CS249r: Generative Al

Nov 27

Course Logistics

Assignment Schedule Updates

e Project Presentations

o Due: December 4th (Monday)
e Final Report

o Due: December 11th (Monday)

Scribing

e Peerreview - Generally, 1 detailed review
o Security and Privacy is in PR mode
o This week
i. Responsible Al
ii. Sustainable Al
o Only 1 detailed review
i. 25/33 are done! s &
e ESOTr
o Opportunity to work with me and my
students in the Edge Computing Lab
o Deepen your knowledge of TinyML
and more broadly ML systems.

Project Check-Ins

e Anyissues?
o Debugging, profiling, optimization...

e Feel free to contact us on slack, so that we can be more responsive
e Office hours dedicated to projects

o Please check in with the TAs if there are any issues
or you want feedback on presentation/papers etc.

RE: Responsible Al Class

Discussion of sensitive topics
Mindful delivery of these topics
Open to ideas and suggestions

Course Topics

_—)
N = O 0

© No a ko~

Overview and Introduction to Embedded Machine Learning
Data Engineering

Embedded Machine Learning Frameworks

Efficient Model Representation and Compression
Performance Metrics and Benchmarking of ML Systems
Learning on the Edge

Hardware Acceleration for Edge ML: GPUs, TPUs and FPGAs
Embedded MLOps

Secure and Privacy-Preserving On-Device ML

Responsible Al

Sustainable Al

Generative Al at the Edge

Today’s Schedule

12:45 pm to ~2:00pm - Lecture material
2:00 pmto 2:.30pm - Paper discussions
2:.30 pmto 3:30pm - Jason Wei / Open Al

Course Logistics

Life cycle of ML

DATA FIXES DATA NEEDS

Data Data Data Data Data

Ingestion Analysis, Data Validation Preparation
Prep data for Curation Labelling Verify data is Prep data for
downstream ML Inspect/select

Collection
Continuous
input stream

Selected Validated :
data Annotate data usable through | ML uses (split,

apps the right data pipeline versioning)

Online ML ready
Performance Datasets

ML System ML ML System Model Model

Deployment Jgiilield Validation
Deploy ML Validated Validate ML
system to system for

Evaluation Training
Compute model Use ML algos to
KPIs Create models

y ML System
production deployment

10

Recap: Data Engineerin

Contributors: Oishi Banerjee, Shreya Johri, Itai Shapira

Understand the importance of clearly defining the problem statement and objectives

Recognize various data sourcing techniques like web scraping, crowdsourcing, and
synthetic data generation, along with their advantages and limitations.

Appreciate the need for thoughtful data labeling, using manual or Al-assisted approaches,
to create high-quality training datasets.

Methods for storing & managing data - databases, data warehouses, and data lakes.
Comprehend the role of transparency through metadata and dataset documentation
Understand how licensing protocols govern legal data access and usage

Recognize key challenges in data engineering, including privacy risks, representation gaps,
legal restrictions around data access, and balancing competing priorities.

L] <& MACHINE LEARNING SYSTEN X +

cC o @& harvard

FRONT MATTER v
Preface
Dedication
Acknowledgements
Contributors
Copyright
About the Book
MAIN
Introduction
Embedded Systems
Deep Learning Primer
Embedded Al
Al Workflow
Data Engineering
Al Frameworks
Al Training
Efficient Al

© o NGO AW N e

10 Model Optimizations
11 Al Acceleration

12 Benchmarking Al

13 On-Device Learning
14 Embedded AlOps

15 Privacy and Security

16 Responsible Al

17 Generative Al

18 Alfor Good

19 Sustainable Al

20 Robust Al

EXERCISES v
Setup Nicla Vision
CV on Nicla Vision
Object Detection
Audio Feature Engineering
Keyword Spotting (KWS)
DSP - Spectral Features
Motion Classification and
Anomaly Detection

1]

github.io/cs249r_| _engineer.. (h Y &

MACHINE LEARNING SYSTEMS

6 Data Engineering

DALLE 3 Prompt: Create a rectangular illustration visualizing the concept of
data engineering. Include elements such as raw data sources, data processing
pipelines, storage systems, and refined datasets. Show how raw data is
transformed through cleaning, processing, and storage to become valuable
information that can be analyzed and used for decision-making.

Data is the lifeblood of Al systems. Without good data, even the most
advanced machine learning algorithms will fail. In this section, we will
dive into the intricacies of building high-quality datasets to fuel our Al
models. Data engineering encompasses the processes of collecting,
storing, processing, and managing data for training machine learning
models.

Q Learning Objectives
« Understand the importance of clearly defining the problem
statement and objectives when embarking on a ML project.

« Recognize various data sourcing techniques like web scraping,
crowdsourcing, and synthetic data generation, along with their
advantages and limitations.

« Appreciate the need for thoughtful data labeling, using manual or
Al-assisted approaches, to create high-quality training datasets.

« Briefly learn different methods for storing and managing data
such as databases, data warehouses, and data lakes.

References
Anpendices . « Comprehend the role of transparency through metadata and
A oo dataset documentation, as well as tracking data provenance to
i faciltate ethics, auditing, and reproducibility.
B Datasets
C Model Zoo « Understand how licensing protocols govern legal data access and
o usage. fi careful

P QO 8V e x0P

i Apps 5 TinyML [E5 Harvard B Funding BS MLC B Maya E5 Nora B LiMs &3 W 4 Q <& cs249rBook & LLMx

0z L~ <~

Table of contents
6.1 Introduction
6.2 Problem Definition
6.3 Data Sourcing
6.4 Data Storage
6.5 Data Processing
6.6 Data Labeling
6.7 Data Version Control

6.8 Optimizing Data for
Embedded Al

6.9 Data Transparency
6.10 Licensing
6.11 Conclusion

© Edit this page
Report an issue
View source

11

https://arxiv.org/abs/1810.03993
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/fe131d7f5a6b38b23cc967316c13dae2-Paper-round2.pdf

eoce <& MACHINE LEARNING SYSTEM X + A

<« C {0 & harvard-edge.github.io/cs249r_| ksht.. 0 % & 2 » T Q @ # U ¢ » 0 $

i1 Apps B TiyML ES Harvard ES Funding BS MIC B Maya B Nora E5 LMs & W 4 Q <& cs249rBook & LLMx »

00 L+ <+ 8

MACHINE LEARNING SYSTEMS

Recap: Embedded
ML Frameworks

FRONT MATTER v
Preface

edication

Contributors: Henry Bae, Divya Amirtharaj, Sophia Cho, Emeka Ezik&::".......

Understand the evolution and capabilities of major machine learning frameworks. This includes MAIN S Embedded Al

1 Introduction
" . . . Fr

graph execution models, programming paradigms, hardware acceleration support, and how they have 2 Embedded Systems 7;'22::;

expanded over time. 3 Deep Learning Primer 7.9 Choosing the Right
4 Embedded Al Framework
5 Al Workflow 7.10 Future Trends in ML

Frameworks
. D E
Learn the core components and functionality of frameworks like computational graphs, data f A?:’ "g‘"ee‘:g DALLE 3 Prompt: ltustration in a rectangular format, designed for a 711 Conclusion
rameworks
. . P T professional textbook, where the content spans the entire width. The vibrant

pipelines, optimization algorithms, training loops, etc. that enable efficient model building. 8 Al Training ehait represents Fainii aE inferaRce frsmiaES SO ML dcors for © Edit this page

9 Efficient Al TensorFlow, Keras, PyTorch, ONNX, and TensorRT are spread out, filling the Report an issue

Compare frameworks across different environments like cloud, edge, and tinyML. Learn how
frameworks specialize based on computational constraints and hardware.

Dive deeper into embedded and tinyML focused frameworks like TensorFlow Lite Micro, CMSIS-NN,
TinyEngine etc. and how they optimize for microcontrollers.

Explore model conversion and deployment considerations when choosing a framework, including
aspects like latency, memory usage, and hardware support.

Evaluate key factors in selecting the right framework like performance, hardware compatibility,
community support, ease of use, etc. based on the specific project needs and constraints.

Understand the limitations of current frameworks and potential future trends like using ML to

Contributors
Copyright
About the Book

10 Model Optimizations
11 Al Acceleration

12 Benchmarking Al

13 On-Device Learning
14 Embedded AlOps

Table of contents

7 Al Frameworks

7.1 Introduction

7.2 Framework Evolution

7.3 DeepDive into
TensorFlow

Components

7.6 Framework
Specialization

entire horizontal space, and aligned vertically. Each icon is accompanied by View source
brief annotations detailing their features. The lively colors like blues, greens,

and oranges highlight the icons and sections against a soft gradient

background. The distinction between training and inference frameworks is

accentuated through color-coded sections, with clean lines and modern

15 Privacy and Security

16 Responsible Al

17 Generative Al

18 Alfor Good

19 Sustainable Al

20 Robust Al

EXERCISES v
Setup Nicla Vision
CV on Nicla Vision
Object Detection
Audio Feature Engineering
Keyword Spotting (KWS)
DSP - Spectral Features
Motion Classification and
Anomaly Detection

clarity and focus,

In this chapter, we explore the landscape of Al frameworks that serve
as the foundation for developing machine learning systems. Al
frameworks provide the essential tools, libraries, and environments
necessary to design, train, and deploy machine learning models. We
delve into the evolutionary trajectory of these frameworks, dissect the
workings of TensorFlow, and provide insights into the core components
and advanced features that define these frameworks.

Furthermore, we ir the i 1 of ks tailored

to specific needs, the emergence of frameworks specifically designed
for embedded Al, and the criteria for selecting the most suitable
framework for your project. This exploration will be rounded off by a
glimpse into the future trends that are expected to shape the
landscape of ML frameworks in the coming years.

References
improve frameworks, decomposed ML systems, and high performance compilers. Appendices V Vi Lesming Qbjectives)
A Tools * Understand the evolution and capabilities of major machine
B Datasets learning frameworks. This includes graph execution models,
C Model Zoo i hardware ion support, and how
Lo they have expanded over time.

7.4 Basic Framework

7.5 Advanced Features

12

https://arxiv.org/abs/2010.08678
https://arxiv.org/abs/2007.10319

Recap: Representation &

ompression

<«

L] <& MACHINE LEARNING SYSTEN X +

cC o @& harvard

1]

github.io/cs249r._ imizati b K = - P GO . *»03

i Apps 5 TinyML [E5 Harvard B Funding BS MLC B Maya E5 Nora B LiMs &3 W 4 Q <& cs249rBook & LLMx

MACHINE LEARNING SYSTEMS

FRONT MATTER v
Preface

edication

Contributors: Jeffrey Ma, Aghyad Deeb, Costin Oncescu, Jayson Lif:..w.....

Learn techniques like pruning, knowledge distillation and specialized
model architectures to represent models more efficiently

Understand quantization methods to reduce model size and enable
faster inference through reduced precision numerics

Explore hardware-aware optimization approaches to match models to
target device capabilities

Discover software tools like frameworks and model conversion
platforms that enable deployment of optimized models

Develop holistic thinking to balance tradeoffs in model complexity,
accuracy, latency, power etc. based on application requirements

Gain strategic insight into selecting and applying model optimizations
based on use case constraints and hardware targets

Contributors

Copyright

About the Book

MAIN

Introduction
Embedded Systems
Deep Learning Primer
Embedded Al

Al Workflow

Data Engineering

Al Frameworks

Al Training

Efficient Al

10 Model Optimizations
11 Al Acceleration

12 Benchmarking Al
13 On-Device Learning
14 Embedded AlOps
15 Privacy and Security
16 Responsible Al

17 Generative Al

18 Al for Good

19 Sustainable Al

20 Robust Al
EXERCISES v

© o NG AW N R

Setup Nicla Vision
CV on Nicla Vision
Object Detection
Audio Feature Engineering
Keyword Spotting (KWS)
DSP - Spectral Features
Motion Classification and
Anomaly Detection
References
Appendices v
A Tools
B Datasets
C Model Zoo

(D Pocourcoc

0z L~ <~

Table of contents

10 Model Optimizations

10.1 Introduction
10.2 Efficient Model
Representation

10.3 Efficient Numerics
Representation

10.4 Efficient Hardware
Implementation

10.5 Software and
Framework Support
10.6 Conclusion

© Edit this page
Report an issue
View source

DALLE 3 Prompt: lllustration of a neural network model represented as a busy

construction site, with a diverse group of construction workers, both male and
female, of various ethnicities, labeled as ‘pruning’ ‘quantization’, and ‘sparsity’.
They are working together to make the neural network more efficient and
smaller, while maintaining high accuracy. The ‘pruning’ worker, a Hispanic
female, i cutting unnecessary connections from the middle of the network.

The ‘quantization’ worker, a Caucasian male, is adjusting or tweaking the
weights all over the place. The 'sparsity’ worker, an African female, is removing
unnecessary nodes to shrink the model. Construction trucks and cranes are in
the background, assisting the workers in their tasks. The neural network is
visually transforming from a complex and large structure to a more streamlined
and smaller one.

When machine learning models are deployed on systems, especially
on resource-constrained embedded systems, the optimization of
models is a necessity. While machine learning inherently often
demands substantial computational resources, the systems are
inherently limited in memory, processing power, and energy. This
chapter will dive into the art and science of optimizing machine
learning models to ensure they are lightweight, efficient, and effective
when deployed in TinyML scenarios.

Q Learning Objectives
« Learn techniques like pruning, knowledge distillation and
specialized model architectures to represent models more
efficiently

* Understand quantization methods to reduce model size and
enable faster inference through reduced precision numerics

* Explore hardware-aware optimization approaches to match

models to target device

13

https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/1803.03635

Recap: Benchmarking
of ML Systems

Contributors: Colby Banbury, Mark Mazumder

Understand the purpose and goals of benchmarking Al systems, including performance assessment,
resource evaluation, validation, and more.

Learn about the different types of benchmarks - micro, macro, and end-to-end - and their role in
evaluating different aspects of an Al system.

Become familiar with the key components of an Al benchmark, including datasets, tasks, metrics,
baselines, reproducibility rules, and more.

Understand the distinction between training and inference, and how each phase warrants
specialized ML systems benchmarking.

Learn about system benchmarking concepts like throughput, latency, power, and computational
efficiency.

Appreciate the evolution of model benchmarking from accuracy to more holistic metrics like
fairness, robustness and real-world applicability.

Recognize the growing role of data benchmarking in evaluating issues like bias, noise, balance and
diversity.

Understand the limitations of evaluating models, data, and systems in isolation, and the emerging
need for integrated benchmarking.

< C O & han

ece < MACHINE LEARNING SYSTEN X =+ A

dl

MACHINE LEARNING SYSTEMS

FRONT MATTER ~

Preface
Dedication
Acknowledgements
Contributors
Copyright
About the Book
MAIN
Introduction
Embedded Systems
Deep Learning Primer
Embedded Al
Al Workflow
Data Engineering
Al Frameworks
Al Training
Efficient Al

© o NG AW N R

10 Model Optimizations
11 Al Acceleration
12 Benchmarking Al
13 On-Device Learning
14 Embedded AlOps
15 Privacy and Security
16 Responsible Al
17 Generative Al
18 Al for Good
19 Sustainable Al
20 Robust Al
EXERCISES v
Setup Nicla Vision
CV on Nicla Vision
Object Detection
Audio Feature Engineering
Keyword Spotting (KWS)
DSP - Spectral Features
Motion Classification and
Anomaly Detection
References
Appendices v
A Tools
B Datasets
C Model Zoo

D Rocourcoc

github.io/cs249r_| ing.. O % M =2~ P QO 8 YU e x0P

i1 Apps B TiyML ES Harvard ES Funding BS MIC B Maya B Nora E5 LMs & W 4 Q <& cs249rBook & LLMx »

0F L~ <<~ &

(o]
Table of contents]

12 Benchmarklng Al 12.1 Introduction
12.2 Historical Context

12.3 Al Benchmarks:
System, Model, and Data

My Eﬂm}&w//:'ﬂl L]

AL AL AL
;)

12.4 System Benchmarking

125 Model Benchmarking
! 126 Data Benchmarking

L.‘ h\ ! 12.7 The Trifecta

‘” ‘ { ‘ 12.8 Benchmarks for
LIRS Emerging Technologies

12.9 Conclusion

© Edit this page
Report an issue
View source

DALL-E 3 Prompt: Photo of a podium set against a tech-themed backdrop. On
each tier of the podium, there are Al chips with intricate designs. The top chip
has a gold medal hanging from it, the second one has a silver medal, and the
third has a bronze medal. Banners with ‘Al Olympics’ are displayed
prominently in the background.

Benchmarking is a critical part of developing and deploying machine
learning systems, especially for tinyML applications. Benchmarks allow
developers to measure and compare the performance of different
model architectures, training procedures, and deployment strategies.
This provides key insights into which approaches work best for the
problem at hand and the constraints of the deployment environment.

This chapter will provide an overview of popular ML benchmarks, best
practices for benchmarking, and how to use benchmarks to improve
model development and system performance. It aims to provide
developers with the right tools and knowledge to effectively
benchmark and optimize their systems, especially for tinyML systems.

Q Learning Objectives
« Understand the purpose and goals of benchmarking Al systems,
including performance assessment, resource evaluation,
validation, and more.

* Learn about the different types of benchmarks - micro, macro, and
end-to-end - and their role in evaluating different aspects of an Al
system.

* Become familiar with the key components of an Al benchmark,
including datasets, tasks, metrics, baselines, reproducibility rules,
and more,

14

<«

Recap: Learning on
the Edge

Contributors: Michael Schnebly, Alex Rodriguez, Aditi Raju, Jared N

Understand on-device learning and how it differs from
cloud-based training

Recognize the benefits and limitations of on-device
learning

Examine strategies to adapt models through complexity
reduction, optimization, and data compression

Understand related concepts like federated learning and
transfer learning

Analyze the security implications of on-device learning
and mitigation strategies

L] <& MACHINE LEARNING SYSTEN X +

c o & han

Apps B TinyML BS Harvard ES Funding B9 MLC S Maya B Nora B5 LiMs &3

MACHINE LEARNING SYSTEMS

FRONT MATTER ~

Preface

¢ Dedication

| Acknowledgements
Contributors
Copyright
About the Book

MAIN

1 Introduction

2 Embedded Systems

3 Deep Learning Primer

4 Embedded Al

5 Al Workflow

6 Data Engineering

7 Al Frameworks

8 Al Training

9 Efficient Al

10 Model Optimizations
11 Al Acceleration

12 Benchmarking Al

13 On-Device Learning
14 Embedded AlOps
15 Privacy and Security

16 Responsible Al

17 Generative Al

18 Alfor Good

19 Sustainable Al

20 Robust Al

EXERCISES v
Setup Nicla Vision
CV on Nicla Vision
Object Detection
Audio Feature Engineering
Keyword Spotting (KWS)
DSP - Spectral Features
Motion Classification and
Anomaly Detection

github.io/cs249r_|

=9 GO s Y

ice_lear.. (h % ™

W 4 Q <& cs249rBook & LLMx

0z L~ <~

Table of contents

13 On-Device Learning

13.1 Introduction

13.2 Advantages and
Limitations

13.3 Ondevice Adaptation
13.4 Transfer Learning

13.5 Federated Machine
Learning

13.6 Security Concerns

13.7 On-Device Training
Frameworks

13.8 Conclusion

© Edit this page
Report an issue
View source

DALLE 3 Prompt: Drawing of a smartg with its internal ¢
exposed, revealing diverse miniature engineers of different genders and skin
tones actively working on the ML model. The engineers, including men,
women, and non-binary individuals, are tuning parameters, repairing
connections, and enhancing the network on the fly. Data flows into the ML
model, being processed in real-time, and generating output inferences.

On-device Learning represents a significant innovation for embedded
and edge loT devices, enabling models to train and update directly on
small local devices. This contrasts with traditional methods where
models are trained on expansive cloud computing resources before
deployment. With On-Device Learning, devices like smart speakers,
wearables, and industrial sensors can refine models in real-time based
on local data, without needing to transmit data externally. For example,
a voice-enabled smart speaker could learn and adapt to its owner’s
speech patterns and vocabulary right on the device. But there is no
such thing as free lunch, therefore in this chapter, we will discuss both
the benefits and the limitations of on-device learning.

Q Learning Objectives
« Understand on-device learning and how it differs from cloud-
based training

« Recognize the benefits and limitations of on-device learning

Referenicss « Examine strategies to adapt models through complexity
Appendices o reduction, optimization, and data compression
A Tools « Understand related concepts like federated learning and transfer
B Datasets learning
C Model Zoo
o « Analyze the security implications of on-device learning and

*»03g

15

https://arxiv.org/pdf/2007.14390.pdf
https://arxiv.org/abs/2206.15472

® © ®) MACHINELEARNING SYSTEN X + b

P QO Y e x0P
W 4 Q <& cs249rBook & LLMx »

<« X € @ harvard-edge.github.io/cs249r_book/hw_accelerati.. (h ¥ N

1]

Apps [TinyML ES Harvard B Funding B MLC ES Maya B5 Nora E5 LLMs

(9]

0z L~ <~

Recap: Al Acceleration oo

Contributors: Jennifer Zhou, Eric Dong, Arnau Marin, Pong Trairatvorakul 2
11 Al Acceleration v

Understand why hardware acceleration is needed for Al workloads

Survey key accelerator options like GPUs, TPUs, FPGAs, and ASICs and their
tradeoffs

Learn about programming models, frameworks, compilers for Al accelerators

Appreciate the importance of benchmarking and metrics for hardware evaluation

Recognize the role of hardware-software co-design in building efficient systems

Gain exposure to cutting-edge research directions like neuromorphics and quantum
computing

Understand how ML is beginning to augment and enhance hardware design

FRONT MATTER v
Preface
Dedication
Acknowledgements
Contributors

Copyright

About the Book

MAIN

1 Introduction

2 Embedded Systems

3 Deep Learning Primer

4 Embedded Al

5 Al Workflow

6 Data Engineering

7 Al Frameworks

8 Al Training

9 Efficient Al

10 Model Optimizations

11 Al Acceleration

12 Benchmarking Al

13 On-Device Learning
14 Embedded AlOps
15 Privacy and Security

16 Responsible Al

17 Generative Al

18 Alfor Good

19 Sustainable Al

20 Robust Al

EXERCISES v
Setup Nicla Vision
CV on Nicla Vision
Object Detection
Audio Feature Engineering
Keyword Spotting (KWS)
DSP - Spectral Features
Motion Classification and
Anomaly Detection

References

Appendices v
A Tools
B Datasets
C Model Zoo

| Waiting for hypothesis...

11.1 Introduction

11.2 Background and
Basics

11.3 Accelerator Types

11.4 Hardware-Software

Co-Design
Hardware
Hardware
Solutions

11.8 Emerging
Technologies

DALLE 3 Prompt: Create an intricate and colorful representation of a System
on Chip (SoC) design in a rectangular format. Showcase a variety of specialized
machine learning accelerators and chiplets, all integrated into the processor
Provide a detailed view inside the chip, highlighting the rapid movement of
electrons. Each accelerator and chiplet should be designed to interact with

© Edit this page

View source

neural network neurons, layers, and activations, emphasizing their processing
speed. Depict the neural networks as a network of interconnected nodes, with
vibrant data streams flowing between the accelerator pieces, showcasing the
enhanced computation speed.

Machine learning has emerged as a transformative technology across
many industries. However, deploying ML capabilities in real-world
edge devices faces challenges due to limited computing resources.
Specialized hardware acceleration has become essential to enable
high-performance machine learning under these constraints. Hardware
accelerators optimize compute-intensive operations like inference using
custom silicon optimized for matrix multiplications. This provides
dramatic speedups over general-purpose CPUs, unlocking real-time
execution of advanced models on size, weight and power-constrained
devices.

This chapter provides essential background on hardware acceleration
techniques for embedded machine learning and their tradeoffs. The
goal is to equip readers to make informed hardware selections and
software optimizations to develop performant on-device ML
capabilities.

Q Learning Obijectives
* Understand why hardware acceleration is needed for Al
workloads

11.5 Software for Al

11.6 Benchmarking Al

117 Challenges and

11.9 Future Trends
11.10 Conclusion

Report an issue

16

https://arxiv.org/pdf/2201.01863.pdf
https://ieeexplore.ieee.org/abstract/document/9975395

Recap: MLOps

L] <& MACHINE LEARNING SYSTEN X+

C O & harvard-edge.github.io/cs249r_book/ops.html O * =

Contributors: Andrew Bass, Annie Landefeld, Vijay Edupuganti, Curren lyer

Understand what is MLOps and why it is needed

Learn the architectural patterns for traditional MLOps

Contrast traditional vs. embedded MLOps across the ML lifecycle

Identify key constraints of embedded environments

Learn strategies to mitigate embedded ML challenges

Examine real-world case studies demonstrating embedded MLOps
principles

Appreciate the need for holistic technical and human approaches

FRONT MATTER v
Preface
Dedication
Acknowledgements
Contributors
Copyright
About the Book
MAIN
Introduction
Embedded Systems
Deep Learning Primer
Embedded Al
Al Workflow
Data Engineering
Al Frameworks
Al Training
Efficient Al

© o NG AW N R

10 Model Optimizations

11 Al Acceleration

12 Benchmarking Al

13 On-Device Learning

14 Embedded AlOps

15 Privacy and Security

16 Responsible Al

17 Generative Al

18 Al for Good

19 Sustainable Al

20 Robust Al

EXERCISES v
Setup Nicla Vision
CV on Nicla Vision
Object Detection
Audio Feature Engineering
Keyword Spotting (KWS)
DSP - Spectral Features
Motion Classification and
Anomaly Detection

MACHINE LEARNING SYSTEMS

14 Embedded AlOps

DALLE 3 Prompt: Create a detailed, wide rectangular illustration of an Al
workflow. The image should showcase the process across six stages, with a
flow from left to right: 1. Data collection, with diverse individuals of different
genders and descents using a variety of devices like laptops, smartphones, and
sensors to gather data. 2. Data processing, displaying a data center with active
servers and databases with glowing lights. 3. Model training, represented by a
computer screen with code, neural network diagrams, and progress indicators.
4. Model , featuring people data analytics on large
monitors. 5. Deployment, where the Al is integrated into robotics, mobile apps,

and industrial 6. showing tracking Al
performance metrics on dashboards to check for accuracy and concept drift
over time. Each stage should be distinctly marked and the style should be
clean, sleek, and modern with a dynamic and informative color scheme.

This chapter explores the practices and architectures needed to
effectively develop, deploy, and manage ML models across their entire
lifecycle. We examine the various phases of the ML process including
data collection, model training, evaluation, deployment, and
monitoring. The importance of automation, collaboration, and
continuous improvement is also discussed. We contrast different
environments for ML model deployment, from cloud servers to
embedded edge devices, and analyze their distinct constraints.
Through concrete examples, we demonstrate how to tailor ML system
design and operations for reliable and optimized model performance in
any target environment. The goal is to provide readers with a
comprehensive ur ing of ML model mar so they can

References successfully build and run ML applications that sustainably deliver
Appendices v value.

A Tools

B Datasets

C Model Zoo) Learning Objectives

o . bt o e dod

B R NI R AR N I

Apps B3 TinyML [ES Harvard ES Funding B9 MLC ES Maya ES Nora B LiMs X B 4 Q <& cs249rBook & LLMx »

00 L+ <~

Table of contents

14.1 Introduction
14.2 Historical Context
143 Key Components of
MLOps

14.4 Hidden Technical Debt
in ML Systems

145 Roles and
Responsibilities

14.6 Embedded System
Challenges

14.7 Traditional MLOps
vs. Embedded MLOps

14.8 Commercial Offerings
14.9 Case Studies
14.10 Conclusion

© Edit this page
Report an issue
View source

17

https://arxiv.org/pdf/2212.03332.pdf
https://papers.nips.cc/paper_files/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

Recap: Security & Privacy

L] < MACHINE LEARNING SYSTEN X =+

C O @ localhost:3808/privacy_security.html h % HE- P OO

Contributors: Elizabeth Suitor, Eliza Kimball, Jothi Ramaswamy, Elias Nuwara

Understand key ML privacy and security risks like data leaks, model theft, adversarial attacks, bias,
and unintended data access.

Learn from historical hardware and embedded systems security incidents.

Identify threats to ML models like data poisoning, model extraction, membership inference, and
adversarial examples.

Recognize hardware security threats to embedded ML spanning hardware bugs, physical attacks,
side channels, counterfeit components, etc.

Explore embedded ML defenses like trusted execution environments, secure boot, physical
unclonable functions, and hardware security modules.

Discuss privacy issues in handling sensitive user data with embedded ML, including regulations.

Learn privacy-preserving ML techniques like differential privacy, federated learning, homomorphic
encryption, and synthetic data generation.

Understand tradeoffs between privacy, accuracy, efficiency, threat models, and trust assumptions.

Recognize the need for a cross-layer perspective spanning electrical, firmware, software, and
physical design when securing embedded ML devices.

FRONT MATTER v
Preface
Dedication
Acknowledgements
Contributors
Copyright
About the Book

MAIN
1 Introduction
2 Embedded Systems
3 Deep Learning Primer
4 Embedded Al

5 Al Workflow

6 Data Engineering

7 Al Frameworks

8 Al Training

9 Efficient Al

10 Model Optimizations
11 Al Acceleration

12 Benchmarking Al

13 On-Device Learning
14 Embedded AlOps
15 Security & Privacy
16 Responsible Al

17 Generative Al

18 Al for Good

19 Sustainable Al

20 Robust Al

EXERCISES v
Setup Nicla Vision
CV on Nicla Vision
Object Detection
Audio Feature Engineering
Keyword Spotting (KWS)
DSP - Spectral Features
Motion Classification and
Anomaly Detection

References
Appendices v
A Tools

MACHINE LEARNING SYSTEMS

15 Security & Privacy

DALL-E 3 Prompt: An illustration on privacy and securtiy in machine learing

systems. The image shows a digital landscape with a network of
interconnected nodes and data streams, symbolizing machine learning
algorithms. In the foreground, there’s a large lock superimposed over the
network, representing privacy and security. The lock is semi-transparent,
allowing the underlying network to be partially visible. The background
features binary code and digital encryption symbols, emphasizing the theme of
cybersecurity. The color scheme is a mix of blues, greens, and grays,
suggesting a high-tech, digital environment.

Ensuring security and privacy is a critical concern when developing
real-world machine learning systems. As machine learning is
increasingly applied to sensitive domains like healthcare, finance, and
personal data, protecting confidentiality and preventing misuse of data
and models becomes imperative. Anyone aiming to build robust and
responsible ML systems must have a grasp of potential security and
privacy risks such as data leaks, model theft, adversarial attacks, bias,
and unintended access to private information. We also need to
understand best practices for mitigating these risks. Most importantly,
security and privacy cannot be an afterthought and must be proactively
addressed throughout the ML system development lifecycle - from
data collection and labeling to model training, evaluation, and
deployment. Embedding security and privacy considerations into each
stage of building, deploying and managing machine learning systems is
essential for safely unlocking the benefits of Al.

O Learning Objectives
« Understand key ML privacy and security risks like data leaks,
model theft, adversarial attacks, bias, and unintended data access.

o_| earn from historical hardware and embedded svstems security

i Apps B3 TinyML [ES Harvard ES Funding B9 MLC B Maya ES Nora E5 LLMs 433 B 4 Q <& cs249rBook & LLMx »

LR N I
0O &~ <Lv 2 C ¢
®
Contents D

15.1 Introduction
15.2 Terminology

15.3 Historical Precedents
15.4 Security Threats to ML
Models

15.5 Security Threats to ML
Hardware

15.6 Embedded ML
Hardware Security

15.7 Privacy Concerns in
Data Handling

15.8 Privacy-Preserving ML
Techniques

15.9 Conclusion

© Edit this page

Report an issue
View source

18

https://arxiv.org/pdf/2212.03332.pdf
https://papers.nips.cc/paper_files/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

® © ® O MACHINELEARNING SYSTEN X + 4

<« C O & harvard-edge.github.io/cs249r_| inable_ai.. M % & PP GO® Y *R0P :

[]
Re Ca [) S | I Sta I n a b I e A I Apps B3 TinyML S Harvard ES Funding B9 MLC ES Maya S Nora ES LiMs 3 W 4 Q <& cs249rBook & LLMx »
p ° MACHINE LEARNING SYSTEMS 0F L~ <~

Contributors: Abigail Swallow, Korneel Van den Berghe, Gauri Jain | =
19 Sustainable Al ©

FRONTMATTER v 19.1 Introduction
Preface 19.2 Energy Efficiency of
Al Models

19.3 Responsible
Resource Utilization

Dedication
Acknowledgements
Contributors

19.4 E-Waste
Copyright Management
About the Book 19.5 Carbon Footprint
Reduction

MAIN

Coming soon... but...

2 Embedded Systems

e Energy use 5 oeptarig

4 Embedded Al

o Operational use S Al Worton

19.6 Sustainable
Embedded ML

19.7 Community
Engagement and
Collaboration

19.8 Policy Frameworks
and Regulations

19.9 Future Trends in Al

Sustainability
6 Data Engineering DALLE 3 Prompt: 3D illustration on a light background of a sustainable Al network)
H 7 Al Frameworks . 19.10 Conclusion
e) E m b 0 d e d interconnected with a myriad of eco-friendly energy sources. The Al actively
8 Al Training manages and optimizes its energy from sources like solar arrays, wind turbines, and & ggig shis page
9 Efficient Al hydro dams, emphasizing power efficiency and performance. Deep neural networks

Report an issue

C a r b O n fo O‘t p ri n‘t 10 Model spread throughout, receiving energy from these sustainable resources. View source

Optimizations

11 Al Acceleration 19.1 Introduction

Life cycle analysis (LCA) vt

13 On-Device Learning Explanation: In this introductory section, we elucidate the significance of

C h a | | e n es | n LCA 14 Embedded AlOps sustainability in the context of Al, emphasizing the necessity to address
g 15 Privacy and

environmental, economic, and social dimensions to build resilient and

Security sustainable Al systems.

Beyond carbon footprint 16 Responsite A

17 Generative Al * Importance of sustainability in Al

18 Al for Good * Sustainability dimensions: environmental, economic, and social
G ree n A I 19 Sustainable Al * Overview of challenges and opportunities

20 Robust Al

G Oog | e'S 4M S EXERCISES ~ 19.2 Energy Efficiency of Al Models

Setup Nicla Vision
CV on Nicla Vision Explanation: This section addresses the pressing issue of high energy

M d | M h M h t M Object Detection consumption associated with Al models, offering insights into techniques
@ odaels, Machninery, iviechanization, iviap _ ; ‘ . .
Audio Feature for creating energy-efficient Al models which are not only economical but
. Engineering also environmentally friendly.
L Footprlnt calculators Keyword Spoting
(KWS) * Energy consumption patterns of Al models
DSP - Spectral * Techniques for improving energy efficiency
Features * Case studies of energy-efficient Al deployments

Motion Classification
and Anomaly Detection

e s 2 3 Responsible Resource Utilization

https://arxiv.org/abs/2301.11899
https://ugupta.com/files/Gupta_ISCA2022_ACT.pdf

Recap: Responsible Al

ece < MACHINE LEARNING SYSTEN X =+

cC o @& harvard

MACHINE LEARNING SYSTEMS QOF L~ L~

Contributors: Usha Bhalla, Sonia Murthy, Alex Oesterling, Eura Shin

Coming soon... But...
e Explainability
e Fairness
e Safety
e Accountability
e (Governance
e Privacy

FRONT MATTER
Preface
Dedication
Acknowledgements
Contributors
Copyright
About the Book
MAIN
1 Introduction
2 Embedded Systems
3 Deep Learing
Primer
4 Embedded Al
5 Al Workflow
6 Data Engineering
7 Al Frameworks
8 Al Training
9 Efficient Al
10 Model
Optimizations
11 Al Acceleration
12 Benchmarking Al
13 On-Device Learning
14 Embedded AlOps
15 Privacy and
Security
16 Responsible Al
17 Generative Al
18 Alfor Good
19 Sustainable Al
20 Robust Al
EXERCISES v
Setup Nicla Vision
CV on Nicla Vision
Object Detection
Audio Feature
Engineering
Keyword Spotting
(Kws)
DSP - Spectral
Features
Motion Classification
and Anomaly Detection

dge.github.io/cs249r_| bleai.. h * M 2 » QO ® U e »x0§

1]

Apps [TinyML ES Harvard B Funding B MLC ES Maya B5 Nora E5 LLMs

W 4 Q <& cs249rBook & LLMx

. Table of contents

16 Respons'ble Al 16.1 Introduction
16.2 Ethical
Considerations in Al
) Learning Objectives DUHSI eratonsin

esign
© coming soon. 16.3 Transparency and
Explainability
16.4 Privacy and Data
16.1 Introduction Security

6.5 Accountability and
Oversight

Explanation: In this introduction, we lay the groundwork by explicating the 16,6 Socialand Ciiliral

pivotal role of responsibility in Al, focusing on the integration of ethical Impacts
considerations and accountability in the development and deployment of 16.7 Inclusive and
embedded Al systems. Accessible Al
16.8 Policy Frameworks
* Defining responsible Al in the context of embedded systems and Global Initiatives
* Importance of ethical considerations in Al 16.9 Conclusion

* The alignment of responsibility and sustainability in embedded Al
* Overview of challenges and opportunities in responsible Al
development

© Editthis page
Report an issue
View source

16.2 Ethical Considerations in Al Design

Explanation: This section probes the ethical dimensions to consider during
the design phase of embedded Al systems, emphasizing responsible data
handling, inclusive design practices, and avoidance of bias.

* Ethical data acquisition and handling in embedded Al

* Inclusive design and diversity in Al model development

* Addressing bias in embedded Al design

* Case studies: Implementations of ethical considerations in Al design

16.3 Transparency and Explainability

Explanation: In this portion, we delve into the critical components of
transparency and explainability in embedded Al, discussing how these
aspects facilitate trust and reliability in Al applications.

* Importance of transparency in embedded Al systems (maybe use ML
sensors)

* Techniques to enhance explainability in embedded Al

* Tools and frameworks for improving transparency

* Case studies: Transparent and explainable embedded Al
implementations

16 A Dri and NData C i+

20

https://arxiv.org/abs/2010.03058
https://arxiv.org/abs/2305.14384

Recap: Generative Al

Contributors: N/A

Today'’s lecture...

® © ® O MACHINELEARNING SYSTEM X 4

L C 0 O localhost:3808/generative_ai.html h

MACHINE LEARNING SYSTEMS 0L Ly <~

FRONTMATTER v
Preface
Dedication
Acknowledgements
Contributors
Copyright
About the Book

MAIN
1 Introduction

2 Embedded Systems
3 Deep Learning
Primer

4 Embedded Al

5 Al Workflow

6 Data Engineering

7 Al Frameworks

8 Al Training

9 Efficient Al

10 Model
Optimizations

11 Al Acceleration
12 Benchmarking Al
13 On-Device Learning
14 Embedded AlOps
15 Security & Privacy
16 Responsible Al

17 Generative Al

18 Al for Good

19 Sustainable Al

20 Robust Al

EXERCISES v
Setup Nicla Vision
CV on Nicla Vision
Object Detection
Audio Feature
Engineering
Keyword Spotting
(KWS)
DSP - Spectral
Features
Motion Classification
and Anomaly Det; Cmn

Apps B3 TiyML B3 Harvard ES Funding B9 MLC B Maya ES Nora ES LiMs

ER - NONICHE IRV & B -

W 4 Q <& cs249rBook & LLMx

Contents

17 Generative Al

17.1 Introduction
17.2 Generative Models

Q Learning Obijectives 17.3 Applications of
: Generative Models for
*ECRmMINgG;S00N: Embedded Systems
17.4 Challenges and
Opportunities

I'll be candid - this chapter might be a bit of a leap. As of now, the concept

" S e oo o —— " 17.5 Conclusi
of Generative Al in embedded systems is in its infancy. But | think it's crucial onclusion

to take a stab at this emerging field, to anticipate the advancements and © Edit this page
opportunities it holds for us in the future. It's a gamble, but one that could Report an issue
offer some food for thought into the future of Al technology. View source

Generative Al's evolution

Foran advanced technology that's considered relatively new,
‘generative Al s deep-rooted i history and innovation.

1932 1957
ound invens amacrine he . . Lngust oam Chomsky oulsnes yatsetc

ey aled ekt ivctures, i descibes gammotica)
sy fules o arsing andgenerating naural

Gompurarscence professorTary Winoorad
e SR, e et bl
it can maripuiat a rason oot aword
T s o mevors o

1966
crates th st chatol, Eken, wheh
imianes comersations wit o

1980
ety s hrnwirman
e ynamcan Geerte e g

Gomputer sianisand iosopher
e o resnied ity
o ey

ety e onccion
nmm(mm»mmvmm
St s e

1989
o ﬂ«vwmlm\e o c'ywwhmm\
Tecaanas e

20 2006
versiy of Montrelrsearchers enist e sts up the

Imagener daeasas, which srovices the
ol which sgests method o feundation for s bjectreco0m .
"o anouae usina s forward

N ktzhesk dsignsth Alxtet N

rchtactur,poreeng a newway o
omarcaly aing neur networks tha
ke Bovantagn of ecam GPU avances.

2014
Rosearc scioist an Goodlellow develops
Genartive advrsara nenworks (GANS.
i i o el networks aganStesch
hr o generate ncrsasnay ebIStk

2011
Aopte riases i voce poweres
porsona sesieant tht can poneats
e ke ctomin gt

2013
oo resercer o ol and
ety o s weling e

images.

2015
it st ek
s

» ooge s vy e concot
e e o
revere-enginee e rocessof cing
ot to & vl mage

iy parscunaboied tut 0
e anguspe e L.
onmors than 33 il wors andcan
azomatcaly leam th reaionsnip
Detweonwords n Sntences paragrapns

2021
ook i

et s o tion pramesee el ot
ool Deephin rsearchers dewiop 2022
s o RGN proei S, Rosearchars fom Rrway pesearch,
Teying he foundason fr generatve Al

et e i
et

asauen LMK I conertgentration, Lfe

21

https://arxiv.org/abs/2010.03058
https://arxiv.org/abs/2305.14384

Prompt: “an astronaut riding a horse in
Andy Warhol’s style” :

MusicLM

Describe a musical idea and hear it come to life
with Al

Ambient, soft sounding music | can study to

i Track 01

P Track02

23

‘“ Can you write code for a website that shows the current trading price of the S&P 500 index

DSOf‘t\r/afe w Application <2/2 As an Al language model, | can provide you with the code for displaying the current trading
eveloper

price of the S&P 500 index. However, keep in mind that the data source and API used in this

code may not be up to date, as my knowledge cutoff is in 2021. Also, | am not able to test

this code, so please use it at your own risk.

Here's an example of how you could display the current trading price of the S&P 500 index

using JavaScript and the Alpha Vantage API:

html) Copy code

<IDOCTYPE h
<html>
<head>
<title>S&P 500 Index Price</title>
<script = ></script>
</head>
<body>
<h1>S&P 500 Index Price</hl>
<p>Current Price: </p>

<script>

‘G Regenerate response

Y

Accelerator APIs

Abstraction

Write me an architectural simulator for the most used RISC-V instructions

Sure! | can provide you with a simple architectural simulator for the most commonly used
RISC-V instructions. This simulator will allow you to execute RISC-V assembly code and

observe the effects of each instruction on the simulated processor's state.

Here's an example simulator implemented in Python:

python [copycode

registers = [0] *
memory = [0] *

(instruction
opcode = instruction &

opcode ==

rd = (instruction >> 7) &
imm = instruction >>
registers[rd] = imm <<

opcode
rd = (instruction >> 7) &
imm = instruction >>

registers[rd] = registers[rd] + (imm <<

opcode

rd = (instruction >> 7) &

imm_20 = (instruction >>) &
imm_10_1 = (instruction >>) &
imm_11 = (instruction >>) &
imm_19_12 = (instruction >>) &

‘G Regenerate response

ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT May 24 Version

25

RTL
Designer

f

Architecture/ MicroArchitecture

Send a mes:

Act an RTL developer and write the verilog code for a RISC-V microcontroller unit

As an Al text-based model, | can assist you in providing a sample Verilog code for a basic
RISC-V microcontroller unit (MCU). Please note that the code provided below is a simplified
version and may not include all the necessary components of a complete RISC-V MCU.
Additionally, the code assumes a 32-bit RISC-V architecture.

verilog) Copy code

module RISC_V_MCU(
input wire clk,
input wire reset,
// Add other input ports here

// Add other output ports here
);

// Define registers and wires here

// Core components
// Instruction Fetch (IF) stage
always @(posedge clk or posedge reset) begin
if (reset) begin
// Reset IF stage
end
else begin
// Execute IF stage

// Instruction Decode (ID) stage
always @(posedge clk or posedge reset) begin
if (reset) begin
// Reset ID stage
end
else begin
// Execute ID stage

Regenerate response

ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT May, 24 Version

26

RTL
Designer

f

Architecture/ MicroArchitecture

Act an RTL developer and write the verilog code for a RISC-V microcontroller unit

As an Al text-based model, | can assist you in providing a sample Verilog code for a basic

RISC-V microcontroller unit (MCU). Please note that the code provided below is a simplified

version and may not include all the necessary components of a complete RISC-V MCU.
Additionally, the code assumes a 32-bit RISC-V architecture.

verilog

) Copy code

fill in the RTL code for a simple MCU

Certainly! Here's an example of an RTL code for a simple RISC-V microcontroller unit (MCU)

with

a basic instruction set and a subset of components. This code includes the IF

(Instruction Fetch), ID (Instruction Decode), and EX (Execution) stages for simplicity.

verilog) Copycode

module RISC_V_MCU (

)5

input wire clk,

input wire reset,

input wire [31:0] instruction,
input wire [31:0] data_in
output wire [31:0] data_out

// Registers
[31:0] pc;
[31:0] ir;
[31:0] reg_a;
[31:0] reg_b;
[31:0] alu_result;
[31:0] data_out_reg;

// Control signals
reg reg_write;

reg [1:0] alu_op;
reg [2:0] next_stage;

// Instruction fetch stage
always @(posedge clk or posedge reset) begin
if (reset) begin
pc <= 0;

27

else begin

arXiv:2305.13243v1 [cs.LG] 22 May 2023

Chip-Chat: Challenges and Opportunities

in Conversational Hardware Design DAVE: Deriving Automatically Verilog from English

Design (CAD) hat!

Electronic Design the Integraty

Hammond Pearce Benjamin Tan Ramesh Karri
i
Jason Blocklove Siddharth Garg Ramesh Karri Hammond Pearce New York University New York University New York University
New York University New York University New York University University of New South Wales Brooklyn, USA Brooklyn, USA Brooklyn. USA
New York, NY USA New York NY USA New York, NY USA Sydney, Ausalia et - -
0 Sa gy cduau
ABSTRA(C
While specifi
‘ puage.copd .
pre—
. o terr Benchmarking Large Language Models for
L sysems
H . y o o s 2 & the language - .
ChipGPT: How far are we from natural language hardware S = Automated Verilog RTL Code Generation
o s - challenges. W
< b macinc . A o
bl e design B0 ijtosater
OpenAT's ChatGP’ = tuning GPTY Shailja Thakur", Baleegh Ahmad®, Zhenxing Fan®, Hammond Pearc
code n » variety | Kaiyaz Chang®’, Yirg Wasg*l, Haimeng Ren!, Mengd Wang !, Shesgwen Lissg®. Yishe Hun®, Heawei Li*, Xiwowes Li* < proachforpd Benjamin Tan', Ramesh Karri®, Brendan Dolan-Gavitt”, Siddharth Garg®
krlaiiraiae” | State Key Lab of Procewers, Imtitsie of Comsputing Tecknobgy, Chinecwe Acadessy of Scicsces, Seijing, Chiza® [~ tasksandpr *New York University, 1 University of Calgary
dvanets in LIMs | Uiy o Clinims Acsrlemny of Sciiminn 0 oging randa
o | Schoed of lefoessstice Sciesce and Teckrology, ShanghaiToch Usiversity. Shunghos, Chuss! with the abill
Verification purpos| Comepoedng Asthee Abstract—Automating hardware design could obviate a signif- Verilog Source) Test Benches
P changhaiyan®five.com, wangyisg MIPict ac.cx, rhenb 412467 1§ grmail com, | wangmengilTs, limgrbergwen, yishes, 1 INTR(procesand @ ()@ Pre-Trained ©
where a hardware 1 libesrwei, low) @t cn In parsuit of Model]
microproceor ard
s are drivendesig] O e
e i what poul ofprojl O b T
gty = Ek =
ndes Terms—8| efahless Startups Universities Research peppsads IR
S re— . e [wrcanr® susscmise LosIm/REGISTER
aaprcntested o] €
h rei i i icant domait| 2
bakis I Assuch the ()
As digital desigl = prpss
software compon Gvensacd 0 HOME NEWS ~ PERSPECTIVES DESIGNLINES ~ PODCASTS EDUCATION ~ STORE SPECMLREPORTS ~ IOTTIMES EVENTS v Q
moteemnl — ‘ - Vit
foratraies | Efabless Announces Winners of Al-Generated poy
or patierns [3]—n| . == = ¥ Bognes | (6.5% averall),
tools. Stll, ML re) o prwpr bt R Open-Source Silicon Design Challenge cessing (NLE are available: | | susnce cowtor |
processes such s : suchilorturgy Index Terms PoDCAST
estimation. In thi These architd DESIGNLINES it

2 (12) which

arXiv:2009.01026v1 [cs.SE]

the earliest stages

EDA 2.0: Catalyzing the Human

dataset), and
B. Automating Ha| headlines (6] State-of-the
While hardware | the “quality” scription lang
s

in natural languag

The process of 1 Wi e Congratulations to the winners of the Efabless Al . Tovedl
Verilog) must be Lo i 8
wwan Generated Open-Source Silicon Design Challenge! et e

14019v3 [es

process of W)
peone [1]. A§

reduce desigg EETimes
g Energy Needs a Smarter Approach

consuming and er’
high-level synthes|

Xiv:2212.11140v1 [es.PL]

tonality in highed 1 deugn scceutt ree— specify funcd PowerUP Community: Wide
at the expense of I| NLS]) enbld AR expense of ha)

of Artficial Intell| = Befheved s | e D the use of larg Bandgap and Power Design
athway for transl douign, whers| . i . s

pimy T e We would like to thank all the participants for your hard work, creativity using generative Al, and i dnarg X generate code

successful in |
Their use in §

LLMs are {
former archit
tribution of 4

comgbeity %4 incredible speed in implementing and verifying your design through the Efabless OpenLane flow.

aertaces repa

th embedde:

— The winning designs are the following: — sequence of ¥ te hundred: L
over the next | &, it becomes hardes
paragraphs in the root cause of the failure can
from commen
We undertf
Ist Place: QTCore-C1 syntactic and ;
B s code generate Grin
F birkikarkaieiin There are sev| o
“The best
P L Dol mid-range
phone gets
even better.”
—_ ,
et i

“Act like an architect — design me a custom 64-bit RISC-V processor with
and optimize it for less than 3Watt TDP in a
5 nm LP process node using the TSMC plugin library”

29

“... add while you are at it add a few custom functional units that
[Hyoukjun et al. MLSys’23]”

30

“...and don’t forget to generate all the unit test cases to
and explain the design choices.”

31

Generative Al

2000 opra
1800 1800B
g 1600
§ 1400
£ 1200 PALM
£ 1000
e BERT
§ S 0.34 GPT-3
“ 600 170B
Transformer GPT GPT-2 MegatronLM
400 0.05B 0.11B 1.5B 8.3B
200
0 —eo = &

2017 2018 2019 2020 2020 2022 2023

Health Care Systems

Computer Vision

Natural Language Processing

32

Gen Al at the Edge

Intelligence
is Moving to
the Edge

Source Qualcomm, Cisco

@ Privacy

l@

Reliability

50 Biltion

“Smart Objects”

Low Latency

Low bandwidth

World
Population

®

Billions of Devices

68 72 16

2010 2015 2020 2025

33

http://www.youtube.com/watch?v=B-uojHRr7HE

D I

LI LA S A0S
L8 SN VA —
ol ! .

http://www.youtube.com/watch?v=5WBCOIhYFFw

Gen Al Challenges at the Edge

LLM model workload
e Large and over-parameterized models
e Computationally intensive
o Hardware constrained
m Memory and bandwidth limitations
m Power/battery constrained
e Always on and real-time processing

Operatlon Energy [pJ]
32-bit float ADD 0.9
32-bit float MULT 3.1
32-bit SRAM Cache 5
32-bit DRAM Memory 640

1 , ~ 1000 -

36

37

http://www.youtube.com/watch?v=K6qgN_QXH6M

What's Next

APPLICATIONS

*Gen Al at the Edge
* Medical Al
* Al-4-Science

HARDWARE

* Flexible Electronics
* Analog Computing

SOFTWARE

* Data-centric Al
* Data benchmarking

39

What's Next

APPLICATIONS

* Gen Al at the Edge

* Medical Al
* Al-4-Science

Al

40

Medical Al

e Applications of Al to
medical use cases

e Important to understand
how to integrate Al into the

patient-clinical loop

e More than just MLOps

/| [
Patient
Health Alerts for
challenges and clinician-approved
goals therapy updates

Therapy regimen Continuous monitoring

data and health report

Alerts for therapy
modifications and
monitor summaries

\/
\/

Limits and approvals of
therapy regimens

Al developer

41

Al4Science

e Foundation Models for

Science %1014_ ' LHe sensor tlj::;l;, rll):lal.rkf;rs kSScience |
. . g 1012]
o Training of large models £

for scientific applications | Qubit Readou |

. -
EIC trigger — Plasma control
———— LHC trigger

DUNE readout *Electron microscopy
. 10°1 _Fcray diffraction .

e Real-time latency for Neuro
perfo rmance 108 Magnet quench Internet-of-things =

-
9
o

Beam control
fr— Mobile devices

o Ultra-fast inference 101 F |
o Edge/tinyML

102 | | | | | |
10 1077 10°° 103 10! 101 103 10°

Computation time [€]2

http://www.youtube.com/watch?v=Q6fOlW-Y_Ss

What's Next

Al

SOFTWARE

* Data-centric Al

* Data benchmarking

43

Model-centric
Al

44

Data

Data

2

Model

®
??): [

Model

Model-centric
Al

Data-centric
Al

45

Data-centric Al

Data-Centric Al is the discipline of
systematically engineering the data
used to build an Al system

Data-Centric Al system is a
programming paradigm with focus
on data instead of code

Industries of all types will benefit
from a data-centric approach

Al

Model-Centric Data-Centric

Focus on Focus on

Code + (Data
> +,ata>

shift in focus

46

Data > Model

Steel Sheet Defects Example

Computer vision task
(steel sheet inspection)

Baseline

Model-Centric

Data-Centric

Accuracy
76.2%
+0%

+16.9%
(93.1%)

47

Data > Model

Increase model accuracy with less data

0.75
— 0.65
(a8
£
> 055
Unambiguous Ambiguous whether to Unambiguous no %
defect (y=1) classify as defect defect (y=0) —
All labelers Even expert labelers All labelers >
will agree disagree will agree 8 w=== Clean Data
045 "
< m== Noisy Data
0.35

250 500 750 1000 1250 1500

Number of training examples
48

res|DataPerf

Benchmarks for Data-centric Al Development

Vijay Janapa Reddi
Harvard University

MLCommons VP
MLCommons Research

VDU Workshop @ CVPR 2023

ML (representing the work of many people in the MLCommons DataPerf WG)

Dictionary
Definitions from Oxford Languages * Learn more

Search for a word Q

o bench-mark
/'ben(t)SHmark/

See definitions in:
Al Technology Surveying

noun

1. astandard or point of reference against which things may be compared or assessed.
"a benchmark case”

Similar: standard t of refere basis gauge criterion specification v

2. asurveyor's mark cut in a wall, pillar, or building and used as a reference point in measuring
altitudes.

verb

evaluate or check (something) by comparison with a standard.
"we are benchmarking our performance against external criteria"

Benchmarks

Use to

* Compare solutions

* Inform selection

* Measure and track progress

e Raise the bar, advance the
field

51

Benchmarks

Requires
* Methodology that is both fair
and rigorous

« Community support and
consensus

52

Benchmarks

Provides

e Standardization of use cases
and workloads

 Comparability across
heterogeneous solutions

* Complex characterization of
different compromises

* Verifiable and Reproducible
results

53

Benchmarking aligns the
entire community on a
clear & single objective

ML 54

Benchmarks Drive Progress and Transparency

“What get measured, gets improved.” — Peter Drucker

55

ML is a Full System Problem

Silicon

° l(—l

SHI

Algorithms YT

} 8

Software Architecture

ML is a Full System Problem

Silicon

° l(—l

SHI

Algorithms YT

} 8

Software Architecture

Over-lInvestment in Model

NeurlPS Publications by Year
e Models receive $billions in

research effort

e Datais treated as an
afterthought

I~

In recent conferences, very few (<5) on datasets.
In 2021: added a datasets and benchmarking track.

ML 58

Under-Investment in Data

e Data Cascades

Interacting with physical world brittleness
Inadequate application-domain expertise

Conflicting reward systems

Poor

= Impacts of cascades

v

Abandon / re-start process

Model Quality Saturation

0.2 =—e— MNIST ~+%— ImageNet ~<— SQUAD 2.0
~+— GLUE ~#— SQUAD 1.1 =+ Switchboard

0.0

-0.2

-0.6

Missing critical
test data for
high Winds. 2000 2005 2010 2015 2020

-0.8

-1.0

W5 59

Widely-accepted
ML benchmarks
for MODELS

OPTIMIZE

Model @

Infra

How about
benchmarks
for

\".

OPTIMIZE Freeze |

Data Model | *
|

Freeze Infra | 5

We Brought Together Existing Efforts...

4M L @peeplearning.Al | i LANDING Al

eyl Data-Centric Al Competition

Benchmarks
DCBench
Platforms / NeurlPS benchmarks and datasets
orgs MLPerf d
conferences ML C
Commons

62

(>
Data Perf

Data Pipeline

Data-centric Operations

-

Training
Data

-

Testing
Data

Data Parsing

Data
Augmentation

Representation
Selection

Data Quality
Assessment

Data Acquisition

Data Cleaning

Training

ML Model

New Training
Data

.

New Testing
Data

Error Discovery
& Debugging

i 1

Other Data
Sources

Data-centric Iterations

64

DataPerf:

Introduces a Data-Centric Paradigm

Training
Data

65

DataPerf: Benchmarking Data Benchmarks

% e What are ways to create &
Model improve training data?
E e What are ways to create &
improve test data?
Training % P Tect e How to we identify what

Data Data parts of data matter

P P more?

DDUH DDHH

Benchmarking Training Data

% S Challenges to explore ways for
= creation & improvement of
training data

Model

e

ﬁ]ﬂ Training <+ > Test
Data Data

Benchmarking Test Data

2\

Model

T -

Training

Data

Test
Data

oll

Challenges to explore ways for
creation & improvement of
test data

68

Benchmarking Algorithms for Data

Challenges to explore
% E ways to identify what

data matter more

Model
Improved Improved
Training Test
Data Data
Algorithms Algorithms
for data for data

Slice datasets to identify weak areas of data
Value new data for potential inclusion

Debug labeling errors -
Select smaller subset to increase efficiency Test
Data

ML 69

Training
Data

The DataPerf Challenges

Buiol|s ereq

Buibbngaq eleq

uonen[ep eieq

uoI109|9S 183 18] /Bulurel|

uoneal) 183 1s9] /bulures|

70

Benchmarks

The DataPerf Challenges

Image classification

NLP tasks

Roman numeral OCR

Keyword identification (speech)

Tasks

71

The DataPerf Suite of Challenges

itiol

clas

Inr

Buiol|s ereq

Buibbngaq eleq

o
Q

o

uonen[ep eieq
m w

uoI09|eS 18 18] /Bulurel|

Im\hu S —
th c O

uoneal) 183 1s9] /Bulures|

— ~ A

Z o X

Tasks + Benchmarks

Challenge

72

Overview of Challenges

Data-centric benchmarks

0

Training @

Training

New training
data

data

ML model

('jl'eft New test
ata data
Other
data
Data-centric iterations
ML
oC

73

Overview of Challenges

Data-centric benchmarks

8_.

Training
data

8_.

Test
data

8_.

; —
Data selection o J
; New trainin
Data cleaning data ?
Data valuation -]
Data slicing New test
Data creation data

Other

data

Training @

ML model

Data-centric iterations

74

Overview of Challenges

Data-centric benchmarks

8_.

Training
data

@_.

Test
data

Eﬂ_.

Other

ML model

Trainin
- 7
Data selection o
] New trainin
Data cleaning data ?
Data valuation =
Data slicing New test
data

Data creation

data

Data-centric iterations

Data selection: Algorithmically selecting the most valuable examples
to use for training/testing from a large candidate pool
Data cleaning: Algorithmically selecting the most valuable labels to

clean from a given training/test set

ML
oC

75

Overview of Challenges

Data-centric benchmarks

@_.

Training
data

@_.

Test
data

Eﬂ_.

: —
Data selection o
] New trainin
Data cleaning data °
Data valuation =
Data slicing New test
data

Data creation

Other

data

Training @

ML model

Data-centric iterations

Data selection: Algorithmically selecting the most valuable examples
to use for training/testing from a large candidate pool
Data cleaning: Algorithmically selecting the most valuable labels to

clean from a given training/test set

ML
oC

How to Participate

76

Overview of Challenges

Data-centric benchmarks

Trainin
i 0
Data selection o

Training] New training ML model

data Data cleaning data
@ Data valuation -

Test Data slicing Now fost

data data

Data creation

Eﬂ_.

Other
data

Data-centric iterations

Data selection: Algorithmically selecting the most valuable examples
to use for training/testing from a large candidate pool

Data cleaning: Algorithmically selecting the most valuable labels to
clean from a given training/test set

ML
oC

How to Participate

1. Download
resources

2. Develop solution

:

3. Local evaluation

!

4. Submit to
Dynabench

5. Check
Leaderboards

All resources are provided by MLCommons

77

Challenge 1: Vision | Training Data Selection

By William Gaviria Rojas and Cody Coleman (Coactive Al)

Challenge: Design a data
selection strategy that chooses
the best training set from a large
candidate pool of training images.

Evaluation: Submissions will be
scored using mean average
precision across a set of image
classification tasks.

Benchmark: Training data selection
Task: Image classification

example set_Sushi.csv
Positive examples for classification task

col type
ImageID str

embedding | List [Double]

train emb.parquet
Embeddings for training candidate pool

Dataset: Custom subset of the Open Images Dataset

ML
oC

col ‘ type
ImageID ‘str

Confidence ‘ ¥4 or N1F

Training set for classification task

clf = SomeModel ()
emb_df = load _emb ()

v

|—> Train classifier
—» Sushi_train_set.csv

l

Calculate
scores

!

I

col type

embedding List [Double]
Confidence | ‘0’ or ‘1’

Sushi test set.parquet
Test set for classification task

{

"Sushi": {(
Tageuraey": 0:51;
"recall": 0.62,
"precision": 0.63,
TE1™E 0:63

}

}
results.json
Results of classification task metrics

78

Challenge 2: Speech | Training Data Selection

By Colby Banbury, Mark Mazumder and Vijay Janapa Reddi (Harvard)

Challenge: Design a data

selection strategy which chooses [nput | | Selection | ™ Evaluation |
the best training set from a e 1rs0eess, et 1ragsese,
candidate pool of spoken words.

s [l T Model Model
Evaluation: Submissions will be S— S _ - ww Em »:;w :
scored using classification ST BT
accuracy across a limited set of = r

keywords.

Benchmark: Training data selection
Task: Keyword spotting
Dataset:

ML
Hk 79

Challenge 3: Vision | Training Data Cleaning

By Xiaozhe Yao and Ce Zhang (ETH Zurich)

Challenge: Design a data cleaning o, to Maximize |
strategy that chooses samples to Utility Function |
. .. f:Model - [0,1] I Test Set
relabel from a noisy training set. - ' I | o
Dev Val Set :
. . . [
Evaluation: Submissions will be scored I a
. 1 ean
on the minimum number of cleaned Noisy : Training Set
: >]
Samp|eS needed tO aChleve an alainEet Selection Submitl (lead to higher
Script uality model
accuracy threshold across a set of b ! than therois
on training set,
. e o |
image classification tasks. :
1
Benchmark: Training data label cleaning
Task: Image classification
Dataset: Custom subset of the Open Images Dataset with noisy labels
ML 80

oC

Challenge 4: Nibbler | Safe Al

By Xiaozhe Yao and Ce Zhang (ETH Zurich)

Challenge: collect prompts that are e ~toMaximize)
likely to cause a generative Utility Function |
+A_i 0o f:Model — [0,1] | Test Set
text-to-image model to fail in an unsafe - ' , | e
manner (i.e., safety policy violations) Dev Val Set :
|
|
i | Clean
Evaluation: Noisy | Training Set
Training Set I EAEEE
Selec.tion Submit : (lead to higher
Script I q;:alit}};l moc?el
than the nots,
(Python) : training set) Y
|
1
Benchmark: Training data label cleaning
Task: Image classification
Dataset: Custom subset of the Open Images Dataset with noisy labels
ML 81

oC

Challenges with Benchmarking GenAl

000§ rmcommmenione x4

€50 0 e imsmd st 6% pE-BODGeU *ADS
} HELM v Loadorboard Models Scanarios Bl Predictions

A holistic framework for evaluating foundation
models.

Our Partners

€ > C O & crim.stanford.eduhelmlatest/#leaderboard 0 % = Yoes *»03

© 0@ § roisticEvaationof Languec X |+

 Apps B TiyML ES) Harvard B Funding BRI MLC B Maya B Noa B uims &3 (@ B 4 Q < cs249rBook & LiMx

x ity HELM v Leaderboard Models ~ Scenarios Explore Predictions

Leaderboard et a group

The leaderboard shows how the various models (with particular adaptation procedures) perform across ot
different groups of scenarios and different metrics.
acy | Calibration Robustness Fairness linfor Bia Gty Summarization metrics
Modeljadapter & Meanwinrate $ MMLU-EM O Boola-EM O NamativeQA-FI { NaturalQuestions (closed-bool
Llama2 (70B) 0944 o582 0886 077 0.458
LLaMA (658) 0908 0584 0871 0755 0431
text-davinci-
0905 0568 0877 0727 0383
002
Mistral v0.1
0884 0572 087 0716 0365
(78)
Cohere
Command beta 0874 o0as2 0856 0752 0372
(52.4B)
text-davinci-
0872 0569 0881 0727 0.408
003
Jurassic-2
0824 048 0829 0733 0385
Jumbo (178B)
Llama2 (138) 0823 0507 o0sn 0744 0376
TNLG v2
0787 0.469 0809 0722 0384
(5308)

Welcome to the new results view, for the old view, click here X

t-3.5-turbo-
o 0783 0391 "

0613

What's Next

Al

HARDWARE

* Flexible Electronics

* Analog Computing

83

Introduction & Motivation

84

Introduction & Motivation

85

Introduction & Motivation

86

Introduction & Motivation

87

Introduction & Motivation

88

Introduction & Motivation

G@@

¥
INTERNFT @
\/E\XiERYTHjI\\]/G . =

8
. -
g 'y)
" y
&)
D -
-
,
i
v

/
’ ’ o
’ , -
! ‘Q’
| a
<
|
! @
\
\

Internet-of-Everything

89

TinyML Connection

ﬁ'”\ﬁ' A

G @ @
Q.- Q @ v
o ',!‘,!TERNFT
- /E‘\xiERYTHj/I\\/l/G .
g ______) I @

\ o 9 '
N i s ’
g\ ’

N

IoE

1
D s
-
@
’

’ \/’

90

TinyML Connection

ﬁ'”\ﬁ' A

G @ @
Q.- Q @ v
o ',!‘,!TERNFT
¢ /E{;ERYTH:/I\\/l/G '
R - Wdic 1

,) : ®>—_
5 / - 70N
i P ! ’ N
1 \ / N ’
[] N i \ \
28 '
i ~ |
! ~
1 : & 2
! i
Yo ’
’

1
D s
-
@
’

’ \/’

91

TinyML Connection

<0

(”3+

Intelligent Internet-of-Everything

92

Flexible Electronics
Potential of Flexible Integrated Circuits (FlexICs)

Conformability

93

Flexible Electronics
Potential of Flexible Integrated Circuits (FlexICs)

Conformability Cost

94

Flexible Electronics
Potential of Flexible Integrated Circuits (FlexICs)

Conformability Cost Footprint

95

Flexible Electronics
Potential of Flexible Integrated Circuits (FlexICs)

10000%
Silicon (old gen)
e o Slicon (new gen)
2 —FlexLogiC
=
- 1000% -+
£
g
o
c
o
'g" 100%
3
—_
a
‘g >95% cost
b advantage
2 0% 4
=
3
. Lower cost for
up to 100k
gates
1% + ' 11 -
Conformab 1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 OOtprlnt

IC complexity (number of logic gates)

96

Flexible Electronics
Challenges of Flexible Integrated Circuits (FlexICs)

Low Yield [0 Small Designs

97

Flexible Electronics
Challenges of Flexible Integrated Circuits (FlexICs)

Low Performance

Low Yield [0 Small Designs

98

Existing Applications for FlexICs

Low Performance Use-Cases

Table 1: Example applications and their performance/precision requirements

Sample Sample
Application Rate (P;:;z) Dlgzrﬁ)}(;cle Application Rate fl::cz) Dl;tzri};cle
(Hz) (Hz)
Blood Pressure Sensor [70] < 100 <8 Hours [19] Body Temperature Sensor [70] <1 <8 Minutes [44]
Odor Sensor [70] 16-25 <8 Minutes [73] Smart Bandage [65] <0.01 <8 Continuous to Hours [23]
Heart Beat Sensor [70] <4 1 Seconds [90] Tremor Sensor [33] <25 16 Seconds [20]
Pressure Sensor [31] 1-5.5 12 Continuous to Hours [81] Oral-Nasal Airflow [70] <25 <8 Seconds
Light Level Sensor [70] <1 <8 Continuous to Hours [22] Perspiration Sensor [47] <25 <8 Minutes [99]
Trace Metal Sensor [47] 25 16 Minutes Pedometer [72] <25 1 Seconds [72]
Food Temp. Sensor [70] <1 <8 5 minutes [82] Timer [40] 1 1 Single Use
Alcohol Sensor [48] 1 <8 Single Use [64] POS Computation [63] <100 <8 Single Use [63]
Humidity Sensor [34] 10 16 Continuous to Hours [80] Smart Labels [7] 1 <8 Seconds
Pseudo-RNG n/a <8 Seconds Error Detection Coding <100 <8 Continuous to Hours

99

Ref: Bleier et al. 2022. FlexiCores: low footprint, high yield, field reprogrammable flexible microprocessors. (ISCA '22).

Tiny Processor

Small Design for High Yield

® SERV: World’s Smallest
RISCV Processor

100

Tiny Processor

Small Design for High Yield

® SERV: World’s Smallest
RISCV Processor

® Bit-serial MCU

101

Tiny Processor

Small Design for High Yield

® SERV: World’s Smallest
RISCV Processor

® Bit-serial MCU

® Supports RV32| (~40
instructions)

102

Tiny Processor

Small Design for High Yield

® SERV: World’s Smallest
RISCV Processor

® Bit-serial MCU

® Supports RV32| (~40
instructions)

® M (multiplication)
extension added

103

Tiny Processor

Small Design for High Yield

® SERV: World’s Smallest
RISCV Processor

® Bit-serial MCU

® Supports RV32|
(~40 instructions)

® M (multiplication)
extension added

Simple Example

104

Tiny Processor

Small Design for High Yield

® SERV: World’s Smallest
RISCV Processor

® Bit-serial MCU

® Supports RV32|
(~40 instructions)

® M (multiplication)
extension added

Simple Example
2 + 3 = 5
00000010 + 00000011 = 00000101

105

Tiny Processor

Small Design for High Yield

® SERV: World’s Smallest
RISCV Processor

® Bit-serial MCU

® Supports RV32|
(~40 instructions)

® M (multiplication)
extension added

2

00000010 + 00000011 = 00000101

Modern
Bit-Parallel Design

Simple Example

+

0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0

3

5

106

Tiny Processor

Small Design for High Yield S'mple Example
2 + 3 = 5
® SERV: World’s Smallest 00000010 + 00000011 = 00000101

RISCV Processor
® Bit-serial MCU

® Supports RV32|
H H Modern
(~4O mstructlons) Bit-ParaoIIeeI Design
® M (multiplication)
extension added

0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0

107

Tiny Processor

Small Design for High Yield

® SERV: World’s Smallest
RISCV Processor

® Bit-serial MCU

® Supports RV32|
(~40 instructions)

® M (multiplication)
extension added

2

Simple Example

+

3

= S

00000010 + 00000011 = 00000101

0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0

Less Hardware, Longer Latency

0000001 1
0000001

Bit-Serial Design

108

FlexICs for TinyML Updates & Status

Developer Tool Flow

¢ CFU Playground Integration

MLPerf Ti
§ Renode Emulation Custom TFLM Ops g Ll
u°> Common Libraries Tﬂ;i?&ggx;ﬁzgr Model Profiling
RISC-V Compiler
o Cycle Counters Custom Instructions
©
3
® LiteX VexRISC-V
© SoC CPU Custom Function Unit
Symbiflow

2
©
3 LiteX Supported e
g FPGA Resource Monitoring
T

Deploy Profile Optimize

109

What's Next

APPLICATIONS

*Gen Al at the Edge
* Medical Al
* Al-4-Science

HARDWARE

* Flexible Electronics
* Analog Computing

SOFTWARE

* Data-centric Al
* Data benchmarking

110

Course Recap

— e)
N = © o

© N o g s~ DN -

MACHINE LEARNING SYSTEMS
with TiyML

Overview and Introduction to Embedded Machine Learning

Data Engineering

Embedded Machine Learning Frameworks

Efficient Model Representation and Compression
Performance Metrics and Benchmarking of ML Systems

Learning on the Edge
Hardware Acceleration for Edge ML: GPUs, TPUs and FPGAs

Embedded MLOps - =
Secure and Privacy-Preserving On-Device ML :
Responsible Al

Sustainable Al

Generative Al at the Edge

Guest Speaker: Jason Wei

Jason Wei is an Al researcher living in San
Francisco. He currently works at OpenAl on the
ChatGPT team. Previously, he was a senior
research scientist at Google Brain, where he
popularized chain-of-thought prompting, co-led the
first efforts on instruction tuning, and wrote about
emergence in large language models.
Chain-of-thought prompting was presented by
Google CEO Sundar Pichai at the Google 1/0 press

event in 2022. Gooqgle Scholar
Personal Website

112

https://scholar.google.com/citations?user=wA5TK_0AAAAJ
https://www.jasonwei.net/

113

