CS249r: Frameworks

Sep. 25, 2023

Goals for today

- 1. Logistics
- 2. Lecture
- 3. Paper discussions
- 4. Guest speaker

Course Logistics

Class Schedule

	Start	~End
Lecture	12:45 PM	1:40 PM
Break	1:40 PM	1:45 PM
Paper Discussion (combined)	1:45 PM	2:25 PM
Break	2:25 PM	2:30 PM
Guest Lecture	2:30 PM	3:30 PM

My Office Hours

- Every Monday
 - After class @ 3:30pm
 - Meet in class / office
 - \circ My focus
 - Technical material
 - Lecture content
 - Paper readings / discussions etc.

Updated Office Hours

Matthew Stewart

Postdoctoral Researcher, Harvard University

Office Hours: 5-6 PM Thursday (SEC 1.412)

<u>lkechukwu Uchendu</u>

Computer Science, PhD Student, Harvard University

Office Hours: 9-10 AM Wednesday (TBD)

<u>Jason Jabbour</u>

Computer Science, PhD Student, Harvard University

Office Hours: 11-12 PM Friday (TBD)

Jessica Quaye

Computer Science, PhD Student, Harvard University

Office Hours: 1-2 PM Tuesday (SEC 5.403)

Paper Discussion Sign-up Sheet

- 1. Please take a few minutes to sign up for next week's paper discussion:
- 2. Submit to Canvas:
 - a. Paper Reading Group 1 for your first time
 - b. Paper Reading Group 2 for your second time
- 3. Extra Credit for signing up for 3rd spot
 - a. 2.5% credit!

Assignment #1

- Any issues with the hardware?
 - \circ To be expected when working with embedded systems $\boldsymbol{\curlyvee}$
- New Due Dates:
 - **Part 1:** Oct 2nd
 - Part 2: Oct 10th (due to Indigenous Peoples Day)
- Questions?

Book

• Updates

- Week of topic
 - i. Meet with Matthew & VJ
 - ii. Create a google doc
 - iii. Share with staff
 - iv. Iterate on rough outline \rightarrow
 - v. Start drafting collaboratively
 - vi. Push to GitHub
 - vii. Peer review

Q FRONT MATTER

Preface Dedication Acknowledgements Copyright About This Book WELCOME 1 Introduction 2 Embedded Systems 3 Deep Learning Primer 4 Embedded ML DEEP DIVE 5 ML Workflow 6 Data Engineering 7 Pre-processing 8 ML Frameworks 9 Model Training 10 Efficient Al 11 Optimizations 12 Deployment 13 On-Device Learning 14 Hardware Acceleration 15 MLOps 16 Privacy and Security 17 AI Sustainability 18 Responsible AI 19 Generative Al References Appendices A Tools B Resources C Communities D Case Studies

Embedded AI: Principles, Algorithms, and Applications

Preface

In "Embedded AI: Principles, Algorithms, and Applications", we will embark on a critical exploration of the rapidly evolving field of artificial intelligence in the context of embedded systems, originally nurtured from the foundational course, timyML from CS249r.

The goal of this book is to bring about a collaborative endeavor with insights and contributions from students, practitioners and the wider community, blossoming into a comprehensive guide that delves into the principles governing embedded AI and its myriad applications.

"If you want to go fast, go alone, if you want to go far, go together." – African Proverb

As a living document, this open-source textbook aims to bridge gaps and foster innovation by being globally accessible and continually updated, addressing the pressing need for a centralized resource in this dynamic field. With a rich tapestry of knowledge woven from various expert perspectives, readers can anticipate a guided journey that unveils the intricate dance between cutting-edge algorithms and the principles that ground them, paving the way for the next wave of technological transformation.

The Philosophy Behind the Book

We live in a world where technology perpetually reshapes itself, fostering an ecosystem of open collaboration and knowledge sharing stands as the cornerstone of innovation. This philosophy fuels the creation of "Embedded AI: Principles, Algorithms, and Applications." This is a venture that transcends conventional textbook paradigms to foster a living repository of knowledge. Anchoring its content on principles, algorithms, and applications, the book aims to cultivate a deep-rooted understanding that empowers individuals to navigate the fluid landscape of embedded AI with agility and foresight. By embracing an open approach, we not only democratize learning but also pave avenues for fresh perspectives and iterative enhancements, thus fostering a community where knowledge is not confined but is nurtured to grow, adapt, and illuminate the path of progress in embedded AI technologies globally.

How to Contribute Contributors O Edit this page Report an issue View source

Table of contents

The Philosophy Behind the

Conventions Used in This

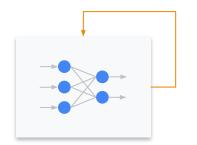
How to Contact Us

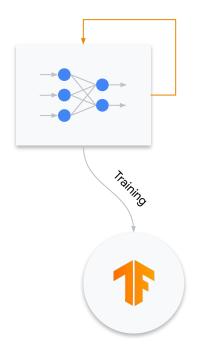
Preface

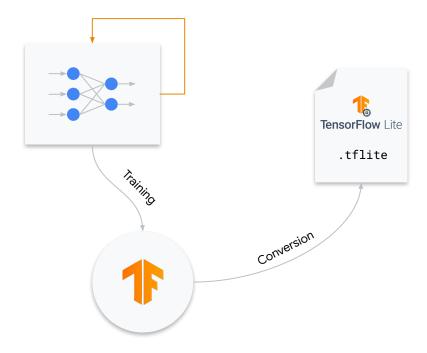
Book

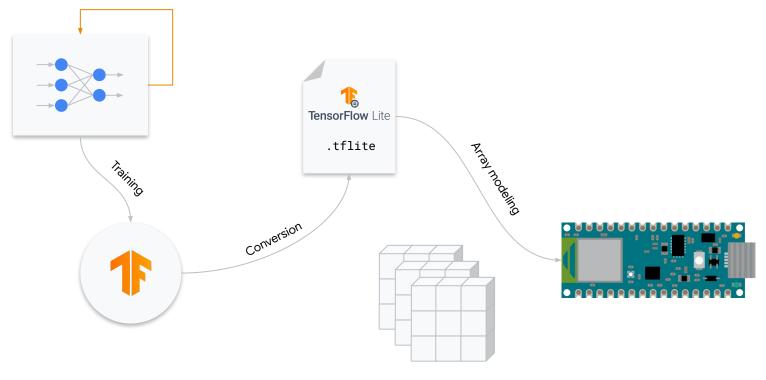
Project Sign-Ups

- Join the #projects channel and post your interests
- Once you find a group, sign up on this spreadsheet:
 - (same sheet used for scribing sign-up)

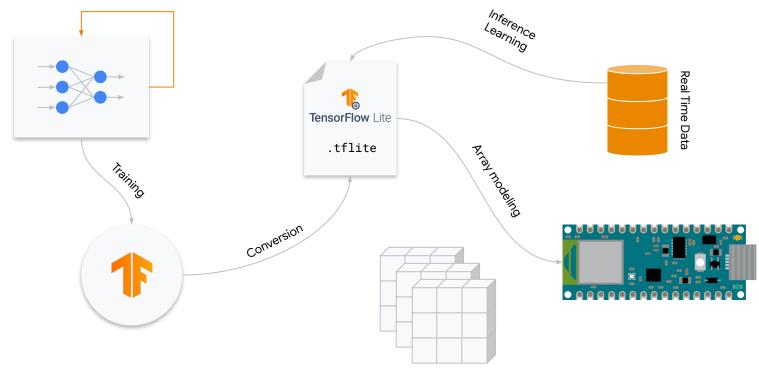








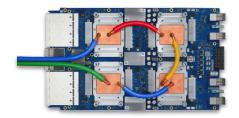
C array models

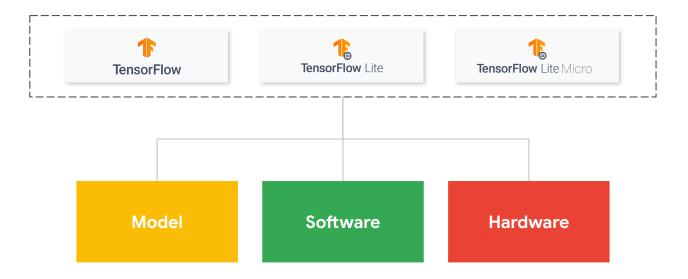


C array models

Framework Differences







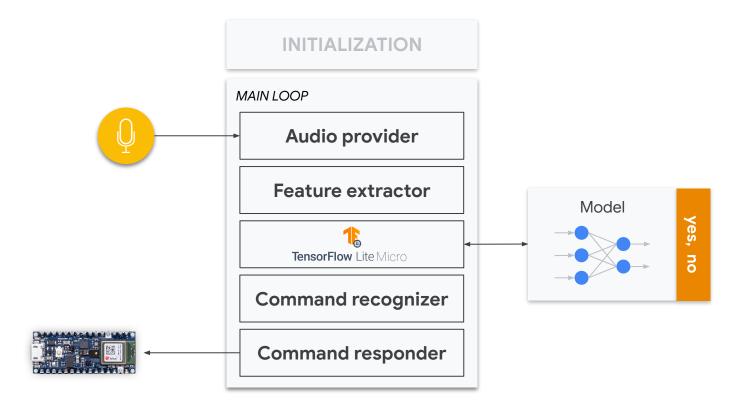
Model	† TensorFlow	TensorFlow Lite	TensorFlow Lite Micro
Training	Yes	No	No
Inference	Yes (but inefficient on edge)	Yes (and efficient)	Yes (and even more efficient)
How Many Ops	~1400	~130	~50
Native Quantization Tooling + Support	No	Yes	Yes

Software	TensorFlow	TensorFlow Lite	TensorFlow Lite Micro
Needs an OS	Yes	Yes	No
Memory Mapping of Models	No	Yes	Yes
Delegation to accelerators	Yes	Yes	No

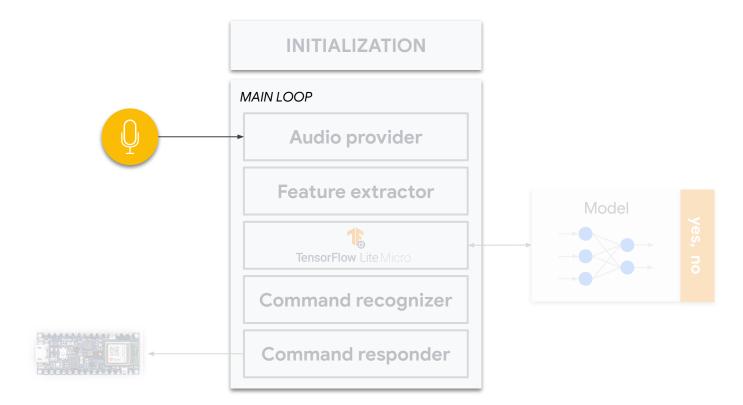
Hardware	TensorFlow	TensorFlow Lite	TensorFlow Lite Micro
Base Binary Size	3MB+	100KB	~10 KB
Base Memory Footprint	~5MB	300KB	20KB
Optimized Architectures	X86, TPUs, GPUs	Arm Cortex A, x86	Arm Cortex M, DSPs, MCUs

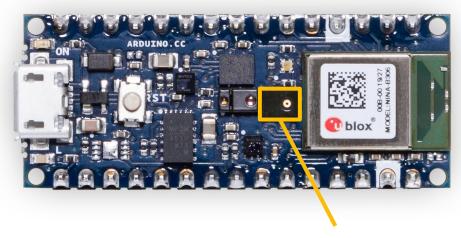
Keyword Spotting Example

Keyword Spotting Components



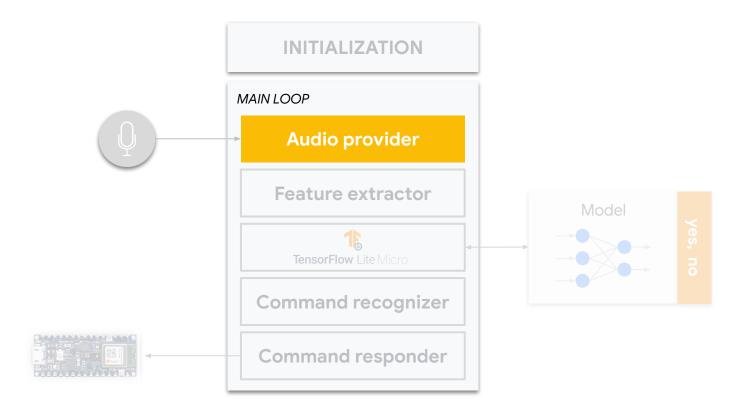
Device Microphone



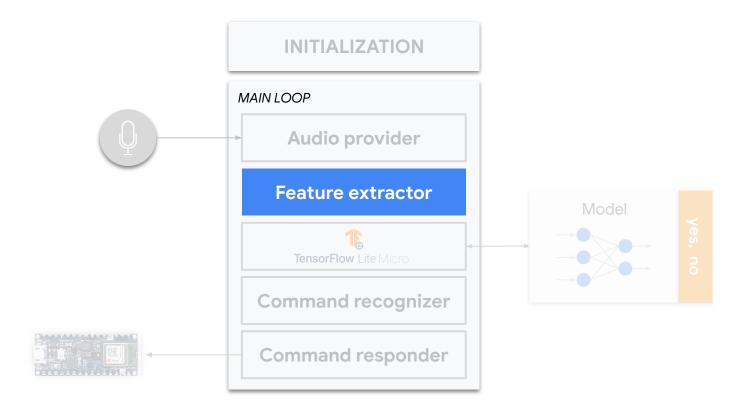


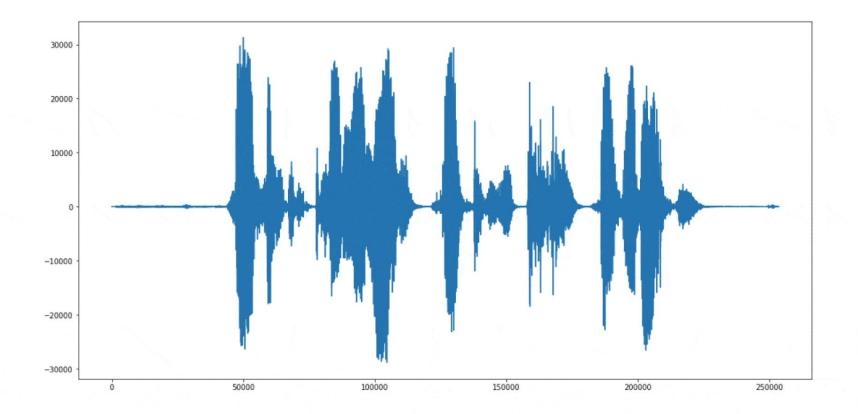
Microphone

Audio Provider



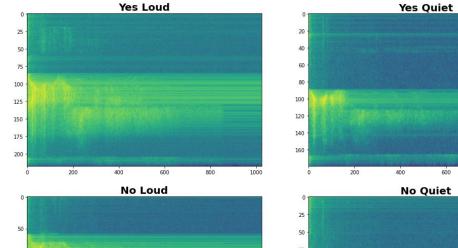
Feature **Extractor**

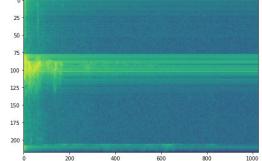




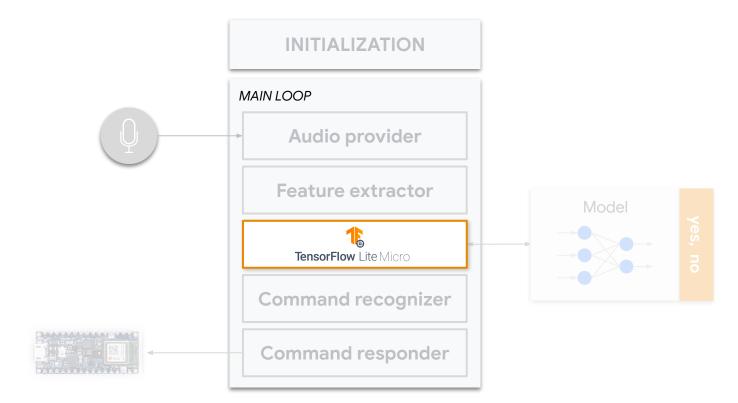
Data Preprocessing: Spectrograms

Ó

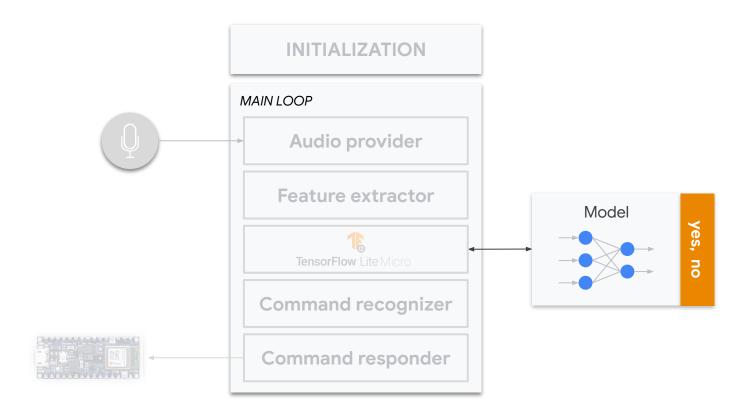




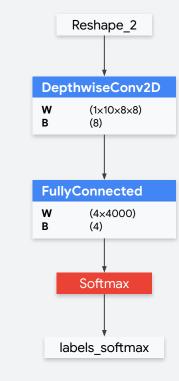
TFLite Micro Interpreter



Model

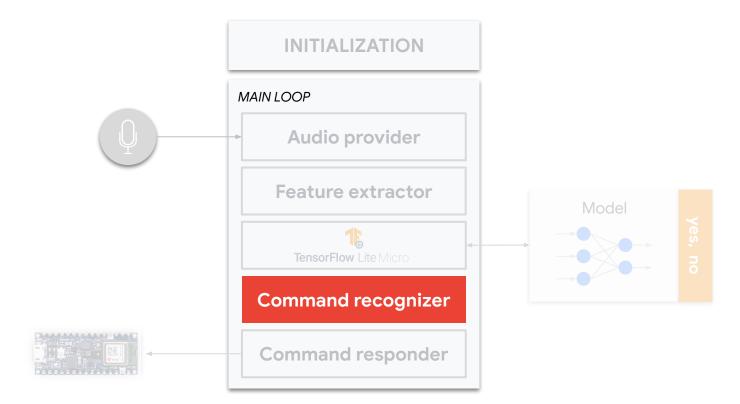


Model **Operators**

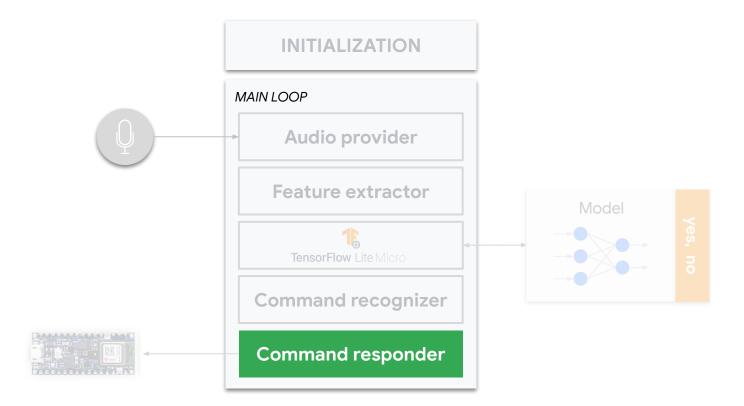


TinyConv Keyword Spotting Model

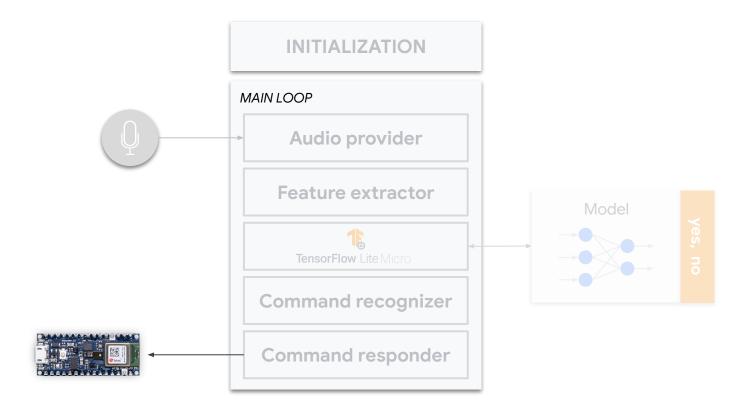
Command Recognizer

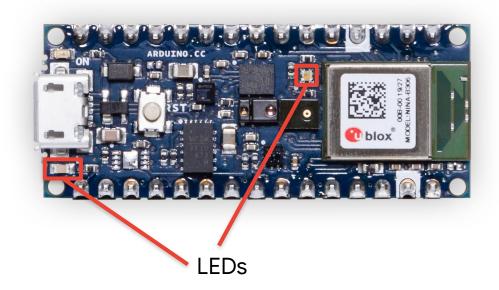


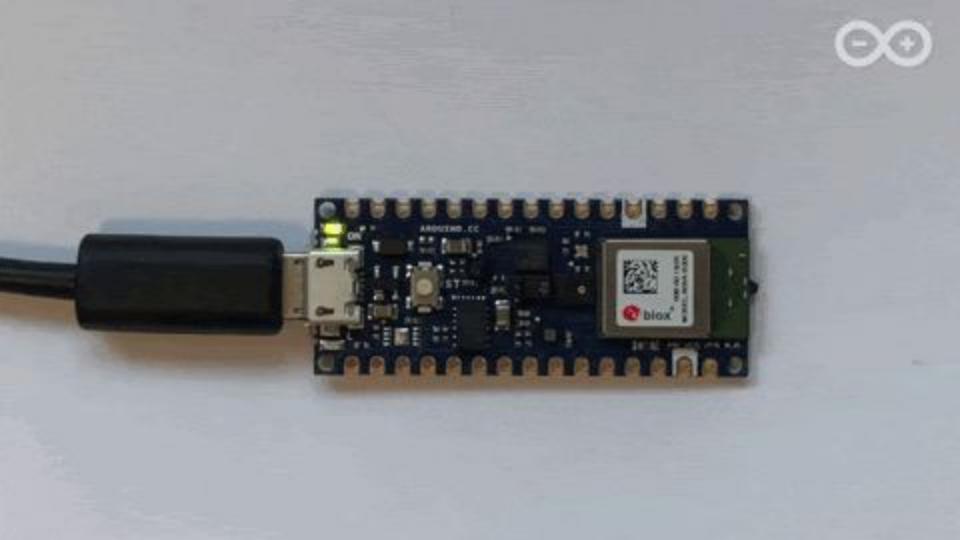
Command Responder



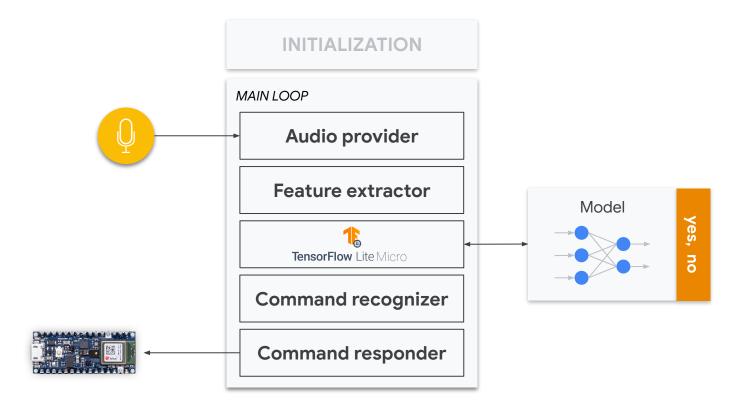
Device Response





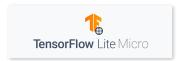


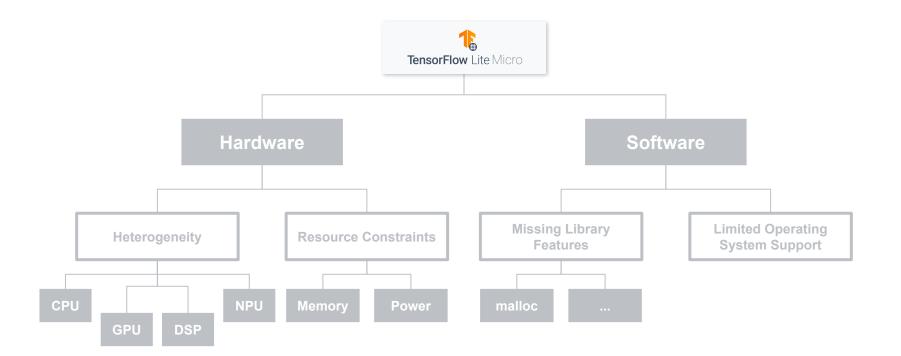
Keyword Spotting Components

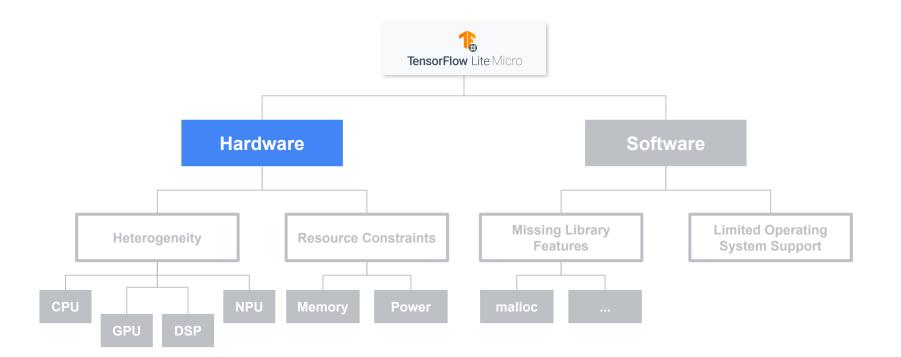


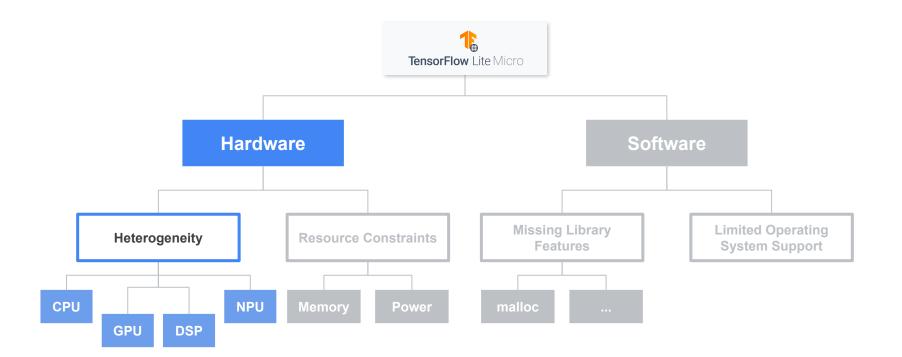
TensorFlow Lite Micro

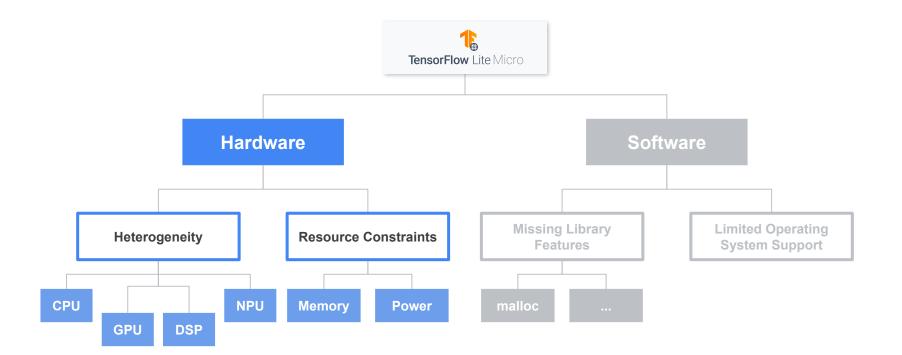
Embedded Machine Learning on TinyML Systems









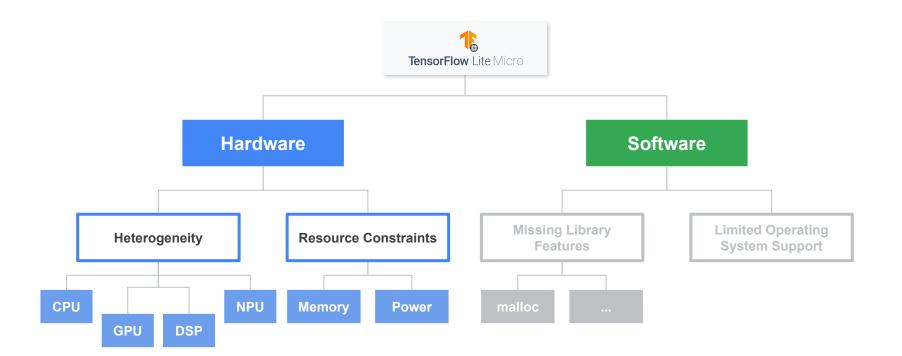


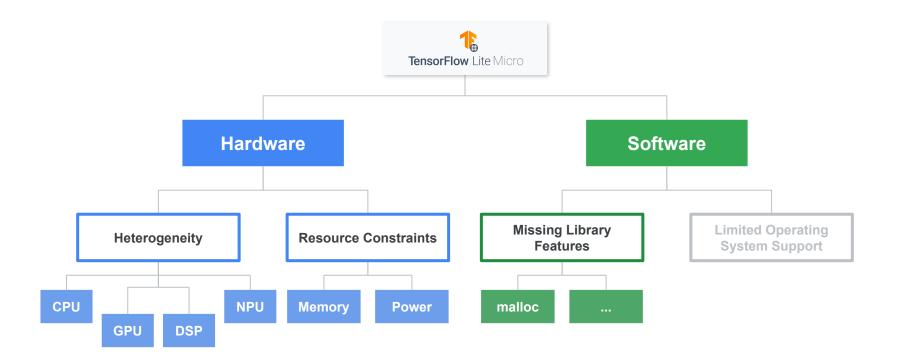
System	Chrom-ART Accelerator™ JPEG Codec Acceleration	2-Mbyte dual-bank Flash memory
SMPS, LDO, USB and		RAM 1056KB incl. 64KB ITCM
backup regulators POR/PDR/PVD/BOR		FMC/SRAM/NOR/NAND/ SDRAM
Multi-power domains		Dual Quad-SPI
Xtal oscillators 32 kHz + 4 ~48 MHz Internal RC oscillators	Cache I/D 16+16 Kbytes	1024-byte + 4-Kbyte backup SRAM
32 kHz + 4, 48 & 64 MHz		Connectivity
3x PLL		TFT LCD controller
Clock control		MPI-DSI
RTC/AWU	Arm®	HDMI-CEC
1x SysTick timer	Cortex [®] -M7	6x SPI, 3x I ² S, 4x I ² C
2x watchdogs	480 MHz	Camera interface
(independent and window)	+	Ethernet MAC 10/100 with IEEE 1588
82/114/140/168 I/Os	Arm®	MDIO slave
Cyclic redundancy check (CRC)	Cortex [®] -M4 240 MHz	2x FDCAN (Flexible Data rate)
Unique ID		1x USB 2.0 OTG FS/HS
		1x USB 2.0 OTG FS
		2x SDMMC
	Floating point unit	4x USART + 4 UART LIN, smartcard, IrDA, modem control
	(DP-FPU)	
Control	Nested vector	1x Low-power UART 4x SAI
	interrupt controller (NVIC)	(Serial audio interface)
2x 16-bit motor control	JTAG/SW debug/ETM	SPDIF input x4
PWM synchronized AC timer	Memory Protection Unit	DFSDM (8 inputs/4 filters)
10x 16-bit timers	(MPU)	SWP (Single Wire Protocol)
2x 32-bit timers	ROP, PC-ROP	(Single Wire Protocol)
5x Low-power timer	anti-tamper	Analog
16-bit High res. timer		2x 12-bit, 2-channel DACs
		3 x 16-bit ADC
	AXI and Multi-AHB	(up to 3.6 Msps)
	bus matrix	20 channels/up to 2 MSPS Temperature sensor
	4x DMA	2x COMP
	True random number	2x COMP 2x OpAmp
	generator (RNG)	ZX UPAIIIP

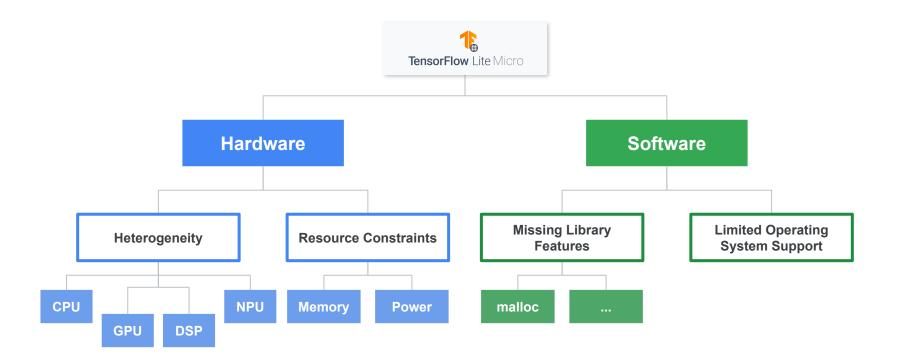
STM32H747xI/G devices are based on the high-performance **Arm**[®] **Cortex®-M7** and **Cortex®-M4 32-bit RISC** cores. The Cortex®-M7 core operates at up to 480 MHz and the Cortex®-M4 core at up to 240 MHz. Both cores feature a **floating point unit (FPU)** which supports Arm[®] single- and double-precision (Cortex®-M7 core) operations and conversions (IEEE 754 compliant), including a full set of **DSP instructions** and a memory protection unit (MPU) to enhance application security.

STM32H747xI/G devices incorporate high-speed embedded memories with a dual-bank **flash memory of up to 2 Mbytes**, up to **1 Mbyte of RAM** (including 192 Kbytes of **TCM RAM**, up to 864 Kbytes of user **SRAM** and 4 Kbytes of backup SRAM), as well as an extensive range of enhanced **I/Os and peripherals** connected to APB buses, AHB buses, 2x32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memory access.

All the devices offer three **ADCs**, two **DACs**, two ultra-low power **comparators**, a low-power RTC, a high-resolution timer, 12 general-purpose 16-bit **timers**, two PWM timers for motor control, five low-power timers, a true random number generator (RNG). The devices support four digital filters for external sigma-delta modulators (DFSDM). They also feature standard and advanced communication interfaces.

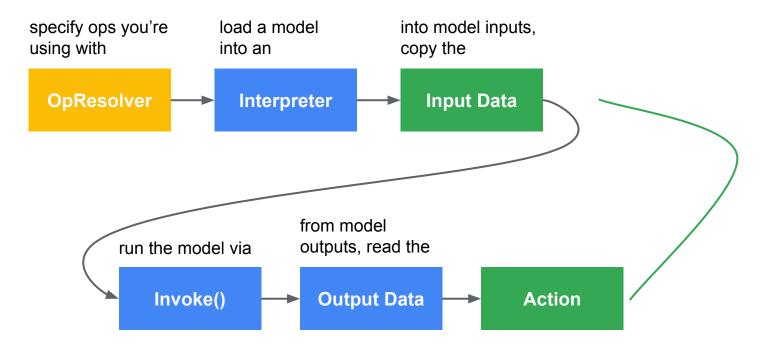






...

How do you use **TFL Micro**?



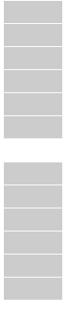
TFLite Micro: Interpreter

TFLite Micro Design

- TFLite Micro uses an **interpreter** design
- Store the model as data and loop through its ops at runtime

dispatch **loop**

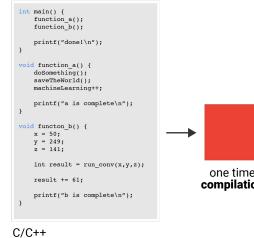
instruction **ops**



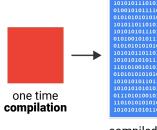
dispatch **loop**

instruction **ops**

Interpreter (generally slower than compiled code)

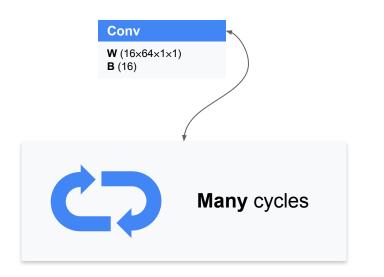


code



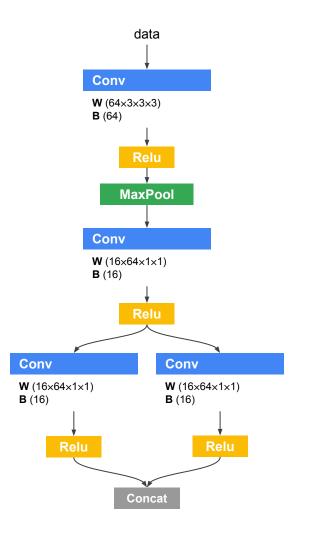
compiled machine code

Compiler (generally faster than interpreted code)



ML is **Different**

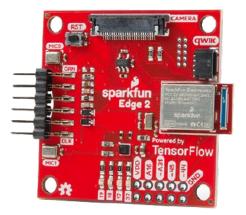
• Each layer like a Conv or softmax can take tens of thousands or even millions of cycles to complete execution



ML is **Different**

 Parsing overhead is relatively small for the TFMicro interpreter when we consider the overall network graph

Model	Total Cycles	Calculation Cycles	Interpreter Overhead
Visual Wake Words (Ref)	18,990.8K	18,987.1K	< 0.1%
Google Hotword (Ref)	36.4K	34.9K	4.1%

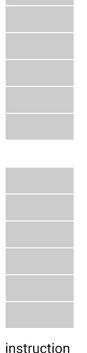


Sparkfun Edge 2 (Apollo 3 **Cortex-M4**)

Interpreter Advantages

Change the model
 without recompiling
 the code

instruction **ops**



ops

Interpreter Advantages

- Change the model
 without recompiling
 the code
- Same operator code
 can be used across
 multiple different
 models in the system

Arduino	Himax
BLE Sense 33	WE-I Plus EVB
Espressif	SparkFun
EYE	Edge 2

Interpreter Advantages

 Same portable model serialization format can be used across a lots of systems.

TFLite Micro Interpreter Execution

```
if (op_type == CONV2D) {
   Convolution2d(conv_size, input, output, weights);
} else if (op_type == FULLY_CONNECTED) {
   FullyConnected(input, output, weights)
}
```

TFLite Micro: Model Format

The FlatBuffer File Format

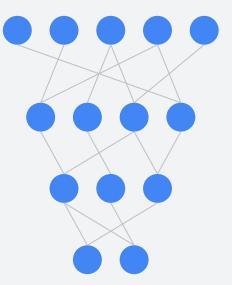
```
// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
```

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.

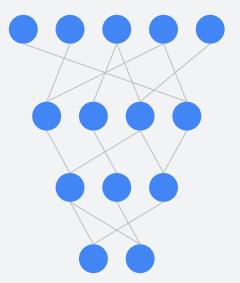
// Map the model into a usable data structure. This doesn't involve // copying or parsing, it's a very lightweight operation.

```
model = tflite::GetModel(g_model);
if (model->version() != TFLIGHT_SCHEMA_VERSION) {
                                 "Model provided is schema version %d not equal
```

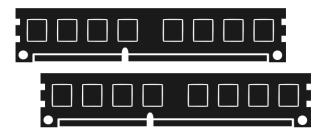
"to supported version %d.", model->versison(), TFLITE_SCHEMA_VERSION);



How is **g_model** stored?

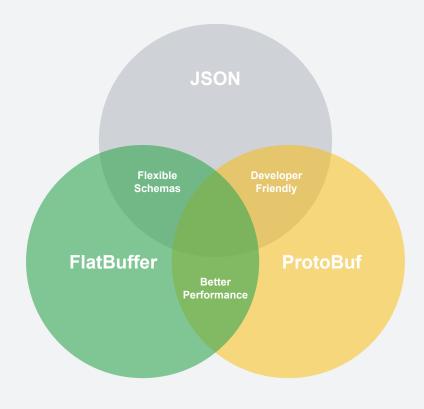


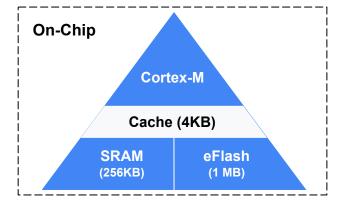
Serialization

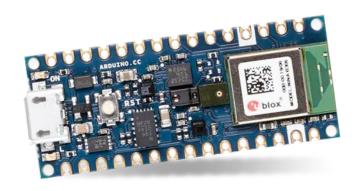


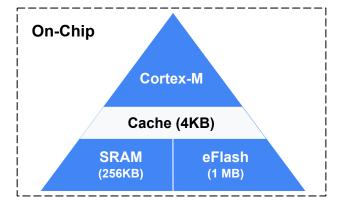
Serialization Libraries

- JSON
- ProtoBuf
- FlatBuffer









Hardware & Software Limitations

- Limited OS support
- Limited compute
- Limited memory



What is **g_model**?

- Array of bytes, and acts as the equivalent of a file on disk
- Holds all of the information about the model, its operators, their connections, and the trained weights

28 alignas(8) const unsigned char g_model[] = {

FlatBuffers

• Does **not require copies** to be made before using the data inside the model

FlatBuffers

- Does **not require copies** to be made before using the data inside the model
- The format is formally specified as a schema file

FlatBuffers

- Does **not require copies** to be made before using the data inside the model
- The format is formally specified as a schema file
- Schema file is used to automatically generate code to access the information in the model byte array

g_model FlatBuffer Format

Metadata (version, quantization ranges, etc)

Name	Args	Input	Output	Weights
Conv2D	3x3	0	1	2
FC	-	1	3	4
Softmax	-	3	5	-

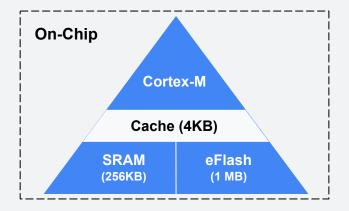
Weight Buffers					
Index	Туре	Values			
2	Float	0.01, 7.45, 9.23,			
4	Int8	34, 19, 243,			

TFLite Micro: Memory Allocation

The Tensor Arena

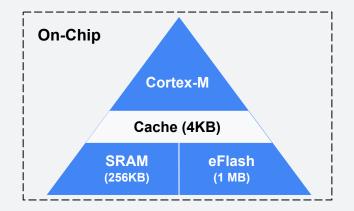
Why Care About **Memory**?

 Embedded systems typically have only hundreds or tens of kilobytes of RAM



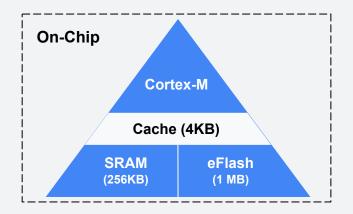
Why Care About **Memory**?

- Embedded systems typically have only hundreds or tens of kilobytes of RAM
- Easy to hit memory limits when building an end-to-end application



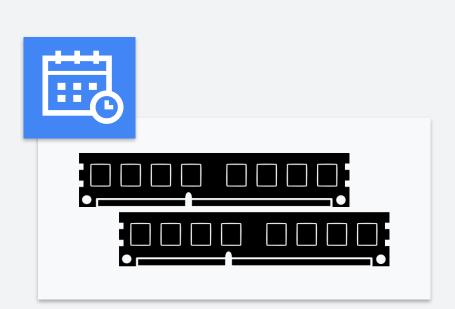
Why Care About **Memory**?

- Embedded systems typically have only hundreds or tens of kilobytes of RAM
- Easy to hit memory limits when building an end-to-end application
- So any framework that integrates with embedded products **must offer control over how memory usage**



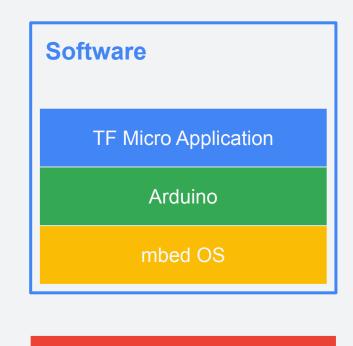
Long-Running Applications

- Products are expected to run for months or even years, which poses challenges for memory allocation
- Need to guarantee that memory allocation will not end up fragmented → contiguous memory cannot be allocated even if there's enough memory overall



Lack of OS Support

- In embedded systems, the standard C and C++ memory APIs (malloc and new) rely on operating system support
- Many devices have no OS, or have very limited functionality



Nano 33 BLE Sense Hardware

How TFL Micro solves these challenges

1. Ask developers to **supply a contiguous area of memory** to the interpreter, and in return the framework avoids any other memory allocations

```
constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];
```

```
static tflite::MicroInterpreter static_interpreter(model, resolver,
    tensor_arena, kTensorArenaSize, error_reporting);
```

How TFL Micro solves these challenges

- 1. Ask developers to **supply a contiguous area of memory** to the interpreter, and in return the framework avoids any other memory allocations
- 2. Framework guarantees that it won't allocate from this "arena" after initialization, so long-running applications won't fail due to fragmentation

How TFL Micro solves these challenges

- 1. Ask developers to **supply a contiguous area of memory** to the interpreter, and in return the framework avoids any other memory allocations
- 2. Framework guarantees that it won't allocate from this "arena" after initialization, so long-running applications won't fail due to fragmentation
- Ensures clear budget for the memory used by ML, and that the framework has no dependency on OS facilities needed by malloc or new

uint8_t tensor_arena[kTensorArenaSize]

Operator Variables	Interpreter State	Operator Inputs and Outputs
---------------------------	-------------------	--------------------------------

Arena **size**?

 Depends on what ops are in the model (and the parameters of those operations)

constexpr int kTensorArenaSize = 2000;

uint8_t tensor_arena[kTensorArenaSize];

Arena **size**?

- Depends on what ops are in the model (and the parameters of those operations)
- Size of operator inputs and outputs is platform independent, but different devices can have different operator implementations

constexpr int kTensorArenaSize = 2000;

uint8_t tensor_arena[kTensorArenaSize];

Arena **size**?

- Depends on what ops are in the model (and the parameters of those operations)
- Size of operator inputs and outputs is platform independent, but different devices can have different operator implementations
- → hard to forecast exact
 size of arena needed

constexpr int kTensorArenaSize = 2000;

uint8_t tensor_arena[kTensorArenaSize];

Solution

- Create as large an arena as you can and run your program on-device
- Use the arena_used_bytes() function to get the actual size used.
- Resize the arena to that length and rebuild
- Best to do this on your deployment platform, since different op implementations may need varying scratch buffer sizes

constexpr int kTensorArenaSize = 6000; uint8_t tensor_arena[kTensorArenaSize];

TFLite Micro: NN Operations

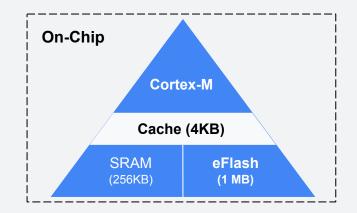
The OpsResolver

Why Care About **Binary Size**?

• Executable code used by a framework takes up space in Flash

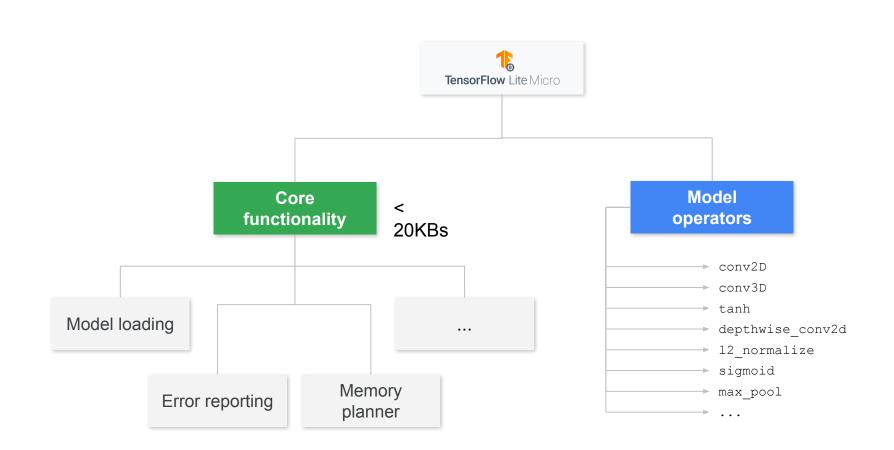
Why Care About **Binary Size**?

- **Executable code** used by a framework takes up space in Flash
- Flash is a limited resource on embedded devices and often just tens of kilobytes available



Why Care About **Binary Size**?

- **Executable code** used by a framework takes up space in Flash
- Flash is a limited resource on embedded devices and often just tens of kilobytes available
- If compiled code is too large, it won't be usable by applications.

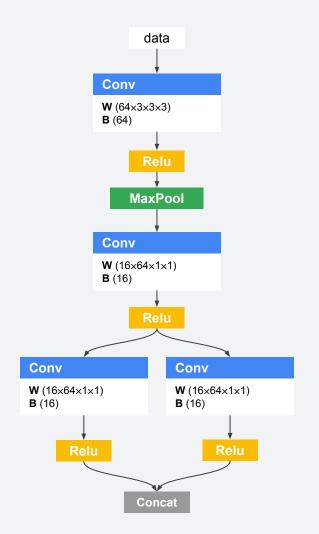


Optimizing Operator Usage in TFL Micro

 There are many operators in TensorFlow (~1400 and growing)

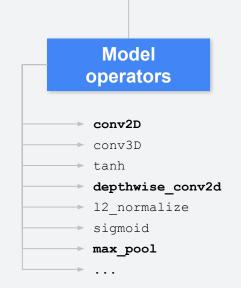
Optimizing Operator Usage in TFL Micro

- There are many operators in TensorFlow (~1400 and growing)
- Not all operators are used or even needed to perform inference



Optimizing Operator Usage in TFL Micro

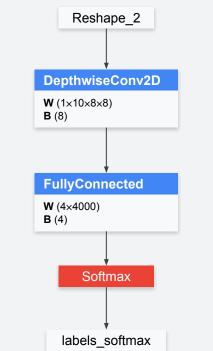
- There are many operators in TensorFlow (~1400 and growing)
- Not all operators are used or even needed to perform inference
- Bring in or load only those that are important to conserve memory usage

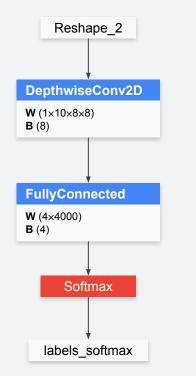


How to **Reduce the Size** Taken by Ops?

Allow developers to specify which ops they want to be included in the binary

```
tflite::MicroMutableOpResolver<4>
op_resolver(error_reporter);
if (op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
    return;
}
```





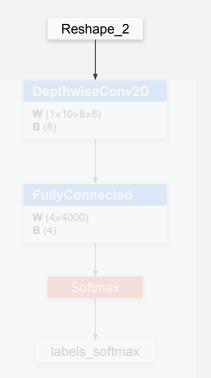
static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

```
if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
   return;
}
```

```
if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {
  return;
```

```
if (micro_op_resolver.AddSoftmax() != kTfLite0k) {
    return;
```

```
if (micro_op_resolver.AddReshape() != kTfLiteOk) {
  return;
```



static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

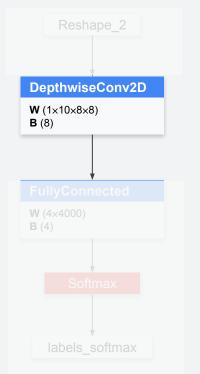
if (micro_op_resolver.AddDepthwiseConv2D() != kTfLite0k) { return;

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {
 return;

```
.
```

```
if (micro_op_resolver.AddSoftmax() != kTfLite0k) {
  return;
```

```
if (micro_op_resolver.AddReshape() != kTfLite0k) {
   return;
```



if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) { return; if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) { return; if (micro_op_resolver.AddSoftmax() != kTfLiteOk) { return; if (micro_op_resolver.AddReshape() != kTfLiteOk) { return;

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

FullyConnected W (4×4000) **B**(4)

```
if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddReshape() != kTfLiteOk) {
  return;
```

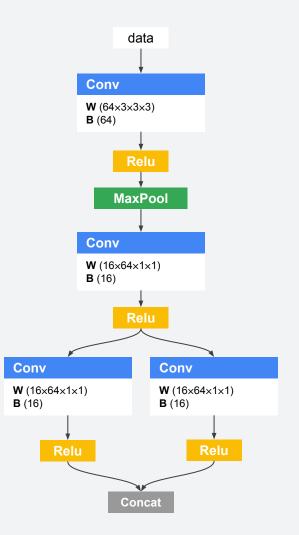
static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

Softmax

```
static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);
if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {
  return;
if (micro_op_resolver.AddReshape() != kTfLiteOk) {
  return;
```

Which Ops to Include?

https://netron.app

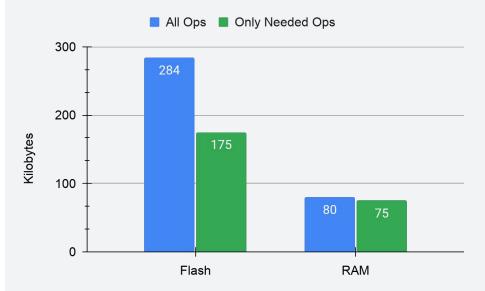


If memory is not an issue, you can choose to simply include all operators, both used and unused, at the expense of increased memory consumption

static tflite::AllOpsResolver resolver; // Build an interpreter to run the model with. static tflite::MicroInterpreter static_interpreter(model, resolver, tensor_arena, kTensorArenaSize, error_reporter); interpreter = &static_interpreter;

Memory Improvements

- Selective op registration reduces memory consumption by 30%
- Memory reduction varies by model, depending on the operators used by the model



In Summary, what is TensorFlow Lite Micro?

Compatible with the TensorFlow training environment. Built to fit on **embedded systems**:

- Very small binary footprint
- No dynamic memory allocation
- **No** dependencies on complex parts of the standard C/C++ libraries
- No operating system dependencies, can run on bare metal
- Designed to be **portable** across a wide variety of systems

Thank You!

Paper Discussions

Paper Discussion #1 - TFLite

Paper Discussion #2 - MCUNet

Guest Speaker

Tianqi Chen

Tiangi Chen is a distinguished researcher, primarily recognized as the creator of TVM, an open-source machine learning compiler stack, designed to enable efficient deployment of deep learning models on a variety of hardware platforms. Chen's contributions have been pivotal in progressing machine learning frameworks.

Personal Website

Google Scholar