MATH 230A ASSIGNMENT 2

Problem 1: Let $S^{n-1} = \{x \in \mathbb{R}^n | |x| = 1\}$ and $\mathbb{RP}^{n-1} = S^{n-1}/(-x \sim x)$. Let

$$E_1 = \{(x, v) \in \mathbb{R}^n \times \mathbb{R}^n | |x| = 1 \text{ and } x \cdot v = 0\}, \quad \pi_1 : E_1 \to S^{n-1}$$

and

 $E_2 = \{(x,v) \in \mathbb{R}^n \times \mathbb{R}^n | |x| = 1 \text{ and } x \text{ is parallel to } v\}/((-x,v) \sim (x,v)), \quad \pi_2 : E_2 \to \mathbb{R}\mathbb{P}^{n-1},$

where π_1 and π_2 are projections on the first coordinates. Prove the following.

- 1. E_1 and E_2 are vector bundles. You may check by either the local product structure, or the bundle transition functions. (If you use the bundle transition functions, you may notice that E_1 is the tangent bundle of S^{n-1} . The bundle E_2 is called the **tautological bundle** over \mathbb{RP}^2 .)
- 2. S^1 is diffeomorphic to \mathbb{RP}^1 .
- 3. The bundle E_1 over S^1 is orientable, but the bundle E_2 over \mathbb{RP}^1 is not orientable.

Problem 2: Let M be a smooth manifold. The space of smooth functions on M is denoted by $C^{\infty}(M;\mathbb{R})$, which is an algebra (you can add or multiply any two elements). A **derivation** \mathcal{L} of this algebra is a map from $C^{\infty}(M;\mathbb{R})$ to itself such that

- 1. $\mathcal{L}(f+g) = \mathcal{L}(f) + \mathcal{L}(g);$
- 2. $\mathcal{L}(r) = 0$ for any constant function r;
- 3. $\mathcal{L}(f \cdot g) = \mathcal{L}(f) \cdot g + f \cdot \mathcal{L}(g)$ (Leibniz rule).

A vector field $s: M \to TM$ is a section of the tangent bundle TM. Show that any vector field defines a derivation as follows.

1. Let $U \subset M$ be a chart and let $\phi_U : U \to \mathbb{R}^n$ and $\phi_{U*} : TM|_U \to U \times \mathbb{R}^n$ be the diffeomorphisms. For a smooth function $f : M \to \mathbb{R}$, define $f_U = f \circ \phi_U^{-1} : \mathbb{R}^n \to \mathbb{R}$. Suppose

$$\phi_{U*} \circ s|_U = (\mathrm{Id}_U, v_1, \dots, v_n),$$

where $v_k: U \to \mathbb{R}$. Define

$$\mathcal{L}_s(f)|_U = \sum_{k=1}^n \frac{\partial f_U}{\partial x^k} \cdot v_k : U \to \mathbb{R}.$$

If $p \in U$ is also in another chart V, show that

$$\mathcal{L}_s(f)|_U(p) = \mathcal{L}_s(f)|_V(p),$$

i.e., the construction of $\mathcal{L}_s(f)|_U$ is independent of the choice of U.

2. Use partitions of unity (see problem 5 in assignment 1) to construct the function $\mathcal{L}_s(f) : M \to \mathbb{R}$ so that locally it is defined as above.

(*The converse is also true: any derivation on M is given by a vector field.)

Problem 3: Suppose $V = \mathbb{R}^n$. Compute the dimensions of $V^{\otimes k}$, $\operatorname{Sym}^k V$, and $\bigwedge^k V$.

Problem 4: Let τ_1, τ_2, τ_3 denote the Pauli matrices (see page 63 of Cliff's book). Let M be a smooth manifold and let $S^2 \subset \mathbb{R}^3$ as defined in Problem 1. Let $f: M \to S^2$ be a smooth map and we write it as

$$(f_1, f_2, f_3): M \to \mathbb{R}^3$$
 with $f_1^2 + f_2^2 + f_3^3 = 1$

Define the map $F: M \to \mathbb{M}(2, \mathbb{C})$ that sends $p \in M$ to $\sum_{k=1}^{3} f_k(p) \cdot \tau_k$, where $\mathbb{M}(2, \mathbb{C})$ is the space of 2×2 complex matrices.

- 1. Prove that $F(p)^2 = -\text{Id for any } p \in M$.
- 2. Let $E \subset M \times \mathbb{C}^2$ be the set

$$\{(p,v) \middle| F(p)v = iv, \ i = \sqrt{-1} \in \mathbb{C}\}.$$

Prove that E is a complex vector bundle over M with fiber \mathbb{C} .

3. Let $E_0 \to S^2$ be the complex vector bundle obtain by setting $M = S^2$ and f(x) = x. For any general manifold M and any map f, prove that E is isomorphic to the pull-back bundle f^*E_0 .

Problem 5: Read Sections 5.4-5.7 in Cliff's book about Lie group. You don't need to write down anything for this problem.