
CS249r:
Frameworks
Sep. 25, 2023

1. Logistics
2. Lecture
3. Paper discussions
4. Guest speaker

Goals for today

2

Course Logistics

4

Start ~End

Lecture 12:45 PM 1:40 PM

Break 1:40 PM 1:45 PM

Paper Discussion (combined) 1:45 PM 2:25 PM

Break 2:25 PM 2:30 PM

Guest Lecture 2:30 PM 3:30 PM

Class Schedule

● Every Monday
○ After class @ 3:30pm
○ Meet in class / office
○ My focus

■ Technical material
■ Lecture content
■ Paper readings / discussions etc.

My Office Hours

Updated Office Hours

6

Office Hours: 9-10 AM
Wednesday (TBD)

Office Hours: 5-6 PM Thursday
(SEC 1.412)

Office Hours: 11-12 PM Friday
(TBD)

Office Hours: 1-2 PM Tuesday
(SEC 5.403)

1. Please take a few minutes to sign up for next week’s paper discussion:
2. Submit to Canvas:

a. Paper Reading Group - 1 for your first time
b. Paper Reading Group - 2 for your second time

3. Extra Credit for signing up for 3rd spot
a. 2.5% credit!

Paper Discussion Sign-up Sheet

7

https://docs.google.com/spreadsheets/d/1gKiOtzC2QqyVCHN_roXgvk2rlQm9zO1P45lzyrbfYUY/edit#gid=1665047769

● Any issues with the hardware?
○ To be expected when working with embedded systems ツ

● New Due Dates:
○ Part 1: Oct 2nd
○ Part 2: Oct 10th (due to Indigenous Peoples Day)

● Questions?

Assignment #1

● Updates
○ Week of topic

i. Meet with Matthew & VJ
ii. Create a google doc
iii. Share with staff
iv. Iterate on rough outline →
v. Start drafting collaboratively

vi. Push to GitHub
vii. Peer review

Book

● Join the #projects channel and post your interests
● Once you find a group, sign up on this spreadsheet:

○ (same sheet used for scribing sign-up)

Project Sign-Ups

Lecture

Training

.tflite

Conversion

Training

.tflite

Conversion

C array models

Array m
odeling

Training

.tflite

Conversion

C array models

Array m
odeling

Real Tim
e Data

Inference
Learning

Training

Framework Differences

Micro

HardwareModel Software

TF vs. TF Lite vs. TF Lite Micro Micro

Training Yes No No

Inference
Yes

(but inefficient
on edge)

Yes
(and efficient)

Yes
(and even

more efficient)

How Many Ops ~1400 ~130 ~50

Native Quantization
Tooling + Support No Yes Yes

Micro
Model

Needs an OS Yes Yes No

Memory Mapping
of Models No Yes Yes

Delegation to
accelerators Yes Yes No

Micro
Software

Base Binary Size 3MB+ 100KB ~10 KB

Base Memory
Footprint ~5MB 300KB 20KB

Optimized
Architectures X86, TPUs, GPUs Arm Cortex A, x86 Arm Cortex M,

DSPs, MCUs

Micro
Hardware

22

Keyword Spotting Example

Model

Keyword Spotting Components
INITIALIZATION

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes, noMicro

Model

Device Microphone
INITIALIZATION

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes, noMicro

Microphone

Model

Audio Provider

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes, noMicro

INITIALIZATION

Model

Feature Extractor

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes, noMicro

INITIALIZATION

Data Preprocessing: Spectrograms

TFLite Micro Interpreter

Model

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes, noMicro

INITIALIZATION

Model

Model

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes, no

INITIALIZATION

Micro

 https://netron.app

Model Operators

Ti
ny

C
on

v
Ke

yw
or

d
Sp

ott
in

g
M

od
el

Reshape_2

DepthwiseConv2D
W (1⨉10⨉8⨉8)
B (8)

FullyConnected
W (4⨉4000)
B (4)

Softmax

labels_softmax

https://netron.app/

Model

Command Recognizer

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes, noMicro

INITIALIZATION

“Yes” “No” “Up” “Down”

Model

Command Responder

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes, noMicro

INITIALIZATION

Model

Device Response

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes, noMicro

INITIALIZATION

LEDs

39

Model

Keyword Spotting Components
INITIALIZATION

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes, noMicro

Embedded Machine Learning on TinyML Systems

TensorFlow Lite Micro

TF Micro
Micro

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

STM32H747xI/G devices are based on the high-performance Arm®
Cortex®-M7 and Cortex®-M4 32-bit RISC cores. The Cortex®-M7 core
operates at up to 480 MHz and the Cortex®-M4 core at up to 240 MHz. Both
cores feature a floating point unit (FPU) which supports Arm® single- and
double-precision (Cortex®-M7 core) operations and conversions (IEEE 754
compliant), including a full set of DSP instructions and a memory protection
unit (MPU) to enhance application security.

STM32H747xI/G devices incorporate high-speed embedded memories with a
dual-bank flash memory of up to 2 Mbytes, up to 1 Mbyte of RAM (including
192 Kbytes of TCM RAM, up to 864 Kbytes of user SRAM and 4 Kbytes of
backup SRAM), as well as an extensive range of enhanced I/Os and
peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB bus
matrix and a multi layer AXI interconnect supporting internal and external
memory access.

All the devices offer three ADCs, two DACs, two ultra-low power
comparators, a low-power RTC, a high-resolution timer, 12 general-purpose
16-bit timers, two PWM timers for motor control, five low-power timers, a true
random number generator (RNG). The devices support four digital filters for
external sigma-delta modulators (DFSDM). They also feature standard and
advanced communication interfaces.

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

Micro

Himax
WE-I Plus EVB

SparkFun
Edge 2

Espressif
EYE

Arduino
BLE Sense 33

...

...

How do you use TFL Micro?

OpResolver Interpreter Input Data

Invoke() Output Data Action

specify ops you’re
using with

load a model
into an

into model inputs,
copy the

run the model via
from model
outputs, read the

TFLite Micro: Interpreter

● TFLite Micro uses an
interpreter design

● Store the model as
data and loop through
its ops at runtime

TFLite Micro Design

Interpreter
(generally slower than compiled code)

Compiler
(generally faster than interpreted code)

● Each layer like a Conv
or softmax can take
tens of thousands or
even millions of cycles
to complete execution

ML is Different

Conv
W (16⨉64⨉1⨉1)
B (16)

Many cycles

● Parsing overhead is
relatively small for the
TFMicro interpreter
when we consider the
overall network graph

ML is Different
data

Conv
W (64⨉3⨉3⨉3)
B (64)

Relu

MaxPool

Conv
W (16⨉64⨉1⨉1)
B (16)

Relu

Conv
W (16⨉64⨉1⨉1)
B (16)

Conv
W (16⨉64⨉1⨉1)
B (16)

Relu Relu

Concat

Model Total
Cycles

Calculation
Cycles

Interpreter
Overhead

Visual Wake
Words (Ref) 18,990.8K 18,987.1K < 0.1%

Google
Hotword

(Ref)
36.4K 34.9K 4.1%

Sparkfun Edge 2
(Apollo 3 Cortex-M4)

- Change the model
without recompiling
the code

Interpreter
Advantages

- Change the model
without recompiling
the code

- Same operator code
can be used across
multiple different
models in the system

Interpreter
Advantages

- Same portable model
serialization format
can be used across a
lots of systems.

Interpreter
Advantages

Himax
WE-I Plus EVB

SparkFun
Edge 2

Espressif
EYE

Arduino
BLE Sense 33

TFLite Micro
Interpreter Execution

if (op_type == CONV2D) {
 Convolution2d(conv_size, input, output, weights);
} else if (op_type == FULLY_CONNECTED) {
 FullyConnected(input, output, weights)

}

The FlatBuffer File Format

TFLite Micro:
Model Format

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.

 model = tflite::GetModel(g_model);
 if (model->version() != TFLIGHT_SCHEMA_VERSION) {
 TF_LITE_REPORT_ERROR(error_reporter,
 "Model provided is schema version %d not equal "
 "to supported version %d.",
 model->versison(), TFLITE_SCHEMA_VERSION);

 return;
 }

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.

 model = tflite::GetModel(g_model);
 if (model->version() != TFLIGHT_SCHEMA_VERSION) {
 TF_LITE_REPORT_ERROR(error_reporter,
 "Model provided is schema version %d not equal "
 "to supported version %d.",
 model->versison(), TFLITE_SCHEMA_VERSION);

 return;
 }

// Map the model into a usable data structure. This doesn't involve
any
// copying or parsing, it's a very lightweight operation.

model = tflite::GetModel(g_model);
if (model->version() != TFLIGHT_SCHEMA_VERSION) {
 TF_LITE_REPORT_ERROR(error_reporter,
 "Model provided is schema version %d not equal
"
 "to supported version %d.",
 model->versison(), TFLITE_SCHEMA_VERSION);

 return;
}

How is g_model stored?

Serialization

● JSON
● ProtoBuf
● FlatBuffer

Serialization
Libraries JSON

ProtoBufFlatBuffer
Better

Performance

Developer
Friendly

Flexible
Schemas

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)

• Limited OS support
• Limited compute
• Limited memory

Hardware & Software
Limitations

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)

What is g_model?
● Array of bytes, and acts as

the equivalent of a file on disk

● Holds all of the information
about the model, its
operators, their connections,
and the trained weights

• Does not require copies to be made
before using the data inside the model

FlatBuffers

• Does not require copies to be made
before using the data inside the model

• The format is formally specified as a
schema file

FlatBuffers

• Does not require copies to be made
before using the data inside the model

• The format is formally specified as a
schema file

• Schema file is used to automatically
generate code to access the
information in the model byte array

FlatBuffers

Name Args Input Output Weights

Conv2D 3x3 0 1 2

FC - 1 3 4

Softmax - 3 5 -

Index Type Values

2 Float 0.01, 7.45, 9.23, ...

4 Int8 34, 19, 243, ...

...

Metadata (version, quantization ranges, etc)

g_model FlatBuffer Format

Weight Buffers

The Tensor Arena

TFLite Micro:
Memory Allocation

● Embedded systems typically have
only hundreds or tens of kilobytes
of RAM

Why Care
About Memory?

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)

● Embedded systems typically have
only hundreds or tens of kilobytes
of RAM

● Easy to hit memory limits when
building an end-to-end application

Why Care
About Memory?

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)

● Embedded systems typically have
only hundreds or tens of kilobytes
of RAM

● Easy to hit memory limits when
building an end-to-end application

● So any framework that integrates
with embedded products must offer
control over how memory usage

Why Care
About Memory?

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)

● Products are expected to run for
months or even years, which poses
challenges for memory allocation

● Need to guarantee that memory
allocation will not end up
fragmented → contiguous memory
cannot be allocated even if there’s
enough memory overall

Long-Running
Applications

● In embedded systems, the
standard C and C++ memory APIs
(malloc and new) rely on
operating system support

● Many devices have no OS,
or have very limited functionality

Lack of OS Support

Software
TF Micro Application

Arduino

mbed OS

Software

Nano 33 BLE Sense
Hardware

1. Ask developers to supply a contiguous area of memory to the interpreter,
and in return the framework avoids any other memory allocations

How TFL Micro solves these challenges

constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model, resolver,
 tensor_arena, kTensorArenaSize, error_reporting);

1. Ask developers to supply a contiguous area of memory to the interpreter,
and in return the framework avoids any other memory allocations

2. Framework guarantees that it won’t allocate from this “arena” after
initialization, so long-running applications won’t fail due to fragmentation

How TFL Micro solves these challenges

1. Ask developers to supply a contiguous area of memory to the interpreter,
and in return the framework avoids any other memory allocations

2. Framework guarantees that it won’t allocate from this “arena” after
initialization, so long-running applications won’t fail due to fragmentation

3. Ensures clear budget for the memory used by ML, and that the framework
has no dependency on OS facilities needed by malloc or new

How TFL Micro solves these challenges

Operator Variables Interpreter State Operator Inputs and
Outputs

uint8_t tensor_arena[kTensorArenaSize]

constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
 resolver, tensor_arena, kTensorArenaSize, error_reporting);

Arena size?
● Depends on what ops

are in the model (and the
parameters of those
operations)

constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
 resolver, tensor_arena, kTensorArenaSize, error_reporting);

Arena size?
● Depends on what ops

are in the model (and the
parameters of those
operations)

● Size of operator inputs and
outputs is platform
independent, but different
devices can have different
operator implementations

constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
 resolver, tensor_arena, kTensorArenaSize, error_reporting);

Arena size?
● Depends on what ops

are in the model (and the
parameters of those
operations)

● Size of operator inputs and
outputs is platform
independent, but different
devices can have different
operator implementations

● → hard to forecast exact
size of arena needed

constexpr int kTensorArenaSize = 6000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
 resolver, tensor_arena, kTensorArenaSize, error_reporting);

Solution
● Create as large an arena as

you can and run your
program on-device

● Use the arena_used_bytes()
function to get the actual size
used.

● Resize the arena to that
length and rebuild

● Best to do this on your
deployment platform, since
different op implementations
may need varying scratch
buffer sizes

* Call MicroInterpreter::arena_used_bytes() to get the actual memory size used.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/micro_interpreter.h#L173

The OpsResolver

TFLite Micro:
NN Operations

Why Care About
Binary Size?

01101010
10010101
11010101
01101010
10110110
011

● Executable code used by a
framework takes up space in Flash

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)

Why Care About
Binary Size?
● Executable code used by a

framework takes up space in Flash

● Flash is a limited resource on
embedded devices and often just
tens of kilobytes available

01101010
10010101
11010101
01101010
10110110
011

Why Care About
Binary Size?
● Executable code used by a

framework takes up space in Flash

● Flash is a limited resource on
embedded devices and often just
tens of kilobytes available

● If compiled code is too large, it
won’t be usable by applications.

Micro

Core
functionality

Model
operators

Model loading

Memory
plannerError reporting

...

conv2D

conv3D

tanh

depthwise_conv2d

l2_normalize

sigmoid

max_pool

...

<
20KBs

Optimizing Operator
Usage in TFL Micro
● There are many operators in

TensorFlow (~1400 and growing)

● There are many operators in
TensorFlow (~1400 and growing)

● Not all operators are used or
even needed to perform inference

Optimizing Operator
Usage in TFL Micro

data

Conv
W (64⨉3⨉3⨉3)
B (64)

Relu

MaxPool

Conv
W (16⨉64⨉1⨉1)
B (16)

Relu

Conv
W (16⨉64⨉1⨉1)
B (16)

Conv
W (16⨉64⨉1⨉1)
B (16)

Relu Relu

Concat

● There are many operators in
TensorFlow (~1400 and growing)

● Not all operators are used or
even needed to perform inference

● Bring in or load only those that
are important to conserve
memory usage

Optimizing Operator
Usage in TFL Micro

Model
operators

conv2D

conv3D

tanh

depthwise_conv2d

l2_normalize

sigmoid

max_pool

...

Allow developers to specify which ops they want to be included in the binary

How to Reduce the Size Taken by Ops?

tflite::MicroMutableOpResolver<4>
op_resolver(error_reporter);
if (op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
 return;
}

Ti
ny

C
on

v
K

ey
w

or
d

S
po

tti
ng

 M
od

el

Hello!Reshape_2

DepthwiseConv2D
W (1⨉10⨉8⨉8)
B (8)

FullyConnected
W (4⨉4000)
B (4)

Softmax

labels_softmax

Ti
ny

C
on

v
K

ey
w

or
d

S
po

tti
ng

 M
od

el

Reshape_2

DepthwiseConv2D
W (1⨉10⨉8⨉8)
B (8)

FullyConnected
W (4⨉4000)
B (4)

Softmax

labels_softmax

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

 return;

}

Ti
ny

C
on

v
K

ey
w

or
d

S
po

tti
ng

 M
od

el

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

 return;

}

Reshape_2

DepthwiseConv2D
W (1⨉10⨉8⨉8)
B (8)

FullyConnected
W (4⨉4000)
B (4)

Softmax

labels_softmax

Ti
ny

C
on

v
K

ey
w

or
d

S
po

tti
ng

 M
od

el

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

 return;

}

Reshape_2

DepthwiseConv2D
W (1⨉10⨉8⨉8)
B (8)

FullyConnected
W (4⨉4000)
B (4)

Softmax

labels_softmax

Ti
ny

C
on

v
K

ey
w

or
d

S
po

tti
ng

 M
od

el

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

 return;

}

Reshape_2

DepthwiseConv2D
W (1⨉10⨉8⨉8)
B (8)

FullyConnected
W (4⨉4000)
B (4)

Softmax

labels_softmax

Ti
ny

C
on

v
K

ey
w

or
d

S
po

tti
ng

 M
od

el

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

 return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

 return;

}

Reshape_2

DepthwiseConv2D
W (1⨉10⨉8⨉8)
B (8)

FullyConnected
W (4⨉4000)
B (4)

Softmax

labels_softmax

 https://netron.app

Which Ops
to Include?

data

Conv
W (64⨉3⨉3⨉3)
B (64)

Relu

MaxPool

Conv
W (16⨉64⨉1⨉1)
B (16)

Relu

Conv
W (16⨉64⨉1⨉1)
B (16)

Conv
W (16⨉64⨉1⨉1)
B (16)

Relu Relu

Concat

https://netron.app/

If memory is not an issue, you can choose to simply include all operators,
both used and unused, at the expense of increased memory consumption

static tflite::AllOpsResolver resolver;

// Build an interpreter to run the model with.
static tflite::MicroInterpreter static_interpreter(
 model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;

● Selective op registration
reduces memory
consumption by 30%

● Memory reduction varies by
model, depending on the
operators used by the model

Memory
Improvements

Compatible with the TensorFlow training environment.
Built to fit on embedded systems:

- Very small binary footprint
- No dynamic memory allocation
- No dependencies on complex parts of the standard C/C++ libraries
- No operating system dependencies, can run on bare metal
- Designed to be portable across a wide variety of systems

In Summary, what is TensorFlow Lite Micro?

Micro

Thank You!

Paper Discussions

Link

Paper Discussion #1 - TFLite

https://arxiv.org/abs/2010.08678

Link

Paper Discussion #2 - MCUNet

https://arxiv.org/abs/2007.10319

Guest Speaker

Tianqi Chen is a distinguished
researcher, primarily recognized as
the creator of TVM, an open-source
machine learning compiler stack,
designed to enable efficient
deployment of deep learning models
on a variety of hardware platforms.
Chen’s contributions have been
pivotal in progressing machine
learning frameworks.

Tianqi Chen

Personal Website

Google Scholar

https://tqchen.com/
https://scholar.google.com/citations?user=7nlvOMQAAAAJ

