MATH 230A ASSIGNMENT 1

Problem 1: Use the definition of the topological manifold to show the following topological spaces are not topological manifolds.

- 1. The union of all rays with irrational slope from the origin in \mathbb{R}^2 .
- 2. The Hawaiian earring: $\bigcup_{n \in \mathbb{N}} \{(x, y) | (x \frac{1}{n})^2 + y^2 = \frac{1}{n^2} \}.$
- 3. The bug-eyed line: $\mathbb{R} \cup \mathbb{R}/x \sim y$ if $x = y \neq 0$.
- 4. The line with an irrational slope in $\mathbb{R}^2/(x,y) \sim (x+m,y+n)$ for any $m,n \in \mathbb{Z}$.

Problem 2: Use the implicit function theorem and the definition of a submanifold to prove the following. Let $f: N \to M$ be a smooth map between smooth manifolds. Let $p \in N$. If for any $q \in f^{-1}(p)$, any chart $U_q \subset N$ with diffeomorphism $\phi_q: U_q \to \mathbb{R}^n$, any chart $U_p \subset M$ with diffeomorphism $\phi_p: U_p \to \mathbb{R}^m$, the Jacobian of

$$\phi_p \circ f \circ \phi_q^{-1} : \mathbb{R}^n \to \mathbb{R}^m$$

at $\phi_q(q)$ is surjective, then $f^{-1}(p)$ is a smooth submanifold of N.

Problem 3: Prove that O(n), SO(n), U(n), SU(n) are closed and bounded in \mathbb{R}^{n^2} and \mathbb{R}^{2n^2} . (Then Bolzano-Weierstrass theorem implies that they are compact.)

Problem 4: Let \mathbb{H} be a 4-dimensional vector space generated by 1, i, j, k (the set of quaternions). Define the multiplication m on \mathbb{H} by

$$1 \cdot l = l \cdot 1 = l \text{ for } l \in \{i, j, k\}$$
$$i \cdot i = j \cdot j = k \cdot k = -1$$
$$i \cdot j = -j \cdot i = k, \quad j \cdot k = -k \cdot j = i, \quad k \cdot i = -i \cdot k = j,$$

and extend it linearly. Let S^3 be the unit sphere in H. Prove the following.

- 1. The manifold S^3 with the multiplication m is a Lie group.
- 2. There is a diffeomorphism $\phi: S^3 \to SU(2)$ that preserves the multiplication and the inverse operation.

Problem 5: Read the construction of the partition of unity in Appendix 1.2 of Cliff's book. Suppose M is a smooth manifold and let $\{(U_1, \phi_1), \dots, (U_N, \phi_N)\}$ be a finite atlas of M. A partition of unity $\{\chi_{\alpha}\}_{\alpha \in N}$ is a set of smooth functions on M such that χ_{α} has support in U_{α} and $\sum_{\alpha=1}^{N} \chi_{\alpha} = 1$ at each point. You don't need to write down anything for this problem.