MATH 230A ASSIGNMENT 6

Problem 1: Recall that there is a 1-1 correspondence between vector field v on a smooth manifold M and derivation $\mathcal{L}_v : C^{\infty}(M; \mathbb{R}) \to C^{\infty}(M; \mathbb{R})$. For two vector fields v, w, define [v, w] be the vector field corresponding to the derivation

$$\mathcal{L}_{[v,w]}(f) = \mathcal{L}_v \circ \mathcal{L}_v(f) - \mathcal{L}_w \circ \mathcal{L}_v(f),$$

where $f \in C^{\infty}(M; \mathbb{R})$. This is called the **Lie bracket** on vector fields. Prove the following.

- 1. For $a, b \in \mathbb{R}$, v, w, u vector fields, [av + bw, u] = a[v, u] + b[w, u] and [v, aw + bu] = a[v, w] + b[v, u].
- 2. [v, v] = 0 and [v, w] = -[w, v].
- 3. [v, [w, u]] + [u, [v, w]] + [w, [u, v]] = 0 (Jabobi identity).

Problem 2: Suppose G is a Lie group. Given $g \in G$, define $L_g : G \to G$ and $R_g : G \to G$ by $L_g(h) = gh$ and $R_g(h) = hg$. A vector field v is called **left-invariant** if $(L_g)_*v = v$, **right-invariant** if $(R_g)_*v = v$. Let g be the set of left-invariant vector fields. Prove the following.

- 1. \mathfrak{g} can be identified with the tangent space $T_e G$ of G at the identity e.
- 2. \mathfrak{g} can be identified with the set of right-invariant vector fields.
- 3. If $v, w \in \mathfrak{g}$, then the Lie bracket [v, w] is also in \mathfrak{g} .

Problem 3: Let $\pi : P \to \mathbb{R}$ be a principal *G*-bundle over \mathbb{R} . Prove *P* is isomorphic to the product principal bundle $\mathbb{R} \times G$.

Problem 4: Suppose G is a subgroup of $GL(n, \mathbb{R})$ and let $P = S^1 \times G$ is a product principal bundle over S^1 . Let $A_0 \in C^{\infty}(P; \mathfrak{g} \otimes T^*P)$ be the \mathfrak{g} -valued 1-form which at $(t,g) \in S^1 \times G$ has the form $g^{-1}dg$. Prove the following.

- 1. A_0 is a connection on P.
- 2. any other connection A on P must have the form $A = g^{-1}dg + g^{-1}\alpha g \cdot dt$, where α is a map from S^1 to \mathfrak{g} .

Problem 5: Read Chapter 19 in Cliff's book about Hodge star. You don't need to write down anything for this problem.