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About Me

e Graduated from Harvard in 2010

e Professor at UT Austin

e Returned to Harvard

e Research
o Applied machine learning architect
o Computer architecture and runtime systems
o Embedded hardware and software
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Course Logistics




What you will learn

Through this course, you would have been exposed to the following:
e Brief introduction to ML and loT
e Industry talks about real-world deployments
e Discussion of bleeding edge academic research
e Practical experience through hands-on project assignments
At the end of the course, you would have achieved the following:
e Gained familiarity with cutting edge literature in the field of tinyML
e Learntto train and deploy models on microcontrollers with TF-micro
e Conceived and developed a (novel) TinyML application running on a MCU



Course Topics

— e )
N = O 0o

© No gk ownhH

Overview and Introduction to Embedded Machine Learning
Data Engineering

Embedded Machine Learning Frameworks

Efficient Model Representation and Compression
Performance Metrics and Benchmarking of ML Systems
Learning on the Edge

Hardware Acceleration for Edge ML: GPUs, TPUs and FPGAs
Embedded MLOps

Secure and Privacy-Preserving On-Device ML

Responsible Al

Sustainability at the Edge

Generative Al at the Edge



Grading

Class Participation

Paper Reviews

Paper Presentation
Programming Assignments
Final Project

=10%
=10%
=10%
=25%
=45%



Paper Readings

e Checkto see the bold list of
papers, these are the ones to
read and come prepared for
discussion

e Discuss in groups

e One lead per paper

e Report back to the group
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Principles, Preface

Algorithms, and Applications The Philosophy Befind the

°
Algorithms, and Book
Applications = AUTHOR PUBLISHED Prerequisites
Vijay Janapa Reddi (Harvard University) September 5, 2023

Conventions Used in This
and Song Han (MIT) Book

How to Contact Us
Preface
1 About Us Preface
2 Introduction
3 Embedded ML

Contributors

This is a Quarto book.

4 Deep Learning Primer To learn more about Quarto books visit
Goal: Share the knowledge ety Eslooasiieatots
° Workflow

6 Data Collection

7 Pre-processing The.Ph"Osophy
8 Feature Engineering Behind the Book

9 Model Training
10 Optimizations

11 Deployment Prerequisites

e Listento the lectures s

Conventions Used in This Book

o Read the paperS How to Contact Us

. . Contribut
e Review the material omRer
e Scribe into the open source book
Instructions will be announced soon!

and Song Han
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Class Schedule

Start ~End
Lecture 12:45:00 PM 1:30:00 PM
Break 1:40:00 PM 1:45:00 PM
Paper Discussions Paper 1 1:45:00 PM 2:05:00 PM
Paper 2 2:05:00 PM 2:25:00 PM
Break 2:25:00 PM 2:30:00 PM
Guest Lecture 2:30:00 PM 3:30:00 PM
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Introduction to TinyML




What is
Machine Learning?

1. Machine Learning is a subfield
of Artificial Intelligence
focused on developing
algorithms that learn to solve
problems by analyzing data
for patterns

Artificial Intelligence

Machine Learning
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What is (Deep)
Machine Learning?

1. Machine Learning is a subfield
of Artificial Intelligence focused
on developing algorithms that
learn to solve problems by
analyzing data for patterns

2. Deep Learning is a type of
Machine Learning that
leverages Neural Networks and
Big Data

Artificial Intelligence

Machine Learning

Deep Learning
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Applications of Machine Learning
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Applications of Machine Learning
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Applications of Machine Learning

C’c_)‘)o

Label

=

18



Image Classification
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Object Detection

orange
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orange

apple
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Segmentation




Machine Translation

0 Upload translated a Train your model

language pairs

—&M adoor
EEE two table lamps
POER# four quilts

—BR apot of tea

RERERE five telephones AutoML
Translation

FERE A six batteries
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Datacenter
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Datacenter
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Al Compute: 300,000x Increase in Demand

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
10,000

e AlphaGo Zero
1,000

“... since 2012 the amount of compute used in the b e

largest Al training runs has been increasing . e Urs! Mgstifng Translation |

exponentially with a 3.5 month-doubling time (by é 10 < Xception * T17 Dota v1

comparison, Moore’s Law had an 18-month doubling t; 1

period). Since 2012, this metric has grown by more 7 SO

than 300,000x (an 18-month [Moore’s Law] &  GonglaNet

doubling period would yield only a 12x increase). § v SAemigt AT T e R TG BT

Improvements in compute have been a key oot

component of Al progress, so as long as this trend 0001

continues, it's worth preparing for the implications of oo *DGN

systems far outside today’s capabilities.” 2013 2014 2015 2016 2017 2018 2019
Year

Source: https://blog.openai.com/ai-and-compute/
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Two Eras of Computing

“... since 2012 the amount of compute used in the
largest Al training runs has been increasing
exponentially with a 3.5 month-doubling time (by
comparison, Moore’s Law had an 18-month doubling
period). Since 2012, this metric has grown by more
than 300,000x (an 18-month [Moore’s Law]
doubling period would yield only a 12x increase).
Improvements in compute have been a key
component of Al progress, so as long as this trend
continues, it's worth preparing for the implications of
systems far outside today’s capabilities.”

Two Distinct Eras of Compute Usage in Training AI Systems

Petaflop/s-days

le

le+
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+4
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.

.
2 Neural Machine |
Translation
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.0
3.4-month doubling
Ll Deep Belief Nets and
layer-wise pretraining L
DON
TD-Gammon v2.1 | .
BILSTM for Speech
LeNet-5
.
NETtalk RNN for Speech
ALVINN
e-12 2-year doubling (Moore's Law)
e-14 Peme.plvcn < FirstEra  Modern Era >
1960 1970 1980 1990 2000 2010 2020

Source: https://blog.openai.com/ai-and-compute/
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TPUs/GPUs
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But... Bigger Is Not
Always Better.




Common carbon footprint benchmarks
in Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF (1

passenger) | 1,984

Human life (avg. 1 year) I 11,023

. 36,156
126,000

626,155

American life (avg. 1 year)

US car including fuel (avg. 1 lifetime)

Transformer (213M parameters) w/ neural
architecture search

arXiv:1906.02243v1 [cs.CL] 5 Jun 2019

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell

Ananya Ganesh

Andrew McCallum

College of Information and Computer Sciences
University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract C i CO2e (Ibs)
¢ Air travel, 1 passenger, NY &SF
Recent progress in hardware and methodol- 5 i : St
ogy for training neural networks has ushered aman o MVE. L year 8
in a new generation of large networks trained American life, avg, 1 year 36,156
on abundant data. These models have ob- Car, avg incl. fuel, 1 lifetime 126,000
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve- Training one model (GPU)
ments depend on the availability of i NLP pipeline (parsing, SRL) 39
ally large computational resources that neces- wl tuning & experimentation 78.468
sitate similarly ial cnergy p i (big) o5
tion: ‘g aiwofult ticse modelsiaro.coully to wi neural architecture search 626,155

train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP rescarch and practice.

1 Introduction

Ad in i and hard: for train-
ing deep neural networks have recently en-
abled i accuracy imp: across

many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al, 2015; Dozat and Man-
ning, 2017; Vaswani et al, 2017), with the
most i hungry models obtaini

the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al,, 2019). As
a result, training a state-of-the-art model now re-
quires i i which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and of new models multipli

Table 1: Estimated CO, emissions from training com-
mon NLP models, compared to familiar consumption.”

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.
Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based

these costs by thousands of times by requiring re-
training to with model i
and hyperparameters. Whereas a decade ago most

on the esti; d CO, listed in Table 1,

'Sources: (1) Air travel and per-capita consump-
ion:  https://bit.ly/2HwOxWe; (2) car lifetime:
https://bit.ly/2QbrOwl.
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Please select an article below.

ensorFlow
Google
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No Good Data Left Behind

5 Quintillion <1%

bytes of data produced of unstructured data is
every day by loT analyzed or used at all

Source: Harvard Business Review, What's Your Data Strategy?, April 18, 2017
Cisco, Internet of Things (loT) Data Continues to Explode Exponentially. Who Is
Using That Data and How?, Feb 5, 2018 37
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What is TinyML?




TinyML
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What is Tiny Machine Learning (TinyML)?

TinyML
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What is Tiny Machine Learning (TinyML)?

TinyML
y Fastest-growing field of ML “/li
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What is Tiny Machine Learning (TinyML)?

TinyML
y Fastest-growing field of ML “/li

Algorithms, hardware, software
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What is Tiny Machine Learning (TinyML)?

TinyML
y Fastest-growing field of ML il

Algorithms, hardware, software

. . I
On-device sensor analytics .=
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What is Tiny Machine Learning (TinyML)?

TinyML
y Fastest-growing field of ML il

Algorithms, hardware, software

. . I
On-device sensor analytics .=

Always-on ML
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What is Tiny Machine Learning (TinyML)?

TinyML
Yy Fastest-growing field of ML “/|i

Algorithms, hardware, software

. . I
On-device sensor analytics .=

Always-on ML
Battery-operated €3]
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Tiny Robot Learning
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http://www.youtube.com/watch?v=wmVKbX7MOnU
http://www.youtube.com/watch?v=hj_SBSpK5qg

Tiny Robot Learning
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Wildlife Conservation
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http://www.youtube.com/watch?v=9kXMOyJVCNA

ElephantEdge

Risk
Monitoring

Activity
Monitoring

Communication
Monitoring

“Know when an elephant is moving into a high-risk area and
send real-time notifications to park rangers.”

“Sense and alert when an elephant is heading into an area
where farmers live.”

“Classify the general behavior of the elephant, such
as when it is drinking, eating, sleeping, etc.”

“Listen for vocal communications between
elephants via the onboard microphone.”

51



Rich Array of Sensors

Motion Sensors Acoustic Sensors
Gyroscope, radar, Ultrasonic, Microphones,
magnetometer, accelerator Geophones, Vibrometers
Touchscreen Sensors Image Sensors
Capacitive, IR Thermal, Image
Force Sensors Rotation Sensors

Pressure, Strain Encoders

Environmental Sensors
Temperature, Humidity,
Pressure, IR, etc.

Biometric Sensors
Fingerprint, Heart rate, etc.
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Digitizer - Al on the edge

An ESP32 all inclusive neural network recognition system for meter digitalization

Overview Configuration = Recognition File Server  System

Raw Value:

038.5975

Corrected Value:

CH-MI001-10039 38.5975
RSOHRSOV =57 ||
T30 1,6MFa, / (™ , Checked Value:
38.5975
| Start Time:

8l [20201118-075416

Last Page Refresh:06:57:39
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Meet TinyML: The Latest Machine
Learning Tech Having An Outsize
Business Impact

Dr. Nicholas Nicoloudis &rand
SAP BRANDVOICE

Paid Program

As device sens

rs proliferate across
product development through insp(
surfacing to provide actionable insi
There are sound economic reasons

researchers predict [oT will have a|

trillion by 2025, identifying manufg
trillion).

The tinyML community was establi
learning architectures, techniques,
on-device analytics for a variety of§
chemical, and others) at low power

devices. One of the tinyML founder

“.we are in the midst of the digital
ultimate benefits of extreme energy
intelligence and analytics at low e¢

features...”

Subscribe

Forbes

e0e @D EETimes - TinyML Sees BigHe X +
C ) & eetimescomftiymi-se.. () % ® A
B9 tinyML B9 Google B3 MLC » | B3 Other Bookmarks | 8

EETimes

® ©® o Machineleaming atthe edge: X +
C (0 @ zdnet n y getting b %
tinyML B3 Google B3 MLC [EJ Research TimeBuddy - CESMIl - The S.. msr Al Measurementa.. ¢ Data Centric Al W.
A @t  windowstt 56 BestvPNs Cioud  Securty Al Newsleters Blogs More  Edition: US

|D musT READ: Logéj flaw: Now state-backed hackers are using bug as part of attacks,

Machine learning at the edge: Tin
getting big

Being able to deploy machine learning applications at the edge is the key to unlocking
TinyML is the art and science of producing machine learning models frugal enough to
rapid growth.

4 <F  Written by George Anadiotis, Contributing Writer

g Posted In Big on Data on June 7, 2021 | Topic: Big Data

Is it $61 billion and 38.4% CAGR by 2028 or $43 billion and 37.4% CAGR by 2027? Depends on
which report outlining the growth of edge computing you choose to go by, but in the end it's not
that different.

What matters is that edge computing is booming. There is growing interest by vendors, and ample

coverage, for good reason. Although the definition of what constitutes edge computing is a bit

fuzzy, the idea is simple. It's about taking compute out of the data center, and bringing it as close

to where the action is as possible.

Whether it's stand-alone loT sensors, devices of all kinds, drones, EXECuTIVE SUE

3
=
LY
3

or autonomous vehicles, there's one thing in common. Increasingly,
data generated at the edge are used to feed applications powered
by machine learning models. There's just one problem: machine

learning models were never designed to be deployed at the edge.

Not until now, at least. Enter TinyML.

What is machine learning?
Evervthina vou need to

Tinv machine learnina (TinvMLl ) is broadlv defined as a fast arowina

s
B3

13 Reading List
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eo0e@ ®D How TinyML is powering bigic X 4 v
c 0 (ﬂ cio.com/article/ I-is-p big-id I ies.html fu) Q) @® Ry e O A *» S
ES tinyML B Google B MLC E3 Research TimeBuddy - CESMII-The S.. msr AlMeasurementa.. & Data Centric Al W. » | B3 Other Bookmarks | }Z] Reading List
CIO DIGITALISSUE ~ AWARDS ~ EVENTS  CIOTHINKTANK  NEWSLETTERS  RESOURCES INSIDERD siGN N REGISTER
HotTopics IT Leadership  Digital Transformation  Innovation  Data Analytics &Al  Enterprise Applications  Diversity and Inclusion
Home
E ! J NEXT EVOLUTION OF MACHINE LEARNING IS UPON US
SPONSORED
How TinyML i ing big id
itical in dust #
BrandPost Sponsored by SAP | Learn More | JUL 18, 2021 PDT
From cars and TVs to lightbulbs and doorbells. So many of the objects in everyday life
have ‘smart’functionality because the manufacturers have built chips into them.
But what if you could also run machine learning models in something as small as a [
golf ball dimple? That's the reality that’s being enabled by TinyML, a broad movement )

to run tiny machine learning algorithms on embedded devices, or those with
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250 Billion
MCUs today
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Himax HX6537-A 2MB flash Accelerometer, Mic,
WE-I Plus EVB 32-bit EM9D DSP 400 MFlz 2MB RAM Camera None
Mic, IMU, Temp,
Arduino 32-bit 1MB flash Humidity, Gesture,
Nano 33 BLE Sense nRF52840 il 256kB RAM Pressure, Proximity, BLE
Brightness, Color
n SparkFun 32-bit 1MB flash Accelerometer, Mic,
i Edge 2 ArtemisV1 Aol 384kB RAM Camera ELE
S Espressif 32-bit 4MB flash : -
% EYE ESP32-DOWD 240 MHz 520kB RAM Mic, Camera WiFi, BLE
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Challenges
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Challenges
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Hardware

Heterogeneity

2

£

Resource Constraints

Missing Library
Features

Limited Operating
System Support
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Challenges
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Resource Constraints

Missing Library
Features

Limited Operating
System Support
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TensorFlow Lite Micro
In a Nutshell

Built to fit on embedded systems:

Very small binary footprint

- No dynamic memory allocation

- No dependencies on complex parts of the standard C/C++ libraries
- No operating system dependencies, can run on bare metal

- Designed to be portable across a wide variety of systems

arXiv:2010.08678v3 [cs.LG] 13 Mar 2021

TENSORFLOW LITE MICRO:
EMBEDDED MACHINE LEARNING ON TINYML SYSTEMS

-

Robert David! Jared Duke' Advait Jain' Vijay Janapa Reddi
Nat Jeffries' Jian Li' Nick Kreeger' Ian Nappier' Meghna Natraj'
Shlomi Regev' Rocky Rhodes' Tiezhen Wang' Pete Warden '

ABSTRACT
TensorFlow Lite Micro (TFLM) is an open-source ML inference framework for running deep-learning models on
embedded systems. TFLM tackles the efficincy requirements imposed by cmbedded-system resource constraints

and the hallenges that mak nearly impossible. The framework
adopt  ique nerpetr-basd approach that provides fleibilty wile overcoming these nique chalenges.
s paper, we explain the design decisions behin and describe its implementation. We present an

evaluation of TFLM to demonstrate its low resource mq\nm’nents and minimal run-time performance overheads.

INTRODUCTION vices requires overcoming two crucial challenges. First
and foremost, embedded systems have no unified TinyML

‘Tiny machine learning (TinyML) is a burgeoning field at
the intersection of embedded systems and machine learning.
‘The world has over 250 billion microcontrollers (IC Insights,
2020), with strong growth projected over coming years. As
such, anew range of embedded applications are emerging
for neural networks. Because these models are extremely
small (few hundred KBs), running on microcontrollers or
DSP-based embedded subsystems, they can operate contin-
uously with minimal impact on device battery life.

‘The most well-known and widely deployed example of this
new TinyML technology is keyword spotting, also called
hotword or wakeword detection (Chen et al., 2014; Gru-
enstein et al., 2017; Zhang et al., 2017). Amazon, Apple,
Google, and others use tiny neural networks on billions of
devices to run always-on inferences for keyword detection—
and this is far from the only TinyML application. Low-
latency analysis and modeling of sensor signals from micro-
phones, low-power image sensors, accelerometers, gyros,
PPG optical sensors, and other devices enable consumer and
industrial applications, including predictive maintenance
(Goebel et al., 2020; Susto et al., 2014), acoustic-anomaly
detection (Koizumi et al., 2019), visual object detection
(Chowdhery et al., 2019), and human-activity recognition
(Chavarriaga et al, 2013; Zhang & Sawchuk, 2012).
Unlocking machine learning’s potential in embedded de-
'Google “Harvard University. ~ Correspondence to:

Pete Warden <p¢lewardm\®gonglc com>, Vijay Janapa Reddi
<vj@cecs harvard.cdu>.

Proceedings of the 4" MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

[MLSys’21]

framework. When engineers have deployed neural networks
to such systems, they have built one-off frameworks that
require manual optimization for each hardware platform.
Such custom frameworks have tended to be narrowly fo-
cused, lacking features to support multiple applications and
Incking portabilty acros  wide range of hardware, The
developer experience has therefore been ing
hand optimization of models to run on a specific Gevice
And altering these models to run on another device necessi-
tated manual porting and repeated optimization effort, An
important second-order effect of this situation is that the
slow pace and high cost of training and deploying mod-
els to embedded hardware prevents developers from casily
justifying the investment required to build new features.

Another limiting TinyML

have related but separate needs. Without a generic TinyML

framework, evaluating hardware performance in a neutral,

vendor-agnostic manner has been difficult. Frameworks are
and itis hard

of improvements because they can come from hardware,

Software, or the complete vertically integrated solution.

‘The lack of a proper framework has been a barrier to acceler-
ating TinyML adoption and application in products. Beyond
deploying a model to an embedded target, the framework
must also have a means of training a model on a higher-
compute platform. TinyML must exploit a broad ecosystem
of tools for ML, as well for orchestrating and debugging
‘models, which are beneficial for production devices.

Prior efforts have attempted to bridge this gap. We can distill
the major issues facing the frameworks into the following:




A Greener Tomorrow with TinyML
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Sustainable TinyML

@ Climate change ° Water demand : 9
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Sustainable TinyML
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- oxidant formation

Freshwater
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Common Carbon Footprint Benchmarks

in Ibs of CO2 equivalent

Roundstrip flight b/w NY and SF (1

passenger) | 254
Human life (avg. 1 year) I 11,023
American life (avg. 1 year) Bl 36,156

US car including fuel (avg. 1 lifetime) 126,000
Transformer (213M parameters) w/ neural
architecture search 626,155

Chart: MIT Technology Review * Source: Strubell et al. » Created with Datawrapper
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Sustainable
Development Goals
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The MLOps Process

ML Data, Model
Development Management
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ML
Development

ML development entails
experimenting with and
establishing a dependable
and repeatable model
training procedure.
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Training
Operationalization

Training operationalization is all
about automating the packaging,
testing, and deployment of
repeatable and dependable
training pipelines.
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Continuous
Training

Continuous training entails
running the training pipeline on a
regular basis, maybe with fresh
training settings, in response to
new data or code modifications.
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Model
Deployment

Packaging, testing, and deploying a
model to a serving environment for
online experimentation and
production serving is what model
deployment is all about.
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Prediction
Serving

Serving the model that is
deployed in production for
inference is known as
prediction serving.
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Continuous
Monitoring

Continuous monitoring refers
to keeping track of a deployed
model's effectiveness and
efficiency.
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Data & Model
Management

Data and model management is a
central, cross-cutting function for
governing ML artifacts to support
ability, traceability, and
compliance. Data and model
management can also promote
shareability, reusability, and
discoverability of ML assets.



ML Sensors
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Datasheets for ML Sensors

ML sensors must be transparent,
indicating in a publicly and freely
accessible ML sensor datasheet all the
relevant information such as fact sheets,
model cards, and dataset nutrition labels
to supplement the traditional EE hardware
information typically available for sensors.

Description: The PA1 Person Detection Module enables you to

quickly and easily add smarts to your loT deployment to

monitor and detect for humans. You can use this module

indoors and outdoors to understand where and when humans

arrive at your deployment site.

Features:

* Real-time Person Detection with On-Device ML

* Indoor and Outdoor use

* Finds a person at a maximum distance of 10 meters to a
minimum distance of 5 centimeters

« Operates in low and high light environments (1-20000 Lux)
across a wide temperature range (0 to 50 °C)

* Features Color and Black-and-White Detection Modules

Use Cases:

* Smart business and home security systems

* Multi-modal key word spotting for virtual assistants

* Occupancy sensors and other infrastructure sensors

Sources: fabacademy.org, electroschematics.com, and nxp.com/docs
T rapeno)
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Model performance:
Measured with Precision-Recall (PR)
and Area Under the PR Curve (PR-AUC).
Download raw performance results
i data here. Disaggregated performance
' measured with Recall, which captures
| how often the model misses faces with
| specific characteristics. Equal recall across
subgroups corresponds to the “Equality of

1 Opportunity” fairness criterion.
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Machine Learning Sensors

An ML sensor is a self-contained system that utilizes on-device
machine learning to extract useful information by observing some
complex set of phenomena in the physical world and reports it
through a simple interface to a wider system.

Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications. Current
instantiations of embedded ML suffer from complex integration, lack of modularity, and privacy and security concerns from data
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Interface Standards Ethics
What universal interface is needed for ML What standards need to be in place for ML What ethical considerations are needed for
Sensors? Sensors? ML Sensors?

Call for Working Group Members

We are actively growing our working group. If you would like to be a part of it please email us at:
ml-sensors@googlegroups.com!

Example ML Sensor Datasheet

This illustrative example datasheet highlighting the various sections of an ML Sensor datasheet. On the top, we have the items
currently found in standard datasheets: the description, features, use cases, diagrams and form factor, hardware characteristics,
and communication specification and pinout. On the bottom, we have the new items that need to be included in an ML sensor
datasheet: the ML model characteristics, dataset nutrition label, environmental impact analysis, and end-to-end performance
analysis. While we compressed this datasheet into a one-page illustrative example by combining features and data from a mixture
of sources, on a real datasheet, we assume each of these sections would be longer and include additional explanatory text to
increase the transparency of the device to end-users. Interested users can find the most up-to-date version of the datasheet
online at https://github.com/harvard-edge/ML-Sensors.

Description: The PA1 Person Detection Module enables youto | | 200(2),95,5(:
quickly and easily add smarts to your loT deployment to 1
monitor and detect for humans. You can use this module -
indoors and outdoors to understand where and when humans 1
arrive at your deployment site. 1

1

1

Features:
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ML Sensors - Guiding Set of Principles

1.  We need to raise the level of abstraction to enable ease of use for scalable deployment of ML sensors; not everyone
should be required to be an systems developer or an engineer to use or leverage ML sensors into their ecosystem.

2. The ML sensor’s and defined by its input-output behavior instead of exposing
the underlying hardware and software mechanisms that support ML model execution.

3.  An ML sensor’s implementation must be clean and complexity-free. Features such as reusability, software updates,
and networking must be thought through to ensure data privacy and secure execution.

4. ML sensors must be transparent, indicating in a publicly and freely accessible ML sensor datasheet all the relevant
information such as fact sheets, model cards, and dataset nutrition labels to supplement the traditional information
available for hardware sensors.

5. We as a community should aim to foster an open ML sensors ecosystem by maximizing data, model, and hardware
transparency where possible, without necessarily relinquishing any claim to intellectual property.
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MACHINE LEARNING SENSORS

Pete Warden' Matthew Stewart” Brian Plancher? Colby Banbury® Shvetank Prakash? Emma Chen?

Machine Learning
Sensors byl

Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications.
Current instantiations of embedded machine learning (ML) suffer from complex integration, lack of modularity,
and privacy and security concerns from data movement. This article proposes a more data-centric paradigm for
embedding sensor intelligence on edge devices to combat these challenges. Our vision for “sensor 2.0” entails
segregating sensor input data and ML processing frum lhc wider system at the hardware level and providing a

173 3 . thin interface that mimics traditional sensors in This leads to a modular and easy-to-use
An ML sensor is self-contained system ML s e, Ve s callerges e by e sadardsppac o g M. procsin i

alleviates these problems. ML sensors mcrcasc privacy and accuracy while making it easier for system builders to

that utilizes on-device machine learning
extract useful information by observing
some complex set of phenomena in the
physical world and reports it through a
simple interface to a wider system.”

2206.03266v1 [cs.LG] 7 Jun 2022

arXiv

m\cgmc ML into their products as a simple component. We provide examples of prospective ML sensors and an
ive datasheet as a ion and hope that this will build a dialogue to progress us towards sensor 2.0.

1 INTRODUCTION

Since the advent of AlexNet [43], deep neural networks have
proven to be robust solutions to many challenges that involve
making sense of data from the physical world. Machine
learning (ML) models can now run on low-cost, low-power
hardware capable of deployment as part of an embedded
device. Processing data close to the sensor on an embedded
device allows for an expansive new variety of always-on
ML use- cases that preserve bandwidth, latency, and energy
while imp i and maintaining data pri-
vacy. This emerging field, commonly referred th a8 embed-
ded ML or tiny machine learning (TinyML) [73, 18, 39, 59],
is paving the way for a prosperous new array of use-cases,
from personalized health initiatives to improving manufac-
turing and everything

However, the current practice for combining inference and
sensing is cumbersome and raises the barrier of entry to
embedded ML. At present, the general design practice is to
design or leverage a board with decoupled sensors and com-
pute (in the form of a microcontroller or DSP), and for the
developer to figure out how to run ML on these embedded
platforms. The developer is expected to train and optimize
ML models and fit them within the resource constraints of
the embedded device. Once an acceptable prototype imple-
mentation is developed, the model is integrated with the rest
of the software on the device. Finally, the widget is tethered
to the device under test to run inference. The current ap-
proach is slow, manual, energy-inefficient, and error-prone.

Physical
st Processor Cloud

Figure 1. The Sensor 1.0 paradigm tightly couples the ML model
with the application processor and logic, making it difficult to
provide hard guarantees about the ML sensor's ultimate behavior.

Machine Leaming
(ML) Sensor

Processor Cloud

Figure 2. Our proposed Sensor 2.0 paradigm. The ML model is
tightly coupled with the physical sensor, separate from the applica-
tion processor, and comes with an ML sensor datasheet that makes
its behavior transparent to the system integrators and developers.

It requires a sophisticated understanding of ML and the in-
tricacies of ML model implementations to optimize and fit
a model within the constraints of the embedded device.
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Stage 4: Live Operations

Model drift and skew
Ethical challenges
Sustainability
Security and privacy

Stage 1: Sensor Data

Heterogeneous devices
Multi-modal data
Sensor drift

Varying data frequency

Stage 2: Model Development

ML model architecture
Resource constraints
Model quality/accuracy
End-to-end performance
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Overview and Introduction to Embedded Machine Learning
Data Engineering

Embedded Machine Learning Frameworks

Efficient Model Representation and Compression
Performance Metrics and Benchmarking of ML Systems
Learning on the Edge

Hardware Acceleration for Edge ML: GPUs, TPUs and FPGAs
Embedded MLOps

Secure and Privacy-Preserving On-Device ML

Responsible Al

Sustainability at the Edge

Generative Al at the Edge
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Conclusion

1. TinyML has the potential to
radically change our future

2. No free lunch — hardware and
software fragmentation is a
serious challenge to address

3. TinyML sustainability is crucial to
ensure its broad applicability

4. ML sensors based on TinyML
technology must be transparent

5. Widening access to applied ML is a
must to ensure equitable access

TinyML

Embedded
Systems

Machine
Learning

&

Applications

The future of ML is tiny and bright,
and its benefits can translate to societal impact., 5
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https://docs.google.com/file/d/1WHVV0bde0JUI4BAwOvnzrx9v7s4un-Dm/preview
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https://docs.google.com/file/d/17dRbNWkIq75AKiXBIcagNo7JqiiKgxSF/preview

Unilateral Gait Event Classification by
Measuring Local Muscle Deformation

Jonathan Alvarez

CS249R: Tiny ML 12.2022



https://docs.google.com/file/d/141cNXX8rGCChuD676aNhvx9wIbFtkHd3/preview



https://docs.google.com/file/d/1S7rO3SsM2M6LN4t1rWB-224QWmg_KyTd/preview

Discussion Topics




Understanding TinyML

What is tinyML and how does it differ from traditional machine learning
approaches?

What are the potential applications of tinyML in everyday life?

How does tinyML align with the current trends in the Internet of Things (IoT)?

Class Discussion 112



Application and Use Cases

What kind of real-world problems can be solved more efficiently with tinyML
compared to traditional ML solutions?

How can tinyML contribute to energy conservation and sustainability?

What industries or sectors could benefit the most from tinyML technologies?
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Security and Privacy

What are the potential security vulnerabilities associated with deploying tinyML in
sensitive applications?

How can privacy be maintained when deploying tinyML solutions in personal
devices?

How can tinyML aid in the development of secure communication networks?
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Ethics and Society

What are the potential societal impacts of widespread adoption of tinyML

technologies?

What ethical considerations should be kept in mind when deploying tinyML in
public spaces?

How can tinyML technologies be made accessible and inclusive for different
communities?
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