CS249r:
Frameworks

22222222222

Goals for today

Logistics

Lecture

Paper discussions
Guest speaker

e

Course Logistics

Class Schedule

Start ~End
Lecture 12:45 PM 1:40 PM
Break 1:40 PM 1:45 PM
Paper Discussion (combined) 1:45 PM 2:25 PM
Break 2:25 PM 2:30 PM
Guest Lecture 2:30 PM 3:30 PM

My Office Hours

e Every Monday
o After class @ 3:30pm
o Meetin class / office
o My focus
m Technical material
m Lecture content
m Paper readings / discussions etc.

Updated Office Hours

Matthew Stewart

Postdoctoral Researcher,

Harvard University

Office Hours: 5-6 PM Thursday
(SEC 1.412)

lkechukwu Uchendu

Computer Science, PhD

Student, Harvard University

Office Hours: 9-10 AM
Wednesday (TBD)

Jason Jabbour

Computer Science, PhD
Student, Harvard University

Office Hours: 11-12 PM Friday
(TBD)

Jessica Quaye

Computer Science, PhD
Student, Harvard University

Office Hours: 1-2 PM Tuesday
(SEC 5.403) 6

Paper Discussion Sign-up Sheet

1. Please take a few minutes to sign up for next week'’s paper discussion:
2. Submit to Canvas:

a. Paper Reading Group - 1 for your first time

b. Paper Reading Group - 2 for your second time
3. Extra Credit for signing up for 3rd spot

a. 2.5% credit!

https://docs.google.com/spreadsheets/d/1gKiOtzC2QqyVCHN_roXgvk2rlQm9zO1P45lzyrbfYUY/edit#gid=1665047769

Assignment #1

e Any issues with the hardware?
o To be expected when working with embedded systems *J

e New Due Dates:
o Part1:Oct 2nd

o Part 2: Oct 10th (due to Indigenous Peoples Day)

e Questions?

Book

e Updates

o Week of topic
Meet with Matthew & VJ
Create a google doc
Share with staff
lterate on rough outline —

.2.

v. Start drafting collaboratively
vi. Push to GitHub
Peer review

e0e & Embedded Al: Principles, Algo: X+

v
« 5 ¢ o (o locahostaso QA0) HEE *HT QL OT HOY
BES TinyML B Harvard E5 Funding BS MLC B Meta B Nora B LiMs 3% W ¢+ & umx & csaor » B3 Other Bookmarks
. . . Table of contents
Embedded Al: Embedded Al: Principles, Algorithms, [
Principles, . .

2 The Philosophy Behind the
At and and Applications ThePrlcsaoy B
Applications Prerequisites

Conventions Used in This
Preface o
o X How to Contact Us
Q In “Embedded Al: Principles, Algorithms, and
T g as How to Contribute
Applications”, we will embark on a critical ———
ontributors
FRONT MATTER exploration of the rapidly evolving field of
Preface artificial intelligence in the context of © Edit this page
Dedication embedded systems, originally nurtured from Report anissue
Adl the i course, tinyML from CS249r. View source
Copyright
About This Book The goal of this book is to bring about a
WELCOME collaborative endeavor with insights and contributions from students,

1 Introduction

2 Embedded Systems
3 Deep Learning Primer
4 Embedded ML

DEEP DIVE

5 ML Workflow

6 Data Engineering

7 Pre-processing

8 ML Frameworks

9 Model Training

10 Efficient Al

11 Optimizations

12 Deployment

13 On-Device Learning
14 Hardware Acceleration
15 MLOps

16 Privacy and Security
17 Al Sustainability

18 Responsible Al

19 Generative Al

References

Appendices ~

A Tools

B Resources

€ Communities
D Case Studies

practitioners and the wider c i ing into a c¢
guide that delves into the principles governing embedded Al and its myriad
applications.

“If you want to go fast, go alone, if you want to go far, go together.” -
African Proverb

As a living document, this open-source textbook aims to bridge gaps and
foster innovation by being globally accessible and continually updated,
addressing the pressing need for a centralized resource in this dynamic field.
With a rich tapestry of knowledge woven from various expert perspectives,
readers can anticipate a guided journey that unveils the intricate dance
between cutting-edge algorithms and the principles that ground them,
paving the way for the next wave of technological transformation.

The Philosophy Behind the Book

We live in a world where technology perpetually reshapes itself, fostering an
ecosystem of open ct ion and sharing stands as the
cornerstone of innovation. This philosophy fuels the creation of “Embedded
Al: Principles, Algorithms, and Applications.” This is a venture that transcends
conventional textbook paradigms to foster a living repository of knowledge.
Anchoring its content on principles, algorithms, and applications, the book
aims to cultivate a deep-rooted ing that empowers i id
navigate the fluid landscape of embedded Al with agility and foresight. By

to

embracing an open approach, we not only democratize learning but also
pave avenues for fresh perspectives and iterative enhancements, thus
fostering a community where knowledge is not confined but is nurtured to
grow, adapt, and illuminate the path of progress in embedded Al
technologies globally.

Project Sign-Ups

e Join the #projects channel and post your interests
e Once you find a group, sign up on this spreadsheet:
o (same sheet used for scribing sign-up)

Lecture

L

&

TensorFlow Lite

.tflite

&

TensorFlow Lite

.tflite

o
NG‘S\O
co

C array models

7S .
)
lea/b/.,)oe
o
T
TensorFlow Lite
.tflite A
%z
%
0%,
(eg
\le‘é’\o(\
co®

C array models

eleq awi| [eay

Framework Differences

T B &

TensorFlow TensorFlow Lite TensorFlow Lite Micro

T L ®

TensorFlow TensorFlow Lite TensorFlow Lite Micro

Hardware

Training

Inference

How Many Ops

Native Quantization
Tooling + Support

T

TensorFlow

Yes

Yes
(but inefficient
on edge)

~1400

No

&

TensorFlow Lite

No

Yes
(and efficient)

~130

Yes

T

TensorFlow Lite Micro

No

Yes
(and even
more efficient)

~50

Yes

TensorFlow TensorFlow Lite TensorFlow Lite Micro
Needs an OS Yes Yes No
Memory Mapping
of Models e Yes Yes
Delegation to Yes Yes No
accelerators

Hardware

Base Binary Size

Base Memory

Footprint

Optimized
Architectures

T

TensorFlow
3MB+
~5MB

X86, TPUs, GPUs

T

TensorFlow Lite

100KB
300KB

Arm Cortex A, x86

&

TensorFlow Lite Micro

~10 KB

20KB

Arm Cortex M,
DSPs, MCUs

Keyword Spotting Example

Keyword Spotting Components

-

MAIN LOOP

—_—

Audio provider

Feature extractor

&

TensorFlow Lite Micro

Command recognizer

Command responder

ou ‘saA

Device Microphone

MAIN LOOP

—_—

N

Microphone

Audio Provider

INITIALIZATION

MAIN LOOP

Ui Audio provider

Feature extractor

©®
TensorFlow Lite

Command recognizer

Command responder

Feature Extractor

MAIN LOOP

Feature extractor

30000 -

20000

10000

-10000

—20000

-30000

(=5

50000 100000 150000 200000

250000

Data Preprocessing: Spectrograms

Yes Loud Yes Quiet

400 600

400 600

No Loud No Quiet

150

200

TFLite Micro Interpreter

MAIN LOOP

T

TensorFlow Lite Micro

Model

INITIALIZATION

MAIN LOOP

1 Audio provider

Feature extractor

Command recognizer

Command responder

ou ‘saA

MOdel Operators Reshape_2

DepthwiseConv2D
W (1x10x8x8)
B (8)

FullyConnected

w (4x4000)
B (4)

N ETR@ N

https://netron.app

TinyConv Keyword Spotting Model

labels_softmax

https://netron.app/

Command Recognizer

MAIN LOOP

Command recognizer

Command Responder

MAIN LOOP

Command responder

Device Response

MAIN LOOP

Keyword Spotting Components

-

MAIN LOOP

—_—

Audio provider

Feature extractor

&

TensorFlow Lite Micro

Command recognizer

Command responder

ou ‘saA

TensorFlow Lite Micro

Embedded Machine Learning on TinyML Systems

&

TensorFlow Lite Micro

&

TensorFlow Lite Micro

|

Hardware

Heterogeneity

2

£

Resource Constraints

Missing Library
Features

Limited Operating
System Support

&

TensorFlow Lite Micro

|

Hardware

Heterogeneity

Resource Constraints

Missing Library
Features

2

m Memory Power

Limited Operating
System Support

&

TensorFlow Lite Micro

|

Hardware

Heterogeneity

2

£

Resource Constraints

Missing Library
Features

!—‘—\

!—‘—\

Limited Operating
System Support

&

TensorFlow Lite Micro

|

Hardware

Heterogeneity

Resource Constraints

Missing Library
Features

Limited Operating
System Support

System
SMPS, LDO, USB and

backup regulators
POR/PDR/PVD/BOR

Multi-power domains

Xtal oscillators
32 kHz + 4 ~48 MHz

Internal RC oscillators
32 kHz + 4, 48 & 64 MHz

3x PLL

RTC/AWU
1x SysTick timer

2x watchdogs
(independent and
window
82/114/140/168 1/0s
Cyclic redundancy

g

£

:
3
8
=

Unique ID

Control
2x 16-bit motor control
PWM synchronized
AC timer

10x 16-bit timers
2x 32-bit timers
5x Low-power timer

16-bit High res. timer

Chrom-ART Accelerator™
JPEG Codec Acceleration

Cache I/D 16+16 Kbytes

Arm®
Cortex®-M7
480 MHz

+

Arm®
Cortex®-M4
240 MHz

Floating point unit
(DP-FPU)
Nested vector
interrupt
controller (NVIC)
JTAG/SW debug/ETM

Memory Protection Unit

ROP, PC-ROP
anti-tamper

AXI and Multi-AHB
bus matrix

True random number
generator (RNG

2-Mbyte dual-bank
Flash memory
RAM 1056KB incl.
64KB ITCM
FMC/SRAM/NOR/NAND/
D
Dual Quad-SPI
1024-byte + 4-Kbyte
backup SRAM
Connectivi
TFT LCD controller

SDRAM
| DualQuad-SPI___ |

6x SPI, 3x I2S, 4x I2C
Camera interface

Ethernet MAC 10/100
with IEEE 1588

MDIO slave

(Flexible Data rate)
1x USB 2.0 OTG FS/HS
1x USB 2.0 OTG FS
2x SDMMC

4x USART + 4 UART
LIN, smartcard, IrDA,
modem control

1x Low-power UART

Serial audio interface
SPDIF input x4
DFSDM (8 inputs/4 filters

g £
& £
2

(Single Wire Protocol)

Analog
it, 2-channel DACs
3 x 16-bit ADC
(up to 3.6 Msps)
20 channels/up to 2 MSPS
Temperature sensor
2x COMP
2x OpAmp

154
&
"
&
=
>

STM32H747x1/G devices are based on the high-performance Arm®
Cortex®-M7 and Cortex®-M4 32-bit RISC cores. The Cortex®-M7 core
operates at up to 480 MHz and the Cortex®-M4 core at up to 240 MHz. Both
cores feature a floating point unit (FPU) which supports Arm® single- and
double-precision (Cortex®-M7 core) operations and conversions (IEEE 754
compliant), including a full set of DSP instructions and a memory protection
unit (MPU) to enhance application security.

STM32H747x1/G devices incorporate high-speed embedded memories with a
dual-bank flash memory of up to 2 Mbytes, up to 1 Mbyte of RAM (including
192 Kbytes of TCM RAM, up to 864 Kbytes of user SRAM and 4 Kbytes of
backup SRAM), as well as an extensive range of enhanced I/Os and
peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB bus
matrix and a multi layer AXI interconnect supporting internal and external
memory access.

All the devices offer three ADCs, two DACs, two ultra-low power
comparators, a low-power RTC, a high-resolution timer, 12 general-purpose
16-bit timers, two PWM timers for motor control, five low-power timers, a true
random number generator (RNG). The devices support four digital filters for
external sigma-delta modulators (DFSDM). They also feature standard and
advanced communication interfaces.

&

TensorFlow Lite Micro

|

Hardware

Heterogeneity

Resource Constraints

Missing Library
Features

Limited Operating
System Support

&

TensorFlow Lite Micro

Hardware

Heterogeneity

Resource Constraints

Missing Library
Features

Limited Operating
System Support

&

TensorFlow Lite Micro

Hardware

Heterogeneity

Resource Constraints

Missing Library
Features

|
[l (22

e e R

Limited Operating
System Support

T

TensorFlow Lite Micro

Arduino

BLE Sense 33

Himax
WE-I Plus EVB

SparkFun
Edge 2

Espressif
EYE

How do you use TFL Micro?

specify ops you'’re load a model into model inputs,
using with into an copy the
OpResolver Interpreter Input Data

from model
outputs, read the

run the model via

Invoke()

TFLite Micro: Interpreter

TFLite Micro Design

e TFLite Micro uses an
interpreter design

e Store the model as
data and loop through
its ops at runtime

instruction
ops

dispatch
loop

dispatch
loop

instruction
ops

Interpreter
(generally slower than compiled code)

int main() {
function_a(
function_b(

)
)

printf(”done!\n");
}

void function_a() {
doSomething();
saveTheWorld();
machineLearning++;

printf(”a is complete\n”);

}

void functon_b() {
x = 50;
y = 249;
z = 141;

int result = run_conv(x,y,z);
result += 61;

printf(”b is complete\n”);

C/C++
code

010101010100101010010101010101010
101101101011101010101010101101010
101010111010101001000111001011101
010010101111010111010101011110101
010101010101001010100101010101010
101011011010111010101010101011010
101010101110101010010001110010111
010100101011110101110101010111101
010101010101010010101001010101010

101010110110101110101010101010110
101010101011101010100100011100101
110101001010111101011101010101111
010101010101010100101010010101010

101010101101101011101010101010101
. 101010101010111010101001000111001
one time 011101010010101111010111010101011
110101010101010101001010100101010

P
compllatlon 101010101011011010111010101010101

compiled
machine
code

Compiler

(generally faster than interpreted code)

Conv

W (16x64x1x1)
B (16)

‘ ' Many cycles

ML is Different

e Each layer like a Conv
or softmax can take
tens of thousands or
even millions of cycles
to complete execution

g —

data

Erm—

W (64x3x3x3)
B (64)

MaxPool

Conv

W (16x64x1x1)
B (16)

W (16x64x1x1) W (16x64x1x1)

B (16)

B (16)

l l

ToEm

ML is Different

Parsing overhead is
relatively small for the
TFMicro interpreter
when we consider the
overall network graph

Total Calculation | Interpreter
Cycles Cycles Overhead

Visual Wake 5
Words (Refy 18:990.8K 18,987.1K <0.1% . (I
(% TensorFIow
Google é’
Hotword 36.4K 34.9K 4.1% ‘I’I’I’
(Ref) :

Sparkfun Edge 2
(Apollo 3 Cortex-M4)

instruction
ops

dispatch
loop

Interpreter
Advantages

- Change the model
without recompiling
the code

Interpreter
Advantages

- Change the model
without recompiling
the code

dispatch
loop - Same operator code
can be used across
multiple different

models in the system

instruction
ops

Arduino
BLE Sense 33

Espressif
EYE

Himax
WE-I| Plus EVB

SparkFun
Edge 2

Interpreter
Advantages

- Same portable model
serialization format
can be used across a
lots of systems.

TFLite Micro
Interpreter Execution

if (op_type == CONV2D) {
Convolution2d(conv_size, input, output, weights);
} else if (op_type == FULLY_CONNECTED) {
FullyConnected(input, output, weights)

TFLite Micro:
Model Format

The FlatBuffer File Format

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.

model = tflite::GetModel(g_model);
if (model->version() !'= TFLIGHT_SCHEMA_VERSION) {
TF_LITE_REPORT_ERROR(error_reporter,
"Model provided is schema version %d not equal "
"to supported version %d.",
model->versison(), TFLITE_SCHEMA_VERSION);

return;

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.

model = tflite::GetModel(g_model);
if (model->version() != TFLIGHT_SCHEMA_VERSION) {
TF_LITE_REPORT_ERROR(error_reporter,
"Model provided is schema version %d not equal
"to supported version %d.",
model->versison(), TFLITE_SCHEMA_VERSION) ;

return;

model = tflite::GetModel(g_model); ‘ ‘ ‘ ‘

How is g_model stored?

Serialization el — —

Serialization
Libraries

e JSON
e ProtoBuf

e FlatBuffer

Flexible
Schemas

FlatBuffer

Developer
Friendly

Cortex-M
Cache (4KB)

(256KB)

Hardware & Software
Limitations

On-Chip « Limited OS support

Cortex-M e Limited compute

i + Limited

Cache (4KB)

SRAM
(256KB)

W o ?
28 Gl'l.g IGS(B) const u S'lQ ed cha Q-“‘Odel[] - {

e Array of bytes, and acts as
the equivalent of a file on disk

e Holds all of the information
about the model, its
operators, their connections,
and the trained weights

FlatBuffers

Does not require copies to be made
before using the data inside the model

FlatBuffers

« The is formally specified as a

FlatBuffers

Schema file is used to automatically
generate code to access the
information in the model byte array

FlatBuffer Format

Metadata (version, quantization ranges, etc)

Name Args Input Output Weights
Index Type
Conv2D 3x3 0 1 2
2 Float
FC - 1 3 4
4 Int8

Softmax - 3 5 -

Values

0.01,7.45,9.23, ...

34,19, 243, ...

TFLite Micro:
Memory Allocation

The Tensor Arena

Why Care

About Memory?

Embedded systems typically have
only hundreds or tens of kilobytes
of RAM

On-Chip

Cortex-M

Cache (4KB)

/,,,,//
SRAM eFlash
(256KB) (1 MB)

Why Care

About Memory?

Easy to hit memory limits when
building an end-to-end application

On-Chip

Cortex-M

Cache (4KB)

SRAM eFlash
(256KB) (1 MB)

Why Care

About Memory?

So any framework that integrates
with embedded products

On-Chip

Cortex-M

Cache (4KB)

SRAM eFlash
(256KB) (1 MB)

Long-Running
Applications

e Products are expected to run for
months or even years, which poses

challenges for memory allocation

e Need to guarantee that memory
allocation will not end up
fragmented — contiguous memory
cannot be allocated even if there's

enough memory overall

Bre

ooy ooy

ooy gty

Lack of OS Support

e |nembedded systems, the
standard C and C++ memory APIs
(malloc and new) rely on
operating system support

e Many devices have no OS,
or have very limited functionality

Software

TF Micro Application

Arduino

mbed OS

Nano 33 BLE Sense

Hardware

How TFL Micro solves these challenges

1. Ask developers to supply a contiguous area of memory to the interpreter,
and in return the framework avoids any other memory allocations

constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

static tflite::MicroInterpreter static_interpreter(model, resolver,
tensor_arena, kTensorArenaSize, error_reporting);

How TFL Micro solves these challenges

2. Framework guarantees that it won’t allocate from this “arena” after
initialization, so long-running applications won't fail due to fragmentation

How TFL Micro solves these challenges

3. Ensures clear budget for the memory used by ML, and that the

uint8_t tensor_ arenal[kTensorArenaSize]

Operator Inputs and
Outputs

Operator Variables Interpreter State

Arena size?

e Depends on what ops
are in the model (and the
parameters of those
operations)

constexpr int kTensorArenaSize = 2000;

Arena size?

e Depends on what ops
are in the model (and the
parameters of those
operations)

constexpr int kTensorArenaSize = 2000;

e Size of operator inputs and
outputs is platform
independent, but different
devices can have different
operator implementations

Arena size?

e Depends on what ops
are in the model (and the
parameters of those
operations)

constexpr int kTensorArenaSize = 2000;

e Size of operator inputs and
outputs is platform
independent, but different
devices can have different
operator implementations

e — hard to forecast exact
size of arena needed

Solution

e Create as large an arena as
you can and run your
program on-device

e Use the arena_used_bytes()
function to get the actual size
used.

e Resize the arena to that
length and rebuild

e Best to do this on your
deployment platform, since
different op implementations
may need varying scratch
buffer sizes

constexpr int kTensorArenaSize = 6000;

*Call MicroInterpreter: :arena used bytes () to get the actual memory size used.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/micro_interpreter.h#L173

TFLite Micro:
NN Operations

The OpsResolver

Why Care About 01101010

Binary Size? 10010101
11010101
e Executable code used by a 01101010

framework takes up space in Flash 10110110

f"’

Why Care About
Binary Size?

e Flash is a limited resource on
embedded devices and often just
tens of kilobytes available

On-Chip

Cortex-M

Cache (4KB)
SRAM
(256KB)

Why Care About 01101010

Binary Size? 10010101
11010101

01101010

10110110 ~

e |f compiled it %
by applications. %

&

TensorFlow Lite Micro

Core Model

functionality operators

20KBs

conv2D
conv3D
tanh
Model Ioading depthwise conv2d
12 normalize
sigmoid
Memory max_pool

Error reporting planner

Optimizing Operator
Usage in TFL Micro

e There are many operators in

TensorFlow (~1400 and growing) 1F

TensorFlow

data

l
Optimizing Operator

B (64)

Usage in TFL Micro |

y

MaxPool

Conv

W (16x64x1x1)
B (16)
e Not all operators are used or |

even needed to perform inference

W (16x64x1x1) W (16x64x1x1)
B (16) B (16)

l l

T

Optimizing Operator
Usage in TFL Micro

Model
operators

conv2D
conv3D
tanh
depthwise_conv2d
12 normalize
sigmoid

e Bringinor max_pool
to conserve
memaory usage

How to Reduce the Size Taken by Ops?

Allow developers to specify which ops they want to be included in the binary

tflite::MicroMutableOpResolver<4>
op_resolver(error_reporter);

if (op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
return;
}

Reshape 2

DepthwiseConv2D

W (1x10x8x8)
B (8)

FullyConnected

W (4x4000)
B (4)

TinyConv Keyword Spotting Model

labels_softmax

Reshape 2

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

o)

©

o

= DepthwiseConv2D return:

o2 W (1x10x8x8)

= B(®) 4

o if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {
(% return;

2 }

o FullyConnected ,) .

= if (micro_op_resolver.AddSoftmax() '= kTfLiteOk) {
< W (4x4000)

) B (4) return;

<)

>

8 if (micro_op_resolver.AddReshape() != kTfLiteOk) {
L>>, return;

£ }

=

labels_softmax

Reshape_2 static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

[

©

(®)

= return;

(@)]

= }

% if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {
(% return;

° }

g if (micro_op_resolver.AddSoftmax() '= kTfLiteOk) {
q>)‘ return;

—)

>

8 if (micro_op_resolver.AddReshape() '= kTfLiteOk)
O return;

>

= }

=

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

DepthwiseConv2D return:

[

©

©)]

=

E’ \éV((E;I)x1Ox8x8))

"§_ if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {
) return;

© }

g if (micro_op_resolver.AddSoftmax() '= kTfLiteOk) {
q>," return;

<)

>

8 if (micro_op_resolver.AddReshape() '= kTfLiteOk)
O return;

>

= }

=

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

[

-8 if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
= return;

(@)]

= ;

% if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {
(% return;

= FullyConnected :

g o if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

2 W (4x4000)

) B (4) return;

< }

= |

8 if (micro_op_resolver.AddReshape() '= kTfLiteOk)

L>)., return;

£ }

=

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

[

©

(®)

= return;

(@)]

= ;

% if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {
(% return;

T }

= if (micro_op_resolver.AddSoftmax I= kTfLiteOk) {
S

q>)‘ return;

—)

>

8 if (micro_op_resolver.AddReshape() '= kTfLiteOk) ¢
O return;

3)

=

data

|
Which Ops

to Include? R
!

Conv

W (16x64x1x1)
B (16)

W (16x64x1x1) W (16x64x1x1)
B (16) B (16)

l l

T

https://netron.app/

If memory is not an issue, you can choose to simply include all operators,
both used and unused, at the expense of increased memory consumption

static tflite::AllOpsResolver resolver;

// Build an _interpreter to run the model with.
static tflite::Microlnterpreter static_interpreter(

model; resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;

Memory
Improvements

e Selective op registration
reduces memory
consumption by 30%

e Memory reduction varies by
model, depending on the
operators used by the model

Kilobytes

300 +

200 +

100 +

B AllOps M Only Needed Ops

Flash

In Summary, what is TensorFlow Lite Micro?

&

Compatible with the TensorFlow training environment. TensorFlow Lite 110
Built to fit on embedded systems:

Very small binary footprint

No dynamic memory allocation

No dependencies on complex parts of the standard C/C++ libraries
No operating system dependencies, can run on bare metal
Designed to be portable across a wide variety of systems

Thank Youl!

Paper Discussions

Paper Discussion #1 - TFLite

https://arxiv.org/abs/2010.08678

Paper Discussion #2 - MCUNet

https://arxiv.org/abs/2007.10319

Guest Speaker

Tiangi Chen

Tianqi Chen is a distinguished
researcher, primarily recognized as
the creator of TVM, an open-source
machine learning compiler stack,
designed to enable efficient
deployment of deep learning models
on a variety of hardware platforms.
Chen’s contributions have been
pivotal in progressing machine
learning frameworks.

Personal Website

Google Scholar

https://tqchen.com/
https://scholar.google.com/citations?user=7nlvOMQAAAAJ

