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Preface 

This book is designed for students who want to develop professional skill in 
stochastic calculus and its application to problems in finance. The Wharton School 
course that forms the basis for this book is designed for energetic students who 
have had some experience with probability and statistics but have not had ad­
vanced courses in stochastic processes. Although the course assumes only a modest 
background, it moves quickly, and in the end, students can expect to have tools 
that are deep enough and rich enough to be relied on throughout their professional 
careers. 

The course begins with simple random walk and the analysis of gambling games. 
This material is used to motivate the theory of martingales, and, after reaching a 
decent level of confidence with discrete processes, the course takes up the more de­
manding development of continuous-time stochastic processes, especially Brownian 
motion. The construction of Brownian motion is given in detail, and enough mate­
rial on the subtle nature of Brownian paths is developed for the student to evolve a 
good sense of when intuition can be trusted and when it cannot. The course then 
takes up the Ito integral in earnest. The development of stochastic integration aims 
to be careful and complete without being pedantic. 

With the Ito integral in hand, the course focuses more on models. Stochastic 
processes of importance in finance and economics are developed in concert with 
the tools of stochastic calculus that are needed to solve problems of practical im­
portance. The financial notion of replication is developed, and the Black-Scholes 
PDE is derived by three different methods. The course then introduces enough of 
the theory of the diffusion equation to be able to solve the Black-Scholes partial 
differential equation and prove the uniqueness of the solution. The foundations for 
the martingale theory of arbitrage pricing are then prefaced by a well-motivated 
development of the martingale representation theorems and Girsanov theory. Ar­
bitrage pricing is then revisited, and the notions of admissibility and completeness 
are developed in order to give a clear and professional view of the fundamental 
formula for the pricing of contingent claims. 

This is a text with an attitude, and it is designed to reflect, wherever possible 
and appropriate, a prejudice for the concrete over the abstract. Given good gen­
eral skill, many people can penetrate most deeply into a mathematical theory by 
focusing their energy on the mastery of well-chosen examples. This does not deny 
that good abstractions are at the heart of all mathematical subjects. Certainly, 
stochastic calculus has no shortage of important abstractions that have stood the 
test of time. These abstractions are to be cherished and nurtured. Still, as a matter 
of principle, each abstraction that entered the text had to clear a high hurdle. 

Many people have had the experience of learning a subject in 'spirals.' After 
penetrating a topic to some depth, one makes a brief retreat and revisits earlier 
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topics with the benefit of fresh insights. This text builds on the spiral model in 
several ways. For example, there is no shyness about exploring a special case before 
discussing a general result. There also are some problems that are solved in several 
different ways, each way illustrating the strength or weakness of a new technique. 

Any text must be more formal than a lecture, but here the lecture style is 
followed as much as possible. There is also more concern with 'pedagogic' issues 
than is common in advanced texts, and the text aims for a coaching voice. In 
particular, readers are encouraged to use ideas such as George P6lya's "Looking 
Back" technique, numerical calculation to build intuition, and the art of guessing 
before proving. The main goal of the text is to provide a professional view of a body 
of knowledge, but along the way there are even more valuable skills one can learn, 
such as general problem-solving skills and general approaches to the invention of 
new problems. 

This book is not designed for experts in probability theory, but there are a 
few spots where experts will find something new. Changes of substance are far 
fewer than the changes in style, but some points that might catch the expert eye 
are the explicit use of wavelets in the construction of Brownian motion, the use of 
linear algebra (and dyads) in the development of Skorohod's Embedding, the use 
of martingales to achieve the approximation steps needed to define the Ito integral, 
and a few more. 

Many people have helped with the development of this text, and it certainly 
would have gone unwritten except for the interest and energy of more than eight 
years of Wharton Ph.D. students. My fear of omissions prevents me from trying to 
list all the students who have gone out of their way to help with this project. My 
appreciation for their years of involvement knows no bounds. 

Of the colleagues who have helped personally in one way or another with my 
education in the matters of this text, I am pleased to thank Erhan Qinlar, Kai 
Lai Chung, Darrell Duffie, David Freedman, J. Michael Harrison, Michael Phelan, 
Yannis Karatzas, Wenbo Li, Andy Lo, Larry Shepp, Steve Shreve, and John Walsh. 
I especially thank Jim Pitman and Ruth Williams for their comments on an early 
draft. of this text. They saved me from some grave errors, and they could save me 
from more if time permitted. Finally, I would like to thank Vladimir Pozdnyakov for 
hundreds of hours of conversation on this material. His suggestions were especially 
influential on the last five chapters. 

J. Michael Steele 
Philadelphia, PA 
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CHAPTER 1 

Random Walk and First Step Analysis 

The fountainhead of the theory of stochastic processes is simple random walk. 
Already rich in unexpected and elegant phenomena, random walk also leads one 
inexorably to the development of Brownian motion, the theory of diffusions, the 
Ito calculus, and myriad important applications in finance, economics, and physical 
science. 

Simple random walk provides a model of the wealth process of a person who 
makes a living by flipping a fair coin and making fair bets. We will see it is a hard 
living, but first we need some notation. We let {Xi : 1 ::; i < oo} denote a sequence 
of independent random variables with the probability distribution given by 

1 
P(Xi = 1) = P(Xi = -1) = 2· 

Next, we let S0 denote an arbitrary integer that we view as our gambler's initial 
wealth, and for 1 ::; n < oo we let Sn denote So plus the partial sum of the Xi: 

Sn =So+ X1 + X2 + · · · + Xn-

If we think of Sn - S0 as the net winnings after n fair wagers of one dollar each, 
we almost have to inquire about the probability of the gambler winning A dollars 
before losing B dollars. To put this question into useful notation, we do well to 
consider the first time T at which the partial sum Sn reaches level A or level - B: 

T = min{n 2:: 0: Sn =A or Sn = -B}. 

At the random time T, we have S,. = A or ST = -B, so our basic problem is 
to determine P(ST = A I S0 = 0). Here, of course, we permit the wealth of the 
idealized gambler to become negative - not an unrealistic situation. 

~2~-----------------------------

FIGURE 1.1. HITTING TIME OF LEVEL ±2 IS 6 

1.1. First Step Analysis 

The solution of this problem can be obtained in several ways, but perhaps 
the most general method is first step analysis. One benefit of this method is that 
it is completely elementary in the sense that it does not require any advanced 
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mathematics. Still, from our perspective, the main benefit of first step analysis is 
that it provides a benchmark by which to gauge more sophisticated methods. 

For our immediate problem, first step analysis suggests that we consider the 
gambler's situation after one round of the game. We see that his wealth has either 
increased by one dollar or decreased by one dollar. We then face a problem that 
replicates our original problem except that the "initial" wealth has changed. This 
observation suggests that we look for a recursion relation for the function 

f(k) = P(Sr =A I So= k), where - B:::; k:::; A. 

In this notation, f(O) is precisely the desired probability of winning A dollars before 
losing B dollars. 

If we look at what happens as a consequence of the first step, we immediately 
find the desired recursion for f ( k), 

1 1 
(1.1) f(k) = 2,f(k- 1) + 2,f(k + 1) for - B < k <A, 

and this recursion will uniquely determine f when it is joined with the boundary 
conditions 

f(A) = 1 and f( -B)= 0. 

The solution turns out to be a snap. For example, if we let f(-B + 1) =a and 
substitute the values off( -B) and f( -B + 1) into equation (1.1), we find that 
f( -B + 2) = 2a. If we then substitute the values off( -B + 1) and f( -B + 2) into 
equation (1.1) we find f( -B + 3) = 3a, whence it is no great leap to guess that we 
have f( -B + k) = ka for all 0:::; k:::; A+ B. 

Naturally, we verify the guess simply by substitution into equation (1.1). Fi­
nally, we determine that a= 1/(A+B) from the right boundary condition f(A) = 1 
and the fact that for k = A+ B our conjectured formula for f requires f(A) = 
(A+ B)a. In the end, we arrive at a formula of remarkable simplicity and grace: 

(1.2) 

LOOKING BACK 

B 
P(Sn reaches A before -B I So= 0) =A+ B. 

When we look back at this formula, we find that it offers several reassuring 
checks. First, when A = B we get ~, as we would guess by symmetry. Also, if we 
replace A and B by 2A and 2B the value of the right-hand side of formula (1.2) 
does not change. This is also just as one would expect, say by considering the 
outcome of pairs of fair bets. Finally, if A -+ oo we see the gambler's chance of 
reaching A before - B goes to zero, exactly as common sense would tell us. 

Simple checks such as these are always useful. In fact, George P6lya made 
"Looking Back" one of the key tenets of his lovely book How to Solve It, a volume 
that may teach as much about doing mathematics as any ever written. From time 
to time, we will take advantage of further advice that P6lya offered about looking 
back and other aspects of problem solving. 

1.2. Time and Infinity 

Our derivation of the hitting probability formula (1.2) would satisfy the building 
standards of all but the fussiest communities, but when we check the argument we 
find that there is a logical gap; we have tacitly assumed that T is finite. How do 
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we know for sure that the gambler's net winnings will eventually reach A or - B? 
This important fact requires proof, and we will call on a technique that exploits a 
general principle: if something is possible - and there are infinitely many "serious" 
attempts - then it will happen. 

Consider the possibility that the gambler wins A+ B times in a row. If the 
gambler's fortune has not already hit - B, then a streak of A+ B wins is guaranteed 
to boost his fortune above A. Such a run of luck is unlikely, but it has positive 
probability-in fact, probability p = 2-A-B. Now, if we let Ek denote the event 
that the gambler wins on each turn in the time interval [k(A+B), (k+1)(A+B)-1], 
then the Ek are independent events, and T > n(A +B) implies that all of the Ek 
with 0 ::::; k ::::; n fail to occur. Thus, we find 

(1.3) P(T > n(A +B) I So= 0)::::; P( n~;:t E'k) = (1- p)n. 

Since P(T = oo I S0 = 0) ::::; P(T > n(A +B) I S0 = 0) for all n, we see from 
equation (1.3) that P(T = oo I So = 0) = 0, just as we needed to show to justify 
our earlier assumption. 

By a small variation on this technique, we can even deduce from equation (1.3) 
that T has moments of all orders. As a warmup, first note that if l(A) denotes the 
indicator function of the event A, then for any integer-valued nonnegative random 
variable Z we have the identity 

00 

(1.4) z = L1(Z;:::: k). 
k=l 

If we take expectations on both sides of the identity (1.4), we find a handy formula 
that textbooks sometimes prove by a tedious summation by parts: 

00 

(1.5) E(Z) = L P(Z;:::: k). 
k=l 

We will use equations (1.4) and (1.5) on many occasions, but much of the time we 
do not need an exact representation. In order to prove that E( Td) < oo we can get 
along just as well with rough bounds. For example, if we sum the crude estimate 

Tdl[(k- 1)(A +B) < T:::; k(A +B)] :::; kd(A + B)d1[(k- 1)(A +B) < T], 

over k, then we have 
00 

(1.6) Td::::; L kd(A + B)d1[(A + B)(k- 1) < T]. 
k=l 

We can then take expectations on both sides of the inequality (1.6) and apply the 
tail estimate (1.3). The ratio test finally provides the convergence of the bounding 
sum: 

00 

E(Td)::::; Lkd(A+ B)d(1- p)k-1 < 00. 

k=l 

A SECOND FIRST STEP 

Once we know that T has a finite expectation, we are almost immediately drawn 
to the problem of determining the value of that expectation. Often, such ambitious 
questions yield only partial answers, but this time the answer could not be more 
complete or more beautiful. 
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Again, we use first step analysis, although now we are interested in the function 
defined by 

g(k) = E(T I So= k). 
After one turn of the game, two things will have happened: the gambler's fortune 
will have changed, and a unit of time will have passed. The recurrence equation that 
we obtain differs from the one found earlier only in the appearance of an additional 
constant term: 

(1.7) 
1 1 

g(k) = 2g(k- 1) + "2g(k + 1) + 1 for - B < k <A. 

Also, since the time to reach A or - B is zero if So already equals A or - B, we 
have new boundary conditions: 

g( -B)= 0 and g(A) = 0. 

This time our equation is not so trivial that we can guess the answer just by 
calculating a couple of terms. Here, our guess is best aided by finding an appropriate 
analogy. To set up the analogy, we introduce the forward difference operator defined 
by 

!lg(k- 1) = g(k) ~ g(k- 1), 

and we note that applying the operator twice gives 

!l2g(k- 1) = g(k + 1)- 2g(k) + g(k- 1). 

The recurrence equation (1.7) can now be written rather elegantly as a second order 
difference equation: 

(1.8) 1 2 
2~ g(k- 1) = -1 for - B < k <A. 

The best feature of this reformulation is that it suggests an immediate analogy. 
The integer function g : N ---> lR has a constant second difference, and the real 
functions with a constant second derivative are just quadratic polynomials, so one 
is naturally led to look for a solution to equation (1.7) that is a quadratic over the 
integers. By the same analogy, equation (1.8) further suggests that the coefficient of 
k 2 in the quadratic should be -1. Finally, the two boundary conditions tell us that 
the quadratic must vanish at - B and A, so we are left with only one reasonable 
guess, 

(1.9) g(k) = -(k- A)(k +B). 

To verify that this guess is indeed an honest solution only requires substitution into 
equation (1.7). This time we are lucky. The solution does check, and our analogies 
have provided a reliable guide. 

Finally, we note that when we specialize our formula to k = 0, we come to a 
result that could not be more striking: 

(1.10) E(r I So= 0) = AB. 

This formula is a marvel of simplicity - no better answer could even be imag­
ined. Moreover, when we look back on equation (1.10), we find several interesting 
deductions. 

For example, if we let r' = min{n;::: 0: Sn = -1} and set 

r" = min{n;::: 0: Sn = -1 or Sn =A}, 
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then we see that r" :S r'. But equation (1.10) tells us E(r") =A so we find that 
E(r') ~ A for all A. The bottom line is that E(r') = oo, or, in other words, the 
expected time until the gambler gets behind by even one dollar is infinite. 

This remarkable fact might give the gambler some cause for celebration, except 
for the sad symmetrical fact that the expected time for the gambler to get ahead 
by one dollar is also infinite. Strangely, one of these two events must happen on 
the very first bet; thus we face one of the many paradoxical features of the fair coin 
game. 

There are several further checks that we might apply to formula {1.10), but we 
will pursue just one more. If we consider the symmetric interval [-A, A], is there 
some way that we might have guessed that the expected time until the first exit 
should be a quadratic function of A? One natural approach to this question is to 
consider the expected size of IBn I· The central limit theorem and a bit of additional 
work will tell us that E(ISnl) "' ..j2nf7i, so when both n and A are large we see 
that E(ISnl) will first leave the interval [-A, A] when n"' 1rA2 /2. This observation 
does not perfectly parallel our exit-time formula (1.10), but it does suggest that a 
quadratic growth rate is in the cards. 

1.3. Tossing an Unfair Coin 

It is often remarked that life is not fair, and, be that as it may, there is no 
doubt that many gambling games are not even-handed. Considerable insight into 
the difficulties that face a player of an unfair game can be found by analysis of the 
simplest model- the biased random walk defined by Sn = S0 +X1 +X2+· · ·+Xn, 
where 

P(Xi = 1) = p and P(Xi = -1) = 1- p = q where p =f. q. 
To solve the ruin problem for biased random walk, we take f(k) and r as before 
and note that first step analysis leads us to 

f(k) = pf(k + 1) + qf(k- 1). 

This is another equation that is most easily understood if it is written in terms of 
the difference operator. First, we note that since p + q = 1 the equation can be 
rearranged to give 

0 = p{f(k + 1) - f(k)} - q{f(k) - f(k- 1)}, 

from which we find a simple recursion for !lf(k): 

(1.11) !lf(k) = (qfp)!lf(k- 1). 

Now, we simply iterate equation (1.11) to find 

!lf(k + j) = (qfp)3 !lf(k), 

so, if we set a= !lf(-B), we can exploit the fact that f(-B) = 0 and successive 
cancellations to find 

k+B-1 k+B-1 . ( I )k+B - 1 
(1.12) f(k) = ~ ilf(j- B)= a ~ (qfp)3 =a q(:/p) _ 1 · 

We can then eliminate a from equation (1.12) if we let k =A and invoke our second 
boundary condition: 

1 = f(A) =a (qfp)A+B - 1. 
(qfp)- 1 
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After determining a, we return to equation (1.12) and take k = 0 to get to the 
bottom line; for biased random walk, we have a simple and explicit formula for the 
ruin probability: 

(1.13) 
(qjp)B- 1 

P(Sn hits A before -B I So= 0) = (qjp)A+B _ 1 -

This formula would transform the behavior of millions of the world's gamblers, if 
they could only take it to heart. Such a conversion is unlikely, though perhaps a 
few might be moved to change their ways if they would work out the implications 
of equation (1.13) for some typical casino games. 

TIME AND TIME AGAIN 

The expected time until the biased random walk hits either level A or - B can 
also be found by first step analysis. If g(k) denotes the expected time until the 
random walk hits A or -B when we start at k, then the equation given by first 
step analysis is just 

g(k) = pg(k + 1) + qg(k- 1) + 1. 

As before, this equation is better viewed in difference form 

(1.14) tl.g(k) = (qjp)D.g(k- 1)- 1/p, 

where the boundary conditions are the same as those we found for the unbiased 
walk 

g(-B) = 0 and g(A) = 0. 

To solve equation (1.14), we first note that if we try a solution of the form ck 
then we find that g0 (k) = kj(q- p) is one solution of the inhomogeneous equation 
(1.14). From our earlier work we also know that a+ j3(qjp)k is a solution of the 
homogeneous equation (1.11), so to obtain a solution that handles the boundary 
conditions we consider solutions of the form 

g(k) = _k_ + Q + j3(qjp)k. 
q-p 

The two boundary conditions give us a pair of equations that we can solve to 
determine a and j3 in order to complete the determination of g(k). Finally, when 
we specialize to g(O), we find the desired formula for the expected hitting time of 
- B or A for the biased random walk: 

(1.15) E ( T I So = 0) = _!!_ - A + B 1 - ( q / p) B . 
q _ p q _ p 1- (qjp)A+B 

The formulas for the hitting probabilities (1.13) and the expected hitting time 
(1.15) are more complicated than their cousins for unbiased walk, but they answer 
more complex questions. When we look back on these formulas, we naturally want 
to verify that they contain the results that were found earlier, but one cannot 
recapture the simpler formulas just by setting p = q = ~- Nevertheless, formulas 
(1.13) and (1.15) are consistent with the results that were obtained for unbiased 
walks. If we let p = ~ + E and q = ~- E in equations (1.13) and (1.15), we find that 
as E-+ 0 equations (1.13) and (1.15) reduce to Bj(A +B) and AB, as one would 
expect. 
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1.4. Numerical Calculation and Intuition 

The formulas for the ruin probabilities and expected hitting times are straight­
forward, but for someone interested in building serious streetwise intuition there is 
nothing that beats numerical computation. 

• We now know that in a fair game of coin tosses and $1 wagers the expected 
time until one of the players gets ahead by $100 is 10,000 tosses, a much 
larger number than many people might expect. 

• If our gambler takes up a game with probability p = 0.49 of winning on each 
round, he has less than a 2% chance of winning $100 before losing $200. 
This offers a stark contrast to the fair game, where the gambler would have 
a 2/3 probability of winning $100 before losing $200. The cost of even a. 
small bias can be surprisingly high. 

In the table that follows, we compute the probability of winning $100 before 
losing $100 in some games with odds that are typical of the world's casinos. The 
table assumes a constant bet size of $1 on all rounds of the game. 

TABLE 1.1. STREETWISE BENCHMARKS. 

Chance on one round 0.500 0.495 0.490 0.480 0.470 
Chance to win $100 0.500 0.1191 0.0179 0.0003 6 X 10 -o 

Duration of the game 10,000 7,616 4,820 2,498 1,667 

One of the lessons we can extract from this table is that the traditional movie 
character who chooses to wager everything on a single round of roulette is not so 
foolish; there is wisdom to back up the bravado. In a game with a 0.47 chance to 
win on each bet, you are about 78,000 times more likely to win $100 by betting 
$100 on a single round than by playing just $1 per round. Does this add something 
to your intuition that seems to go beyond the formula for the ruin probability? 

1.5. First Steps with Generating Functions 

We have obtained compelling results for the most natural problems of gambling 
in either fair or unfair games, and these results make a sincere contribution to our 
understanding of the real world. It would be perfectly reasonable to move to other 
problems before bothering to press any harder on these simple models. Nevertheless, 
the first step method is far from exhausted, and, if one has the time and interest, 
much more detailed information can be obtained with just a little more work. 

For example, suppose we go back to simple random walk and consider the 
problem of determining the probability distribution of the first hitting time of level 
1 given that the walk starts at zero. Our interest is no longer confined to a single 
number, so we need a tool that lets us put all of the information of a discrete 
distribution into a package that is simple enough to crack with first step analysis. 

If we let T denote this hitting time, then the appropriate package turns out to 
be the probability generating function: 

00 

(1.16) ¢(z) = E(z.,.l So= 0) = LP(r = k I S0 = O)zk. 
k=O 
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If we can find a formula for ¢(z) and can compute the Taylor expansion of ¢(z) 
from that formula, then by identifying the corresponding coefficients we will have 
found P( T = k I So = 0) for all k. Here, one should also note that once we 
understand r we also understand the distribution of the first time to go up k 
levels; the probability generating function in that case is given by ¢(z)k because 
the probability generating function of a sum of independent random variables is 
simply the product of the probability generating functions. 

Now, although we want to determine a function, first step analysis proceeds 
much as before. When we take our first step, two things happen. First, there is the 
passage of one unit of time; and, second, we will have moved from zero to either 
-1 or 1. We therefore find on a moment's reflection that 

{1.17) ¢(z) = ~E(zr+l I So= -1) + ~E(zr+l I So= 1). 

Now, E(zr I So= -1) is the same as the probability generating function of the first 
time to reach level 2 starting at 0, and we noted earlier that this is exactly ¢( z )2 . 

We also have E(zr I So= 1) = 1, so equation {1.17) yields a quadratic equation for 
¢{z): 

{1.18) 

In principle ¢{z) is now determined, but we can get a thoroughly satisfying 
answer only if we exercise some discrete mathematics muscle. When we first apply 
the quadratic formula to solve equation {1.18) for ¢(z) we find two candidate solu­
tions. Since r ~ 1, the definition of ¢{z) tells us that ¢{0) = 0, and only one of the 
solutions of equation (1.18) evaluates to zero when z = 0, so we can deduce that 

(1.19) 
1- v'1- z2 

¢(z) = . 
z 

The issue now boils down to finding the coefficients in the Taylor expansion of 
¢(z). To get these coefficients by successive differentiation is terribly boring, but 
we can get them all rather easily if we recall Newton's generalization of the binomial 
theorem. This result tells us that for any exponent o: E JR, we have 

{1.20) 

where the binomial coefficient is defined to be 1 for k = 0 and is defined by 

(1.21) (0:) = a:( a:- 1) ... (a:- k + 1) 
k kl 

for k > 0. Here, we should note that if o: is equal to a nonnegative integer m, 
then the Newton coefficients (1.21) reduce to the usual binomial coefficients, and 
Newton's series reduces to the usual binomial formula. 

When we apply Newton's formula to {1 - z2)!, we quickly find the Taylor 
expansion for ¢: 
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and when we compare this expansion with the definition of ¢(z) given by equation 
(1.16), we can identify the corresponding coefficients to find 

(1.22) 

The last expression is completely explicit, but it can be written a bit more 
comfortably. If we expand Newton's coefficient and rearrange terms, we quickly 
find a formula with only conventional binomials: 

(1.23) 1 (2k) 2k P( T = 2k - 1 I So = 0) = 2k _ 1 k T . 

This formula and a little arithmetic will answer any question one might have 
about the distribution ofT. For example, it not only tells us that the probability 
that our gambler's winnings go positive for the first time on the fifth round is 1/16, 
but it also resolves more theoretical questions such as showing 

E(To:) < oo for all a< 1/2, 

even though we have 

E(To:) = oo for all a~ 1/2. 

1.6. Exercises 

The first exercise suggests how results on biased random walks can be worked 
into more realistic models. Exercise 1.2 then develops the fundamental recurrence 
property of simple random walk. Finally, Exercise 1.3 provides a mind-stretching 
result that may seem unbelievable at first. 

EXERCISE 1.1 (Complex Models from Simple Ones). Consider a naive model 
for a stock that has a support level of $20/share because of a corporate buy-back 
program. Suppose also that the stock price moves randomly with a downward bias 
when the price is above $20 and randomly with an upward bias when the price is 
below $20. To make the problem concrete, we let Yn denote the stock price at time 
n, and we express our support hypothesis by the assumption that 

P(Yn+l = 21 I Yn = 20) = 0.9, and P(Yn+l = 19 I Yn = 20) = 0.1. 

We then reflect the downward bias at price levels above $20 by requiring for k > 20 
that 

P(Yn+l = k + 1 I Yn = k) = 1/3 and P(Yn+l = k- 1 I Yn = k) = 2/3. 

The upward bias at price levels below $20 is expressed by assuming for k < 20 that 

P(Yn+l = k + 1 I Yn = k) = 2/3 and P(Yn+l = k- 1 I Yn = k) = 1/3. 

Calculate the expected time for the stock price to fall from $25 through the 
support level of $20 all the way down to $18. 
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EXERCISE 1.2 (Recurrence of SRW). If Sn denotes simple random walk with 
So = 0, then the usual binomial theorem immediately gives us the probability that 
we are back at 0 at time 2k: 

(1.24) ( ( 2k) 2k p s2k = 0 I So = 0) = k T . 

(a) First use Stirling's formula k! "" v2ifk kke-k to justify the approximation 

P(S2k = 0)"" (1rk)-!, 

and use this fact to show that if Nn denotes the number of visits made by Sk to 0 
up to time n, then E(Nn) --+ oo as n --+ oo. 

(b) Finally, prove that we have 

P(Sn = 0 for infinitely many n) = 1. 

This is called the recurrence property of random walk; with probability one simple 
random walk returns to the origin infinitely many times. Anyone who wants a hint 
might consider the plan of calculating the expected value of 

00 

n=l 

in two different ways. The direct method using P(Sn = 0) should then lead without 
difficulty to E(N) = oo. The second method is to let 

and to argue that 

r = P(Sn = 0 for some n 2:: 1ISo = 0) 

E(N) = _r __ 
1-r 

To reconcile this expectation with the calculation that E(N) = oo then requires 
r = 1, as we wanted to show. 

(c) Let To = min { n 2:: 1: Sn = 0} and use first step analysis together with the 
first-passage time probability (1.23) to show that we also have 

(1.25) P( = 2k) = _1_ (2k) 2-2k To 2k- 1 k · 

Use Stirling's formula n! ""nne-n..;'21m, to show that P(To = 2k) is bounded above 
and below by a constant multiple of k-312 , and use these bounds to conclude that 

1 

E(T0) < oo for all a< ~ yet E(Tl") = oo. 

EXERCISE 1.3. Consider simple random walk beginning at 0 and show that for 
any k =I 0 the expected number of visits to level k before returning to 0 is exactly 
1. Anyone who wants a hint might consider the number Nk of visits to level k 
before the first return to 0. We have No = 1 and can use the results on hitting 
probabilities to show that for all k 2:: 1 we have 

11 1 1k-1 
P(Nk > 0) = 2k and P(Nk > j + ll Nk > j) = 2 + 2-k-. 



CHAPTER 2 

First Martingale Steps 

The theory of martingales began life with the aim of providing insight into the 
apparent impossibility of making money by placing bets on fair games. The success 
of the theory has far outstripped its origins, and martingale theory is now one of 
the main tools in the study of random processes. The aim of this chapter is to 
introduce the most intuitive features of martingales while minimizing formalities 
and technical details. A few definitions given here will be refined later, but the 
redundancy is modest, and the future abstractions should go down more easily 
with the knowledge that they serve an honest purpose. 

We say that a sequence of random variables { Mn: 0 -:::; n < oo} is a martingale 
with respect to the sequence of random variables { Xn: 1 -:::; n < oo}, provided that 
the sequence { Mn} has two basic properties. The first property is that for each 
n 2': 1 there is a function fn : lRn ..--. lR such that Mn = fn(Xl, X2, ... , Xn), and 
the second property is that the sequence { Mn} satisfies the fundamental martingale 
identity: 

(2.1) 

To round out this definition, we will also require that Mn have a finite expectation 
for each n 2': 1, and, for a while at least, we will require that M0 simply be a 
constant. 

The intuition behind this definition is easy to explain. We can think of the Xi 
as telling us the ith outcome of some gambling process, say the head or tail that one 
would observe on a coin flip. We can also think of Mn as the fortune of a gambler 
who places fair bets in varying amounts on the results of the coin tosses. Formula 
(2.1) tells us that the expected value of the gambler's fortune at time n given all 
the information in the first n- 1 flips of the coin is simply Mn_ 1 , the actual value 
of the gambler's fortune before the nth round of the coin flip game. 

The martingale property (2.1) leads to a theory that brilliantly illuminates the 
fact that a gambler in a fair game cannot expect to make money, however cleverly 
he varies his bets. Nevertheless, the reason for studying martingales is not that 
they provide such wonderful models for gambling games. The compelling reason 
for studying martingales is that they pop up like mushrooms all over probability 
theory. 

2.1. Classic Examples 

To develop some intuition about martingales and their basic properties, we 
begin with three classic examples. We will rely on these examples throughout the 
text, and we will find that in each case there are interesting analogs for Brownian 
motion as well as many other processes. 
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Example 1 

If the Xn are independent random variables with E(Xn) = 0 for all n ~ 1, then 
the partial sum process given by taking So = 0 and Sn = X 1 + X2 + · · · + Xn for 
n ~ 1 is a martingale with respect to the sequence {Xn: 1 :S n < oo}. 

Example 2 

If the Xn are independent random variables with E(Xn) = 0 and Var(Xn) = a 2 for 
all n ~ 1, then setting M0 = 0 and Mn = s;- na2 for n ~ 1 gives us a martingale 
with respect to the sequence { Xn: 1 :S n < oo}. 

One can verify the martingale property in the first example almost without 
thought, so we focus on the second example. Often, the first step one takes in order 
to check the martingale property is to separate the conditioned and unconditioned 
parts of the process: 

E(Mn I x1,x2,··· ,Xn-1) = E(s;,_1 +2Bn-1Xn+X;, -na2
1 X1,X2,··· ,Xn-1)· 

Now, since s;_1 is a function of {X1, X2, ... , Xn-1}, its conditional expectation 
given {X1, X 2, ... ,Xn-d is just s;_1. When we consider the second summand, we 
note that when we calculate the conditional expectation given {X1, X 2, ... , Xn-1} 
the sum Sn_ 1 can be brought outside of the expectation 

E(Bn-1Xn I X1, x2, ... 'Xn-1) = Bn-1E(Xn I x1, x2, ... 'Xn-1)· 

Next, we note that E(Xn I XI, x2, ... 'Xn-1) = E(Xn) = 0 since Xn is indepen­
dent of X 1,X2, ... ,Xn_1 ; by parallel reasoning, we also find 

E(x; I x1,x2, ... ,Xn-d = a 2. 

When we reassemble the pieces, the verification of the martingale property for 
Mn = s; - na2 is complete. 

Example 3 

For the third example, we consider independent random variables Xn such that 
Xn ~ 0 and E(Xn) = 1 for all n ~ 1. We then let Mo = 1 and set 

Mn = X1 · X2 · · · Xn for n ~ 1. 

One can easily check that Mn is a martingale. To be sure, it is an obvious mul­
tiplicative analog to our first example. Nevertheless, this third martingale offers 
some useful twists that will help us solve some interesting problems. 

For example, if the independent identically distributed random variables Yn 
have a moment generating function 

¢(>-.) = E(exp(>-.Yn)) < oo, 

then the independent random variables Xn = exp(>-.Yn)/¢(>-.) have mean one so 
their product leads us to a whole parametric family of martingales indexed by >-.: 

n 

Mn = exp(>-. l:Yi)/¢(>-.)n. 
i=1 
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Now, if there exists a .X0 f= 0 such that ¢(.X0 ) = 1, then there is an especially useful 
member of this family. In this case, when we set Sn = 2::~= 1 Yi we find that 

Mn = e>.oSn 

is a martingale. As we will see shortly, the fact that this martingale is an explicit 
function of Sn makes it a particularly handy tool for study of the partial sums Sn· 

SHORTHAND NOTATION 

Formulas that involve conditioning on X 1 , X 2 , ... , Xn can be expressed more 
tidily if we introduce some shorthand. First, we will write E(Z I Fn) in place 
of E(Z I X 1,X2 , ... ,Xn), and when {Mn: 1::; n < oo} is a martingale with 
respect to { Xn : 1 ::; n < oo} we will just call { Mn} a martingale with respect 
to {Fn}· Finally, we use the notation Y E Fn to mean that Y can be written as 
Y = !(X 1 , X 2 , . . . , X n) for some function f, and in particular if A is an event in 
our probability space, we will write A E Fn provided that the indicator function 
of A is a function of the variables {X1 , X2 , ... , Xn}· The idea that unifies this 
shorthand is that we think of Fn as a representation of the information in the set of 
observations {X1, X2 , ... , Xn}· A little later, we will provide this shorthand with 
a richer interpretation and some technical polish. 

2.2. New Martingales from Old 

Our intuition about gambling tells us that a gambler cannot turn a fair game 
into an advantageous one by periodically deciding to double the bet or by cleverly 
choosing the time to quit playing. This intuition will lead us to a simple theorem 
that has many important implications. As a necessary first step, we need a defini­
tion that comes to grips with the fact that the gambler's life would be easy if future 
information could be used to guide present actions. 

DEFINITION 2.1. A sequence of random variables {An: 1::::; n < oo} is called 
nonanticipating with respect to the sequence {Fn} if for all1 ::; n < oo, we have 

An E Fn-1· 

In the gambling context, a nonanticipating An is simply a function that depends 
only on the information Fn- 1 that is known before placing a bet on the nth round 
of the game. This restriction on An makes it feasible for the gambler to permit 
An to influence the size of the nth bet, say by doubling the bet that would have 
been made otherwise. In fact, if we think of An itself as the bet multiplier, then 
An(Mn - Mn- 1) would be the change in the gambler's fortune that is caused by 
the nth round of play. The idea of a bet size multiplier leads us to a concept that 
is known in more scholarly circles as the martingale transform. 

DEFINITION 2.2. The process { Mn : 0 ::; n < oo} defined for n = 0 by Mo = 0 
and for n :2 1 by 

Mn = A1 (M1 - Mo) + A2(M2 - M1) + · · · + An(Mn - Mn-1) 

is called the martingale transform of {Mn} by {An}· 

The martingale transform gives us a general method for building new mar­
tingales out of old ones. Under a variety of mild conditions, the transform of a 
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martingale is again a martingale. The next theorem illustrates this principle in its 
most useful instance. 

THEOREM 2.1 (Martingale Transform Theorem). If {Mn} is a martingale with 
respect to the sequence { Fn}, and if {An : 1 ::; n < oo} is a sequence of bounded 
random variables that are nonanticipating with respect to {Fn}, then the sequence 
of martingale transforms {Mn} is itself a martingale with respect to {Fn}· 

PROOF. :!je obviously have Mn E Fn, and the boundedness of the Ak guar­
antees that Mn has a finite expectation for all n. Finally, the martingale property 
follows from a simple calculation. We simply note that 

(2.2) E ( Mn - Mn-1 I Fn-1) = E(An(Mn- Mn-d I Fn-d 

= AnE(Mn - Mn-1 I Fn-1) = 0, 

and the martingale identity 

- -E(Mn IFn-d = Mn-1 

is equivalent to equation (2.2). 0 

STOPPING TIMES PROVIDE MARTINGALE TRANSFORMS 

One of the notions that lies at the heart of martingale theory is that of a 
stopping time. Intuitively, a stopping time is a random variable that describes a 
rule that we could use to decide to stop playing a gambling game. Obviously, such 
a rule cannot depend on the outcome of a round of the game that has yet to be 
played. This intuition is captured in the following definition. 

DEFINITION 2.3. A random variable T that takes values in {0, 1, 2, ... } U { oo} 
is called a stopping time for the sequence {Fn} if 

{T::; n} E Fn for all 0 :=:; n < oo. 

In many circumstances, we are interested in the behavior of a random process, 
say Yn, precisely at the stopping timeT. If T < oo with probability one, then we 
can define the stopped process Y.,. by setting 

00 

Y.,. = L 1(T = k)Yk. 
k=O 

The fact that we define Y.,. only when we have P( T < oo) = 1 should underscore 
that our definition of a stopping time permits the possibility that T = oo, and 
it should also highlight the benefit of finding stopping times that are finite with 
probability one. Nevertheless, we always have truncation at our disposal; if we let 
n 1\ T = min { n, T}, then n 1\ T is a bounded stopping time, and for any sequence of 
random variables Yn the stopped process Yn/\-r is well defined. Also, the truncated 
stopping times n 1\ T lead to an important class of martingales that we will use on 
many future occasions. 

THEOREM 2.2 (Stopping Time Theorem). If {Mn} is a martingale with respect 
to {Fn}, then the stopped process {Mnl\7"} is also a martingale with respect to {Fn}· 
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PROOF. First, we note that there is no loss of generality in assuming Mo = 0 
since otherwise we can introduce the martingale M~ = Mn -Mo. Next, we note 
that the bounded random variables Ak defined by 

Ak = 1 ( T 2: k) = 1 - 1 ( T :::; k - 1) 

are nonanticipating since T is a stopping time. Finally, 
n 

L Ak{Mk- Mk-d = MT1(T :S n- 1) + Mn1(T 2: n) = Mni\T, 
k=l 

so we that see {Mni\T} is the martingale transform of Mn by the process {An} 
which is bounded and nonanticipating. Theorem 2.1 then confirms that {Mni\T} is 
a martingale. D 

2.3. Revisiting the Old Ruins 

The stopping time theorem provides a new perspective on our earlier calculation 
of the probability that a random walk Sn starting at 0 has a probability B j (A+ B) 
of hitting level A before hitting level -B. If we let 

T = min{n: Sn =A or Sn = -B}, 

then the stopping time theorem and the fact that Sn is a martingale combine to 
tell us that SnAT is also a martingale, so we have 

(2.3) E[SnM] = E[SoM] = 0 for all n 2: 0. 

Now, we checked earlier that T is finite with probability one, so we also have 

lim Sni\T = ST with probability one. 
n->oo 

The random variables ISnATI are bounded by max(A, B) so the dominated conver­
gence theorem 1 tells us 

so equation (2.3) tells us 

(2.4) 0 = E[ST]· 

Remarkably, we have a second way to calculate E[ST ]. We have the random variable 
representation 

ST = Al(ST =A)- Bl(ST =-B), 
so if we take expectations, we find 

(2.5) E[ST] = P(S7 =A)· A- (1- P(S7 =A))· B. 

From equations (2.5) and (2.4), we therefore find that 

0 = E[S7 ] = P(ST =A)· A- (1- P(S7 =A))· B, 

and we can solve this equation to find the classical formula: 

B 
P(S7 =A) = A+ B. 

1This is the first time we have used one of the three great tools of integration theory: the 
dominated convergence theorem, the monotone convergence theorem, and Fatou's lemma. A 
discussion of these results and a quick review of the Lebesgue integral can be found in the Appendix 
on Mathematical Tools. 
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ONCE MORE QUICKLY 

The martingale method for calculating the ruin probability may seem long­
winded compared to first step analysis, but the impression is due to the detail with 
which the calculations were given. With some experience behind us, we can pick up 
the pace considerably. For example, if we now calculate E[r], the expected hitting 
time of A or - B for an unbiased random walk, we can see that the martingale 
method is actually very quick. 

For unbiased simple random walk Sn = X 1 + X 2 + · · · + Xn, where the Xi are 
independent symmetric Bernoulli random variables, we have Var(Xi) = 1, so we 
know from the first calculation in this section that Mn = s; - n is a martingale. 
Next, we note that 

IMni\'TI :S max(A2 , B 2 ) + T, 

and, since we showed earlier that E[r] < oo, we see that for all n 2:: 1 the random 
variables Mni\'T are dominated by an integrable random variable. The martingale 
property of Mni\'T gives us E[MnM] = 0 for all n 2:: 0, and Mni\T converges to Mr 
with probability one by the finiteness of r, so the dominated convergence theorem 
finally gives us 

E(Mr] = lim E(MnM] = 0. 
n->oo 

What makes this fact useful is that again we have a second way to calculate 
E[Mni\Tl· If we let a = P(Sr = A) then we have P(Sr = -B) = 1- a, so we 
can calculate E[Mr] directly from the elementary definition of expectation and our 
earlier discovery that a= B/(A +B) to find 

E[Mr] = E[S;]- E[r] = aA2 + (1- a)B2 - E[r] = AB- Er. 

Because our martingale argument already established that E[Mr] = 0, we again 
find the lovely formula E[r] = AB. 

Now WITH BIAS 

How about the ruin probabilities for biased random walk? This case is more 
interesting since we will make use of a new martingale. To be precise, if Xi are 
independent random variables with P(Xi = 1) = p and P(Xi = -1) = q where 
q = 1 - p and p =I= ! , then we can define a new martingale by setting M0 = 1 and 
setting 

Mn = (qjp) 8n for all n 2:: 1. 

One easily verifies that Mn is indeed a martingale, so we can go directly to the 
calculation of P(Sr =A). By our usual argument, P(r < oo) = 1, so as n--+ oo we 
see that MnAr converges with probability one to Mr. Because MnAr is a martingale, 
we have E[Mni\T] = 1 for all n 2:: 0, and the random variables Mn/\T are bounded, 
so the dominated convergence theorem tells us that 

E[Mr] = lim E[Mni\T] = 1. 
n->oo 

We also have a bare-handed calculation of E[Mr], 

E(Mr] = P(Sr =A)· (q/p)A + (1- P(Sr =A))· (qjp)-B, 
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so from the fact that E[Mr] = 1 we find an equation for P(Sr =A). When we solve 
this equation, we find 

(qjp)B- 1 
P(Sr =A) = (qfp)A+B- 1, 

exactly as we found by first step analysis. 

SOME PERSPECTIVE 

The martingale Mn = (qfp) 8n may seem to have popped out of thin air, but it 
is actually an old friend. The more principled (and less magical) way of coming to 
this martingale is to use the parametric family of martingales that we built using 
the moment generating function. For each step Xi of a biased random walk, the 
moment generating function is given by 

(2.6) 

so by our earlier calculations we know that the process defined by 

Mn = e>.Sn /(pe>. + qe->.t 

is a martingale for all .A. 
Now, if we can find .Ao such that 

(2.7) 

then we see that the simple process Mn = e>.aSn is a martingale. To make the last 
martingale completely explicit, we only need to find e>.a. To do this, we multiply 
equation (2. 7) by x = e>.o to get a quadratic equation in x, and then we solve that 
equation to find two solutions: x = 1 and x = qfp. The solution x = 1 gives us 
the trivial martingale Mn = 1, but when we take the second choice we find the 
martingale Mn = (qjp) 8 n that we found to be so handy in the solution of the ruin 
problem for biased random walk. 

2.4. Submartingales 

The applicability of martingale theory can be extended greatly if we relax the 
martingale identity to an analogous inequality. This wider class of processes retains 
many of the good features of martingales, yet it is far more flexible and robust. 

DEFINITION 2.4. If the integrable random variables Mn E Fn satisfy the in­
equality 

Mn-1 :S E(Mn I Fn-1) for all n 2: 1, 

we say {Mn} is a submartingale adapted to {:Fn}· 

Submartingales are handy because many natural operations on submartingales 
(or martingales) lead us directly to another submartingale. For example, if {Mn} 
is a martingale then {!Mnl} is a submartingale, and if p 2: 1, then {IMniP} is 
also a submartingale, provided that E(IMniP) < oo for all n 2: 0. As we will see 
shortly, these results are best understood as corollaries of a general inequality for 
the conditional expectation of a convex function of a random variable. 


