1 
and consider a European call that confers the right to buy one share of stock 
for K dollars at time two. After the discussion of this option, we extend the 
analysis to an arbitrary European derivative security that expires at time 
N�2. 

At expiration, the payoff of a call option with strike price K and expiration 
time two is V2 = (S2- K)+, where V2 and S2 depend on the first and second 
coin tosses. We want to determine the no-arbitrage price for this option at time 
zero. Suppose an agent sells the option at time zero for Vil dollars, where Vo is 
still to be determined. She then buys Ll0 shares of stock, investing Vo - Ll0S0 
dollars in the money market to finance this. {The quantity Vo - LloSo will 
turn out to be negative, so the agent is actually borrowing LloSo - Vo dollars 
from the money market.) At time one, the agent has a portfolio (excluding 
the short position in the option) valued at 

X1 = LloS1 + (1 + r)(Vo - LloSo). ( 1.2.1) 
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Although we do not indicate it in the notation, S1 and therefore X1 depend 
on the outcome of the first coin toss. Thus, there are really two equations 
implicit in ( 1 .2 . 1 ) :  

XI (H) = d0St(H) + ( 1  + r)(Vo- doSo), 
Xt(T) = doSt (T) + (1 + r)(Vo- doSo). 

( 1 .2.2) 

( 1 .2.3) 

After the first coin toss, the agent has a portfolio valued at X1 dollars and can 
readjust her hedge. Suppose she decides now to hold 6.1  shares of stock, where 
6.1 is allowed to depend on the first coin toss because the agent knows the 
result of this toss at time one when she chooses .11. She invests the remainder 
of her W!:'alth, X 1- 6.1 S1, in the money market. In the next period, her wealth 
will be given by the right-hand side of the following equation, and she wants 
it to be V2. Therefore, she wants to have 

( 1 .2.4) 

Although we do not indicate it in the notation, S2 and V2 depend on the 
outcomes of the first two coin tosses. Considering all four possible outcomes, 
we can write ( 1 .2.4) as four equations: 

V2 (HH) = dt (H)S2(H H) + ( 1  + r)(X1 (H)- dt (H)St (H)), 
V2 (HT) = L11(H)S2(HT) + ( 1  + r)(X1 (H) - Llt(H)St (H)), 
V2(TH) = L11 (T)S2(TH) + ( 1  + r)(XJ (T) - d t (T)SJ (T)). 
\;'2(TT) = L1J (T)S2(TT) + ( 1 + r)(XJ (T)- L1 1 (T)S1 (T)). 

( 1 .2 .5) 

( 1 .2 .6) 

( 1 .2 .7) 

( 1 .2 .8) 

We now have six equations, the two represented by ( 1 . 2 . 1 )  and the four rep­
resented by ( 1 .2 .4) ,  in the six unknowns Vo, 110, 111 (H), L1I (T), X1 (H). and 
Xt(T). 

To solve these equations, and thereby determine the no-arbitrage price V0 
at time zero of the option and the replicating portfolio Llo, 6.1 (H), and 6.1 (T), 
we begin with the last two equations, ( 1 .2 .  7) and ( 1 .2 .8) . Subtracting ( 1 . 2.8) 
from (1 .2.7) and solving for d1(T), we obtain the delta-hedging formula 

( 1 .2.9) 

and substituting this into either ( 1 .2.7) or ( 1 .2 .8) ,  we can solve for 

( 1 . 2 . 10) 

where p and ij are the risk-neutral probabilities given by ( 1 . 1 .8) .  We can also 
obtain ( 1 .2. 10) by multiplying ( 1 .2 .7) by p and ( 1 .2 .8) by ij and adding them 
together. Since 
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this causes all the terms involving L11 (T) to drop out. Equation (1.2.10) gives 
the value the replicating portfolio should have at time one if the stock goes 
down between times zero and one. We define this quantity to be the price of 
the option at time one if the first coin toss results in tail, and we denote it by 
V1 (T). We have just shown that 

(1.2. 1 1 )  

which is another instance of the risk-neutral pricing formula. This formula 
is analogous to formula ( 1 .1.10) but postponed by one period . The first two 
equations, ( 1 .2.5) and ( 1 .2.6), lead in a similar way to the formulas 

(1.2.12) 

and X1 (H) = V1 (H), where V1 (H) is the price of the option at time one if 
the first toss results in head, defined by 

(1.2.13) 

This is again analogous to formula (1.1.10) , postponed by one period. Finally, 
we plug the values XI ( H) = VI (H) and X1 (T) = V1 (T) into the two equations 
implicit in ( 1.2. 1 ) .  The solution of these equations for L10 and V0 is the same 
as the solution of ( 1 .1.3) and (1.1.4 )  and results again in (1.1.9) and ( 1 .1.10) . 

To recap, we have three stochastic processes, (L10, L11 ) , (X0, X� , X2), and 
(V0 ,  VI , V2). By stochastic process, we mean a sequence of random variables 
indexed by time. These quantities are random because they depend on the 
coin tosses; indeed, the subscript on each variable indieates the number of 
coin tosses on which it depends. If we begin with any initial wealth X0 and 
specify values for L10 , Lli (H), and Lli (T), then we can compute the value 
of the portfolio that holds the number of shares of stock indicated by these 
specifications and finances this by borrowing or investing in the money market 
as necessary. Indeed, the value of this portfolio is defined mcursively, beginning 
with X0, via the wealth equation 

( 1 .2.14) 

One might regard this as a contingent equation; it defines random variables, 
and actual values of these random variables are not resolved until the out­
comes of the coin tossing are revealed. Nonetheless, already at time zero this 
equation permits us to compute what the value of the portfolio will be at 
every subsequent time under every coin-toss scenario. 

For a derivative security expiring at time two, the random variable V2 is 
contractually specified in a way that is contingent upon the coin tossing (e.g., 
if the coin tossing results in WIW2 ,  so the stock price at time two is S2 (wiw2) ,  
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then for the European call we have V2(w1wz) = (Sz(w1wz)- K)+). We want to 
determine a value of X0 and values for ..10, .11 (H), and ..11 (T) so that X2 given 
by applying (1.2.14) recursively satisfies Xz(w1wz) = Vz(w1w2), regardless of 
the values of w1 and w2. The formulas above tell us how to do this. We call V0 
the value of X0 that allows liS to accomplish this, and we define V1 (H) and 
V1 (T) to he the val11es of X1(H) ami X1(T) given by (1.2.14) when X0 and 
Llo are chosen by the prescriptions above. In general, we 11se the symbols Ll,. 
and X n to represent the number of shares of stock held by the portfolio anrl 
the corresponding portfolio values, respectively, regardless of how the initial 
wealth Xo and the Lln are chosen. When X0 and the Lln are chosen to replicate 
a derivative security, we use the symbol Vn in place of Xn and call this the 
(no-arbitrage) price of the derivative security at time n. 

The pattern that emerged with the European call expiring at time two 
persists, regardless of the number of periods and the definition of the final 
payoff of the derivative security. (At this point, however, we are considering 
only payoffs that come at a specified time: there is no possibility of early 
exercise.} 

Theorem 1.2.2 (Replication in the multiperiod binomial model). 
Consider an N -period binomial asset-pricing model, with 0 < d < 1 + r < u, 
and with 

_ 1 + r - d  
p = u - d ' 

u - 1 - r 
q =  . 

u - d  
(1.2.15) 

Let VN be a random variable {a derivative security paying off at time N) 
depending on the first N coin tosses w1 w2 . . .  w N .  Define recursively backward 
in time the sequence of random variables VN-1 ,  VN-z, . . .  , Vo by 

Vn(WtW2 . . .  w,.) = -
1
- [J3Vn+t (WtW2 . . .  wnH) + qVn+t(WtW2 . . .  wnT)], 

1 + 1. 
(1.2.16) 

so that each Vn depends on the first n coin tosses w1w2 . . .  wn, where n ranges 
between N - 1 and 0. Next define 

A ( ) - Vn+t (WJ . . .  wnH) - Vn+I (Wt · · · wnT) 
L.Jn W] . • .  Wn - ( ) S ( ) , Sn+l Wt . . .  wnH - n+l WI . . .  wnT 

(1.2.17) 

where again n ranges between 0 and N - 1. If we set Xo = V0 and define 
recursively forward in time the portfolio values X,, Xz . . . . , XN by {1.2.14), 
then we will have 

( 1. 2.18) 

Definition 1.2.3. For n = 1, 2, . . . , N, the random variable Vn(w1 • . .  wtt) in 
Theorem 1.2.2 is defined to be the price of the derivative secmity at time n 
if the outcomes of the first n tosses are w1 . . .  Wn. The price of the derivative 
security at time zero is defined to be Vo. 
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PROOF OF THEOREM 1.2.2: We prove by forward induction on n that 

(1.2.19) 

where n ranges between 0 and N. The case of n = 0 is given by the definition 
of Xo as V0. The case of n = N is what we want to show. 

For the induction step, we assume that {1.2.19) holds for some value of 
n less than N and show that it holds for n + 1. We thus let w1w2 . . .  WnWn+t 
be fixed but arbitrary and assume as the induction hypothesis that (1.2.19) 
holds for the particular w1w2 . . .  w" we have fixed. We don't know whether 
wn+l = H or Wn+l = T, so we consider both cases. We first use (1.2.14) to 
compute Xn+l (w1w2 . . . WnH), to wit 

Xn+l {WtW2 · . . WnH) 
= Lln(WtW2 . . .  wn)uSn(WtW2 . . .  w,..) 

+{1 + r) ( Xn(WtW2 . . .  w,.. ) - Lln(WtW2 . . . Wn)Sn(WtW2 . . .  Wn)) . 

To simplify the notation, we suppress w1w2 . . .  wn and write this equation 
simply as 

Xn+t {H) = Ll,..uS.,.. + {1  + r)(Xn - LlnSn)· 
With w1w2 . . .  wn similarly suppressed, we have from (1.2.17) that 

Ll,.. = 
V,..+t(H) - Vn+ l(T) 

= 
Vn+t(H) - Vn+t (T) . 

Sn+l (H) - Sn+ 1 (T) ( U - d)S'l 

{1 .2.20) 

Substituting this into (1.2.20) and using the induction hypothesis (1.2.19) and 
the definition (1.2.16) of Vn, we see that 

Xn+l (H) = (1  + r)Xn + LlnSn(u - {1 + r)) 

( 
)v. CVn+t(H) - Vn+t(T)){u - (l + r)) 

= l + r  n +  
d u -

= (1 + r)Vn + qVn+t(H) - qV,..+t(T) 
= fiVn+t(H) + qVn+t(T) + qVn+t(H) - qV,..+I(T) 

= Vn+t(H). 

Reinstating the suppressed coin tosses WtW2 . . .  Wn, we may write this as 

Xn+l {WtW2 . . .  w,..H) = Vn+l (wtW2 . . .  WnH). 

A similar argument (see Exercise 1.4) shows that 

Xn+t(WtW2 . . .  wnT) = Vn+I(WtW2 . . .  wnT). 

Consequently, regardless of whether Wn+t = H or Wn+t = T, we have 
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Since w1w2 . . .  w11wn+l is arbitrary, the induction step is complete. 0 
The multiperiod binomial model of this section is said to be complete be­

cause every derivative security can be replicated by trading in the underlying 
stock and the money market. In a complete market, every derivative security 
has a unique price that precludes arbitrage, and this is the price of Definition 
1.2.3. 

Theorem 1.2.2 applies to so-called path-dependent options as well as to 
derivative securities whose payoff depends only on the final stock price. We 
illustrate this point with the following example. 

Example 1.2.4- Suppose as in Figure 1.2.2 t.hat. So = 4, n = 2, ancl d = 4· 
Assume the interest rate is r = ! . Then fj = q = 4. Consider a lookhn.ck option 
t.hat pays off 

at time three. Then 

V3(HHH) = S3(HHH) - S3(HHH) = 32 - 32 = 0, 
V3(H HT) = S2(H H) - S3(H HT) = 16 - 8 = 8, 
V3(HTH) = S1(H) - S3(HTH) 8 - 8  = 0, 
V3(HTT) = S1 (H) - S3(HTT) = 8 - 2 = 6, 
V3(THH) = S3(THH) - S3(THH) = 8 - 8 = 0, 
Va(THT) = S2(TH) - S3(THT) 4 - 2 2, 
V3(TTH) = So - S3(TTH) = 4 - 2 = 2, 
V3(TTT) = So - S3(TTT) = 4 - 0.50 = 3.50. 

We compute the price of the option at other times using the backward recur­
sion (1.2.16). This gives 

and then 

V2(HH) = � [�V3(HHH) + �V3(HHT)] = 3.20, 

V2(HT) = � [�V3(HTH) + �V3(HTT)] = 2.40, 

V2(TH) = � [�V3(THH) + �V3(THT)] = 0.80, 

= 2.20, 

v. (H) = � GV2(HH) + �V2(HT)] = 2.24, 

4 [ 1 1 l 
Vt(T) = 5 2 V2(T H) + 2 V2(TT) j = 1.20, 
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V0 = � [�Vt (H) + �Vt (T)] = 1 .376. 

If an agent sells the lookback option at time zero for 1 .376, she can hedge her 
short position in the option by buying 

.do= V1(H)-V1(T) = 2.24 - 1.20 = 0.1733 St (H)-St (T) 8 - 2 

shares of stock. This costs 0.6933 dollars, which leaves her with 1.376 -
0.6933 = 0.6827 to invest in the money market at 25% interest. At time 
one, she will have 0.8533 in the money market. If the stock goes up in price to 
8, then at time one her stock is worth 1.3867, and so her total portfolio value 
is 2.24, which is V1 (H). If the stock goes down in price to 2, then at time 
one her stock is worth 0.3467 and so her total portfolio value is 1 .20, which 
is V1 (T). Continuing this process, the agent can be sure to have a portfolio 
worth V3 at time three, no matter how the coin tossing turns out. 0 

1.3 Computational Cons iderations 

The amount of computation required by a naive implementation of the deriva­
tive security pricing algorithm given in Theorem 1.2.2 grows exponentially 
with the number of periods. The binomial models used in practice often have 
100 or more periods, and there are 2100 � 1030 possible outcomes for a se­
quence of 100 coin tosses. An algorithm that begins by tabulating 2100 values 
for V100 is not computationally practical. 

Fortunately, the algorithm given in Theorem 1.2.2 can usually be organized 
in a computationally efficient manner. We illustrate this with two examples. 

Example 1 . 3. 1 . In the model with So = 4, u = 2, d = 4 and r = � , consider 
the problem of pricing a European put with strike price K = 5, expiring at 
time three. The risk-neutral probabilities are p = 4 ,  ij = � .  The stock process 
is shown in Figure 1.2.2. The payoff of the option, given by V3 = (5-S3)+ , 
can be tabulated as 

V3 (HHH) = 0, V3(HHT) = V1 (HTH) = V3 (THH) = 0 
V3(HTT) = V3 (THT) = V3 (TTH) = 3, V3 (TTT) = 4.50. 

There are 23 = 8 entries in this table, but an obvious simplification is possible. 
Let us denote by v3 (s) the payoff of the option at time three when the stock 
price at time three is s. Whereas V3 has the sequence of three coin tosses as 
its argument, the argument of v3 is a stock price. At time three there are only 
four possible stock prices, and we can tabulate the relevant values of v3 as 

VJ(32) = 0, v3(8) = 0, v3(2) = 3, v3(.50) =, 4.50. 
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If the put expired after 100 periods, the argument of Vwo would range over the 
2100 possible outcomes of the coin tosses whereas the argument of v100 would 
range over the 101 possible stock prices at time 100. This is a tremendous 
reduction in computational complexity. 

According to Theorem 1 .2 .2 ,  we compute V2 by the formula 

( 1 .3.1 )  

Equation ( 1 .3.1)  represents four equations, one for each possible choice of 
w1 w2. We let v2 ( 8) denote the price of the put at time two if the stock price 
at time two is 8. In terms of this function, ( 1.3.1 )  takes the form 

and this represents only three equations, one for each possible value of the 
stock price at time two. Indeed, we may compute 

Similarly, 

v2 ( 16) = � [v3 (32) + v3 (8)] = 0. 

v2 (4) = � [v3 (8) + v3 (2)) = 1 .20, 

v2 ( 1 )  = � [v3 (2) + v3 ( .so)] = 3. 

v, (8) = � [v2 ( 16) + v2 (4)] = 0.48, 

v,(2) = Hv2 (4) +v2( 1 )] = 1.68, 

where v1 ( 8) denotes the price of the put at. time one if the stock price at time 
one is 8. The price of the put at time zero is 

At each time n = 0, 1 .  2, if the stock price is 8, the number of shares of stock 
that should be held by the replicating portfolio is 

£ ( ) _ Vn+1 (28) - Vn+I ( �8) 
Un 8 - I 2s- 2 8  

. This is the analogue o f  formula ( 1 .2 . 17) .  D 
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In Example 1.3.1, the price of the option at any time n was a function of the 
stock price Sn at that time and did not otherwise depend on the coin tosses. 
This permitted the introduction of the functions Vn related to the random 
variables Vn by the formula v;, = vn(Sn)· A similar reduction is often possible 
when the price of the option does depend on the stock price path rather than 
just the current stock price. We illustrate this with a second example. 

Example 1 .3. 2. Consider the lookback option of Example 1 .2.4. At each time 
n, the price of the option can be written a.'l a function of the stock price Sn 
and the maximum stock price Afn = maxo�k�n Sk to date. At time three, 
there are six possible pairs of values for (S3, 1\13), namely 

(32, 32), (8, 16), (8, 8), (2, 8), (2, 4), (.50, 4). 

We define VJ(S, m) to be the payoff of the option at time three if s3 = s and 
AJ3 = m. We have 

VJ(32, 32) = 0, V3(8, 16) = 8, V3(8, 8) = 0, 
VJ(2, 8) = 6, VJ(2, 4) = 2, VJ(.50, 4) = 3.50. 

In general, let vn(s, m) denote the value of the option at t.ime n if Sn = s and 
Ain = m. The algorithm of Theorem 1.2.2 can be rewritten in terms of the 
functions Vn a.'l 

Vn (tl, m) = Hvn+ l (28, m V (2s)) + Vn+ l ( �s ,  m)] , 

where m V (2s) denotes the maximum of m and 2s. Using this algorithm, we 
compute 

then compute 

v2(16, 16) = � [v3(32, 32) + v2(8, 16)) = 3.20, 

v2(4, 8) = � [v3(8, 8) + v3(2, 8)] = 2.40, 

v2(4, 4)= � [v3(8, 8) + v3(2, 4)] = 0.80, 

v2(1, 4)= � [v3(2, 4) + v3(.50, 4)] = 2.20, 

Vt (8, 8) = � [v2(16, 16) + v2(4, 8)] = 2.24, 

vl (2 , 4) = � [vi (4, 4) + v1 (1, 4)] = 1.20, 

and finally obtain the time-zero price 

vo(4, 4) = � [v1(8, 8) + vi (2, 4)] 1.376. 
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At each time n = 0. 1 .  2. if the stock price is s and the maximum stock price to 
date is m, the number of shares of stock that should be held by the replicating 
portfolio is 

r 'IJ11+t(28. m V (2s)) - 11nH ( �s, m) 
u,.(s, m) = 1 

2s - 2s 

This is the analogue o f  formula ( 1.2.17). 

1.4 Summary 

0 

This chapter considers a mnltiperiorl binomial model. At each period in this 
model. we toss a coin whose outcome determines whether t.he stock price 
changes by a factor of u or a factor of d, where 0 < d < 1L. In addition to 

the stock, there is a money market account with per-period rate of interest r. 
This is the rate of interest appHerl to both investing and borrowing. 

Arbitrage is a trading strategy that begins with zero capital and t.rades in 
the stock and money markets in order to make money with positive probabil­
ity without any possibility of losing money. The multiperiod binomio.l model 
admits no arbitrage if and only if 

0 < d < 1 + I' < 11. ( 1.1.2) 

We shall always impose this condition. 
A derivative security pays off at some expiration time N contingent. upon 

the coin tosses in the first N periods. The m·bitrage pricing theory method of 
assigning a price to a derivative sccmity prior to expirAtion can be understood 
in two ways. First. one can ask how to assign a price so that one cannot form 
an arbitrage by trading in the derivative security, the underlying stock, and 
the money market. This no-arbltrage condition uniquely determines the price 

at. all times of the derivative security. Secondly. at any time n prior to the 

expiration time N, one can imagine selling the derivative security for a price 
and using the income from this sale t.o form a portfolio, dynamically trading 
the stock and money market asset from time n until the expiration time N. 
This portfolio hedges the short position in the derivative security if its value 
at time N 11grees with the payoff of the derivative security. regardless of the 
outcome of the coin tossing between t.irnes n and N. The amount for which the 
derivative security must be sold. at time n in order to construct this hedge of 

t.hc Rhort. position iR t.he same no-arbitrage price ohtained by the firRt. pricing 
method. 

The no-arbitrage price of the derivative security that pays VN at time N 
can he computed recursively, backward in time, by the formula 
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The number of shares of the stock that should be held by a portfolio hedging 
a short position in the derivative security is given by 

( 1 .2.17) 

The numbers p and ij appearing in ( 1 .2.16) are the risk-neutral probabilities 
given by 

l + r - d  
p =  ---..,-­u - d ' 

u - 1 - r  ij = d 
. 

u -
( 1 .2.15) 

These risk-neutral probabilities are positive because of (1.1.2) and sum to 
1. They have the property that, at any time, the price of the stock is the 
discounted risk-neutral average of its two possible prices at the next time: 

Sn(WI . . .  Wn ) = -
1
- [fiSn+1 (w1 . . .  WnH) + ii.Sn+l  (w1 . . .  WnT)] . 

1 + r 

In other wo�ds, under the risk-neutral probabilities, the mean rate of return for 
the stock is r, the same as the rate of return for the money market. Therefore, 
if these probabilities actually governed the coin tossing (in fact, they do not) , 
then an agent trading in the money market account and stock would have 
before him two opportunities, both of which provide the same mean rate of 
return. Consequently, no matter how he invests, the mean rate of return for 
his portfolio would also be r. In particular, if it is time N - 1 and he wants 
his portfolio value to be VN(w1 . . .  WN) at time N, then at time N - 1 his 
portfolio value must be 

-
1
- [fJVN(WI . . . WN-1/l) + ijVN(WI . . . WN--1T)] · 1 + r  

This is the right-hand side of ( 1.2. 16) with n = N -1, and repeated application 
of this argument yields (1.2 .16) for all values of n. 

The explanation of (1.2.16) above was given under a condition contrary to 
fact, namely that p and ij govern the coin tossing. One can ask whether such an 
argument can result in a valid conclusion. It does result in a valid conclusion 
for the following reason. When hedging a short position in a derivative security, 
we want the hedge to give us a portfolio that agrees with the payoff of the 
derivative security regardless of the coin tossing. In other words, the hedge 
must work on all stock price paths. If a path is possible (i.e. , has positive 
probability), we want the hedge to work along that path. The actual value 
of the probability is irrelevant. We find these hedges by solving a system 
of equations along the paths, a system of the form (1.2.2)-( 1 .2.3) , (1 .2.5)­
( 1.2.8). There are no probabilities in this system. Introducing the risk-neutral 
probabilities allows us to argue as above and find a solution to the system. 
Introducing any other probabilities would not allow such a.n argument because 
only the risk-neutral probabilities allow us to state that no matter how the 
agent invests, the mean rate of return for his portfolio is r. The risk-neutral 
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probabilities provide a shortcut to solving the system of equations. The actual 
probabilities are no help in solving this system. Under the actual probabilities, 
the mean rate of return for a portfolio depends on the portfolio, and when we 
are trying to solve the system of equations, we do not know which portfolio 
we should use. 

Alternatively. one can explain ( 1 .2. 16) without recourse to any discussion 
of probability. This was the approach taken in thl' proof of Theorl'm 1 .2 .2 . 
The numbers p and ij were uspd in that proof, hut they Wl'r(' not regarded as 
probabilities, just numbers defined by the formula ( 1 .2 . 15 ) . 

1.5 Notes 

No-arbitrage pricing is implicit in the work of Black and Scholes [5] . but its 
first explicit development is provided by Merton [34] , who began with the 
axiom of no-arbitrage and obtained a surprising number of conclusions. No 
arbitrage pricing was fully developed in continuous-time models by Harrison 
and Kreps [ 1 7] and Harrison and Pliska [18] . These authors introduced martin­
gales (Sections 2.4 iu this text and Section 2.3 in Volume II) and risk-neutral 
pricing. The binomial model is due to Cox, Ross. Rubinstein [ 1 1 ) ;  a good 
reference is [12) . The binomial model is useful in its own right, and as Cox 
ct a!. showed, one can rederive the Black-Scholes-1\lerton formula as a limit 
of the binomial model (see Theorem 3.2.2 in Chapter 3 of Volume II for the 
log-normality of the stock price obtained in the limit of the binomial model. ) 

1 .  6 Exercises 

Exercise 1 .1 .  Assume in the one-period binomial market of Section 1 . 1  that 
both H and T have positive probability of occurring. Show that condition 
( 1 . 1 .2) precludes arbitrage. In other words, show that if X0 = 0 and 

then we cannot have X1 strictly positive with positive probability unless X, 
is strictly negative with positive probability as well , and this is the case re­
gardless of the choice of the number .10. 

Exercise 1 .2. Suppose in the situation of Example 1 . 1 . 1  that the option sells 
for 1 . 20 at time zero. Consider an agent who begins with wealth Xo = 0 and 
at time zero buys Ll0 shares of stock and F0 options. The numbers Ll0 and 
ro can be either positive or negative or zero. This leaves the agent with a 
cash posit ion of -4Ll0 - 1 .20F0 . If this is positive, it is invested in the money 
market; if it is negative, it represents money borrowed from the money market. 
At time one, the value of the agent 's portfolio of stock, option, and money 
market assets is 
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X 1  = LloSt + ro (S1 - 5) + 
- � (4Llo + 1 .2CWo ) . 

Assume that both H and T have positive probability of occurring. Show that 
if there is a positive probability that XI is positive, then there is a positive 
probability that X1 is negative. In other words, one cannot find an arbitrage 
when the time-zero price of the option is 1 .20. 

Exercise 1.3. In the one-period binomial model of Section 1 . 1 ,  suppose we 
want to determine the price at time zero of the derivative security V1 = 81 
(i.e., the derivative security pays off the stock price.) (This can be regarded 
as a European call with strike price K = 0) .  What is the time-zero price V0 
given by the risk-neutral pricing formula ( 1 . 1 . 10)? 

Exercise 1.4. In the proof of Theorem 1 .2 .2, show under the induction hy­
pothesis that 

Exercise 1.5. In Example 1.2.4,  we considered an agent. who sold the look­
back option for V0 = 1 .376 and bought Ll0 = 0. 1 733 shares of stock at time 
zero. At time one, if the stock goes up, she has a portfolio valued at VI (H) = 
2 24 A h t h k 

· · 

f A (H) Vz(HH)-V,(HT) . 
h . . ssume t a s e now ta es a position o LII = Sz(HH)-S, (HT) m t e 

stock. Show that, at time two, if the stock goes up again, she will have a port­
folio valued at V2(H H) = 3.20, whereas if the stock goes down, her portfolio 
will be worth V2(HT) = 2.40. Finally, under the assumption that the stock 
goes up in the first period and down in the second period, assume the agent 

takes a position of Llz(HT) = �:�Z�Zl=�:�Z��l in the stock. Show that, at 

time three, if the stock goes up in the third period1 she will have a portfolio 
valued at V3 ( HT H) = 0, whereas if the stock goes down, her portfolio will be 
worth V3(HTT) = 6. In other words, she has hedged her short position in the 
option. 

Exercise 1 .6 (Hedging a long position-one period).  Consider a bank 
that has a long position in the European call written on the stock price in 
Figure 1 . 1 .2. The call expires at time one and has strike price K = 5. In 
Section 1 . 1 ,  we determined the time-zero price of this call to be V0 = 1 .20. At 
time zero, the bank owns this option, which ties up capital V0 = 1 . 20. The 
bank wants to earn the interest rate 25% on this capital until time one (i .e., 
without investing any more money, and regardless of how the coin tossing 
turns out, the bank wants to have 

5 4 . 1 .20 = 1 .50 

at time one, after collecting the payoff from the option ( if any) at time one). 
Specify how the bank's trader should invest in the stock and money markets 
to accomplish this. 
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Exercise 1 .  7 (Hedging a long position-multiple periods) .  Consider a 
bank that has a long position in the lookback option of Example 1 .2.4. The 
bank intends to hold this option until expiration and receive the payoff V3 . At 
time zero, the bank has capital V0 = 1 .3i6 tied up in the option and wants 
to earn the interest rate of 25o/c on this capital until time three ( i .e . ,  without 
investing any more money, and regardless of how the coin tossing turns out, 
the bank wants to have 

(
5
)

:3 
4" 

· 1 .376 = 2.G875 

at time three, after collecting the payoff from the lookback option at time 
thwe) .  SpPcify how the bank's trader should invest in the stock and the money 
market account to accomplish this. 

Exercise 1.8 (Asian option) . Consider the three-period model of Example 
1 .2 . 1 , with S0 = 4, 11 = 2, d = � ·  and take the interest rate r = 1 ,  so that 
p = ij = � - For n = 0, 1 .  2. 3. define }�, = I;�=o Sk to be the sum of the 
stock prices between times zero and n. Consider an A sian call option that 
expires at time three and has strike K = 4 ( i .e. , whose payoff at time three is 

(tY3 - 4) + ) .  This is like a European call, except the payoff of the option is 
based on the average stock price rather than the final stock price. Let Vn (s , y) 
denote the price of this option at time n if Sn = s and Yn = y. In particular, 

v3 (s , y) = (h - 4)+ . 

(i) Develop an algorithm for computing v11 recursively. In particular, write a 
formula for Vn in terms of v,+ 1 . 

( ii )  Apply the algorithm developed in ( i )  to compute v0(4.  4) , the price of the 
Asian option at time zero. 

(iii) Provide a formula for On (s .  y ) ,  the number of shares of stock that should 
be held by the replicating portfolio at time n if Sn = s and Yn = y. 

Exercise 1 .9 (Stochastic volatility, random interest rate) .  Consider a 
binomial pricing model, but at each time n 2 1 ,  the "up factor" U11 (u.'l'"-'2 . . . wn ) , 
the "down factor"' d, (w1w2 . . .  wn ) .  and the interest rate rn (w1w2 . . .  w11) are 
allowed to depend on n and on the first. 11 coin tosses w1w2 . . .  w, . The initial 
up factor u0• the initial down factor d0 • and the initial interest rate r0 are not 
random. More specifically, t he stock price at time one is given by 

S ( 
) { u0S0 if w1 = H. l �, , = 

doSo if w1 = T. 

and, for rz ;:::: 1 ,  the stock price at time 11 + 1 is given by 

S ( ) { 11n (WJW2 . . .  wn )S,. (WJW2 . . .  Wn) if Wn+l = H, n+I  WtW2 . . . WilWn+ l  = d ( )S ( ) "f T n WJW2 · · · '"-'n n WtWz · · · Wn I '"-'n+ l = · 
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One dollar invested in or borrowed from the money market at time zero grows 
to an investment or debt of 1 + r0 at time one, and, for n � 1 ,  one dollar in­
vested in or borrowed from the money market at time n grows to an investment 
or debt of 1 + r n ( w1 w2 . • •  Wn ) at time n + 1 . We assume that for each n and 
for all w1w2 . . .  Wn , the no-arbitrage condition 

holds. We also assume that 0 < d0 < 1 + r0 < uo . 

(i) Let N be a positive integer. In the model just described, provide an 
algorithm for determining the price at time zero for a derivative security 
that at time N pays off a random amount V N depending on the result of 
the first N coin tosses. 

(ii) Provide a formula for the number of shares of stock that should be held at 
each time n (0 ::::; n :S N - 1 ) by a portfolio that replicates the derivative 
security V N . 

(iii) Suppose the initial stock price is S0 = 80, with each head the stock price 
increases by 10, and with each tail the stock price decreases by 10. In 
other words, SI (H) = 90, St (T) = 70, S2 (H H) = 100, etc. Assume the 
interest rate is always zero. Consider a European call with strike price 80, 
expiring at time five. What is the price of this call at time zero? 


