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Frameworks
Sep. 25, 2023



1. Logistics
2. Lecture
3. Paper discussions
4. Guest speaker

Goals for today
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Course Logistics
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Start ~End

Lecture 12:45 PM 1:40 PM

Break 1:40 PM 1:45 PM

Paper Discussion (combined) 1:45 PM 2:25 PM

Break 2:25 PM 2:30 PM

Guest Lecture 2:30 PM 3:30 PM

Class Schedule



● Every Monday
○ After class @ 3:30pm
○ Meet in class / office
○ My focus

■ Technical material
■ Lecture content
■ Paper readings / discussions etc.

My Office Hours



Updated Office Hours
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Office Hours: 9-10 AM 
Wednesday (TBD)

Office Hours: 5-6 PM Thursday 
(SEC 1.412)

Office Hours: 11-12 PM Friday 
(TBD)

Office Hours: 1-2 PM Tuesday 
(SEC 5.403)



1. Please take a few minutes to sign up for next week’s paper discussion:
2. Submit to Canvas:

a. Paper Reading Group - 1 for your first time
b. Paper Reading Group - 2 for your second time 

3. Extra Credit for signing up for 3rd spot
a. 2.5% credit! 

Paper Discussion Sign-up Sheet
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https://docs.google.com/spreadsheets/d/1gKiOtzC2QqyVCHN_roXgvk2rlQm9zO1P45lzyrbfYUY/edit#gid=1665047769


● Any issues with the hardware?
○ To be expected when working with embedded systems ツ

● New Due Dates:
○ Part 1: Oct 2nd
○ Part 2: Oct 10th (due to Indigenous Peoples Day)

● Questions?

Assignment #1



● Updates
○ Week of topic

i. Meet with Matthew & VJ
ii. Create a google doc
iii. Share with staff
iv. Iterate on rough outline →
v. Start drafting collaboratively

vi. Push to GitHub
vii. Peer review

Book



● Join the #projects channel and post your interests 
● Once you find a group, sign up on this spreadsheet:

○ (same sheet used for scribing sign-up) 

Project Sign-Ups



Lecture





Training
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Conversion

Training
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Learning

Training



Framework Differences

Micro



HardwareModel Software

TF vs. TF Lite vs. TF Lite Micro Micro



Training Yes No No

Inference
Yes

(but inefficient
on edge)

Yes
(and efficient)

Yes
(and even 

more efficient)

How Many Ops ~1400 ~130 ~50

Native Quantization 
Tooling + Support No Yes Yes

Micro
Model



Needs an OS Yes Yes No

Memory Mapping 
of Models No Yes Yes

Delegation to 
accelerators Yes Yes No

Micro
Software



Base Binary Size 3MB+ 100KB ~10 KB

Base Memory 
Footprint ~5MB 300KB 20KB

Optimized 
Architectures X86, TPUs, GPUs Arm Cortex A, x86 Arm Cortex M, 

DSPs, MCUs

Micro
Hardware
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Keyword Spotting Example





Model

Keyword Spotting Components
INITIALIZATION

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes,  noMicro



Model

Device Microphone
INITIALIZATION

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes,  noMicro



Microphone



Model

Audio Provider

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes,  noMicro

INITIALIZATION



Model

Feature Extractor
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Audio provider
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yes,  noMicro

INITIALIZATION





Data Preprocessing: Spectrograms



TFLite Micro Interpreter

Model

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes,  noMicro

INITIALIZATION



Model

Model

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes,  no

INITIALIZATION

Micro



 https://netron.app

Model Operators
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DepthwiseConv2D
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B (8)

FullyConnected
W  (4⨉4000)
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Softmax

labels_softmax

https://netron.app/


Model

Command Recognizer

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes,  noMicro

INITIALIZATION



“Yes” “No” “Up” “Down”



Model

Command Responder

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes,  noMicro

INITIALIZATION



Model

Device Response

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes,  noMicro

INITIALIZATION



LEDs
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Model

Keyword Spotting Components
INITIALIZATION

MAIN LOOP

Audio provider

Feature extractor

Command recognizer

Command responder

yes,  noMicro



Embedded Machine Learning on TinyML Systems

TensorFlow Lite Micro



TF Micro
Micro



TF Micro

SoftwareHardware

Micro
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NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library 
Features

Limited Operating 
System Support
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TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power
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malloc ...
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STM32H747xI/G devices are based on the high-performance Arm® 
Cortex®-M7 and Cortex®-M4 32-bit RISC cores. The Cortex®-M7 core 
operates at up to 480 MHz and the Cortex®-M4 core at up to 240 MHz. Both 
cores feature a floating point unit (FPU) which supports Arm® single- and 
double-precision (Cortex®-M7 core) operations and conversions (IEEE 754 
compliant), including a full set of DSP instructions and a memory protection 
unit (MPU) to enhance application security.

STM32H747xI/G devices incorporate high-speed embedded memories with a 
dual-bank flash memory of up to 2 Mbytes, up to 1 Mbyte of RAM (including 
192 Kbytes of TCM RAM, up to 864 Kbytes of user SRAM and 4 Kbytes of 
backup SRAM), as well as an extensive range of enhanced I/Os and 
peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB bus 
matrix and a multi layer AXI interconnect supporting internal and external 
memory access.

All the devices offer three ADCs, two DACs, two ultra-low power 
comparators, a low-power RTC, a high-resolution timer, 12 general-purpose 
16-bit timers, two PWM timers for motor control, five low-power timers, a true 
random number generator (RNG). The devices support four digital filters for 
external sigma-delta modulators (DFSDM). They also feature standard and 
advanced communication interfaces.
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Micro

Himax
WE-I Plus EVB

SparkFun
Edge 2

Espressif
EYE

Arduino
BLE Sense 33

...

...



How do you use TFL Micro?

OpResolver Interpreter Input Data

Invoke() Output Data Action

specify ops you’re 
using with

load a model 
into an

into model inputs,
copy the

run the model via
from model 
outputs, read the



TFLite Micro: Interpreter



● TFLite Micro uses an 
interpreter design

● Store the model as 
data and loop through 
its ops at runtime

TFLite Micro Design



Interpreter
(generally slower than compiled code)

Compiler
(generally faster than interpreted code)



● Each layer like a Conv 
or softmax can take 
tens of thousands or 
even millions of cycles 
to complete execution

ML is Different

Conv
W (16⨉64⨉1⨉1)
B (16)

Many cycles



● Parsing overhead is 
relatively small for the 
TFMicro interpreter 
when we consider the 
overall network graph

ML is Different
data

Conv
W (64⨉3⨉3⨉3)
B (64)

Relu

MaxPool

Conv
W (16⨉64⨉1⨉1)
B (16)

Relu

Conv
W (16⨉64⨉1⨉1)
B (16)

Conv
W (16⨉64⨉1⨉1)
B (16)

Relu Relu

Concat



Model Total 
Cycles

Calculation 
Cycles

Interpreter 
Overhead

Visual Wake 
Words (Ref) 18,990.8K 18,987.1K < 0.1%

Google 
Hotword 

(Ref)
36.4K 34.9K 4.1%

Sparkfun Edge 2 
(Apollo 3 Cortex-M4)



- Change the model 
without recompiling 
the code

Interpreter 
Advantages



- Change the model 
without recompiling 
the code

- Same operator code 
can be used across 
multiple different 
models in the system

Interpreter 
Advantages



- Same portable model 
serialization format 
can be used across a 
lots of systems.

Interpreter 
Advantages

Himax
WE-I Plus EVB

SparkFun
Edge 2

Espressif
EYE

Arduino
BLE Sense 33



TFLite Micro 
Interpreter Execution

if (op_type == CONV2D) {
  Convolution2d(conv_size, input, output, weights);
} else if (op_type == FULLY_CONNECTED) {
  FullyConnected(input, output, weights)

}



The FlatBuffer File Format

TFLite Micro: 
Model Format



// Map the model into a usable data structure.  This doesn't involve any
// copying or parsing, it's a very lightweight operation.

    model = tflite::GetModel(g_model);
    if (model->version() != TFLIGHT_SCHEMA_VERSION) {
        TF_LITE_REPORT_ERROR(error_reporter,
                            "Model provided is schema version %d not equal "
                            "to supported version %d.",
                            model->versison(), TFLITE_SCHEMA_VERSION);

        return;
    }



// Map the model into a usable data structure.  This doesn't involve any
// copying or parsing, it's a very lightweight operation.

    model = tflite::GetModel(g_model);
    if (model->version() != TFLIGHT_SCHEMA_VERSION) {
        TF_LITE_REPORT_ERROR(error_reporter,
                            "Model provided is schema version %d not equal "
                            "to supported version %d.",
                            model->versison(), TFLITE_SCHEMA_VERSION);

        return;
    }



// Map the model into a usable data structure.  This doesn't involve 
any
// copying or parsing, it's a very lightweight operation.

model = tflite::GetModel(g_model);
if (model->version() != TFLIGHT_SCHEMA_VERSION) {
    TF_LITE_REPORT_ERROR(error_reporter,
                        "Model provided is schema version %d not equal 
"
                        "to supported version %d.",
                        model->versison(), TFLITE_SCHEMA_VERSION);

    return;
}



How is g_model stored? 



Serialization



● JSON
● ProtoBuf
● FlatBuffer

Serialization 
Libraries JSON

ProtoBufFlatBuffer
Better

Performance

Developer
Friendly

Flexible
Schemas



Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)  



• Limited OS support
• Limited compute
• Limited memory

Hardware & Software
Limitations

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)  



What is g_model?
● Array of bytes, and acts as 

the equivalent of a file on disk

● Holds all of the information 
about the model, its 
operators, their connections, 
and the trained weights



• Does not require copies to be made 
before using the data inside the model

FlatBuffers



• Does not require copies to be made 
before using the data inside the model

• The format is formally specified as a 
schema file 

FlatBuffers



• Does not require copies to be made 
before using the data inside the model

• The format is formally specified as a 
schema file 

• Schema file is used to automatically 
generate code to access the 
information in the model byte array

FlatBuffers



Name Args Input Output Weights

Conv2D 3x3 0 1 2

FC - 1 3 4

Softmax - 3 5 -

Index Type Values

2 Float 0.01, 7.45, 9.23, ...

4 Int8 34, 19, 243, ...

... ... ...

Metadata (version, quantization ranges, etc)

g_model FlatBuffer Format

Weight Buffers



The Tensor Arena

TFLite Micro: 
Memory Allocation



● Embedded systems typically have 
only hundreds or tens of kilobytes 
of RAM 

Why Care 
About Memory?

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)  



● Embedded systems typically have 
only hundreds or tens of kilobytes 
of RAM 

● Easy to hit memory limits when 
building an end-to-end application

Why Care 
About Memory?

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)  



● Embedded systems typically have 
only hundreds or tens of kilobytes 
of RAM 

● Easy to hit memory limits when 
building an end-to-end application

● So any framework that integrates 
with embedded products must offer 
control over how memory usage

Why Care 
About Memory?

Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)  



● Products are expected to run for 
months or even years, which poses 
challenges for memory allocation 

● Need to guarantee that memory 
allocation will not end up 
fragmented → contiguous memory 
cannot be allocated even if there’s 
enough memory overall

Long-Running 
Applications



● In embedded systems, the 
standard C and C++ memory APIs 
(malloc and new) rely on 
operating system support

● Many devices have no OS, 
or have very limited functionality

Lack of OS Support

Software
TF Micro Application

Arduino

mbed OS

Software

Nano 33 BLE Sense
Hardware



1. Ask developers to supply a contiguous area of memory to the interpreter, 
and in return the framework avoids any other memory allocations

How TFL Micro solves these challenges

constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model, resolver,
  tensor_arena, kTensorArenaSize, error_reporting);



1. Ask developers to supply a contiguous area of memory to the interpreter, 
and in return the framework avoids any other memory allocations

2. Framework guarantees that it won’t allocate from this “arena” after 
initialization, so long-running applications won’t fail due to fragmentation

How TFL Micro solves these challenges



1. Ask developers to supply a contiguous area of memory to the interpreter, 
and in return the framework avoids any other memory allocations

2. Framework guarantees that it won’t allocate from this “arena” after 
initialization, so long-running applications won’t fail due to fragmentation

3. Ensures clear budget for the memory used by ML, and that the framework 
has no dependency on OS facilities needed by malloc or new

How TFL Micro solves these challenges



Operator Variables Interpreter State Operator Inputs and 
Outputs

uint8_t tensor_arena[kTensorArenaSize]



constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
   resolver, tensor_arena, kTensorArenaSize, error_reporting);

Arena size?
● Depends on what ops 

are in the model (and the 
parameters of those 
operations)



constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
   resolver, tensor_arena, kTensorArenaSize, error_reporting);

Arena size?
● Depends on what ops 

are in the model (and the 
parameters of those 
operations)

● Size of operator inputs and 
outputs is platform 
independent, but different 
devices can have different 
operator implementations



constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
   resolver, tensor_arena, kTensorArenaSize, error_reporting);

Arena size?
● Depends on what ops

are in the model (and the 
parameters of those 
operations)

● Size of operator inputs and 
outputs is platform 
independent, but different 
devices can have different 
operator implementations

● → hard to forecast exact 
size of arena needed



constexpr int kTensorArenaSize = 6000;
uint8_t tensor_arena[kTensorArenaSize];

...

static tflite::MicroInterpreter static_interpreter(model,
   resolver, tensor_arena, kTensorArenaSize, error_reporting);

Solution
● Create as large an arena as 

you can and run your 
program on-device

● Use the arena_used_bytes() 
function to get the actual size 
used.

● Resize the arena to that 
length and rebuild

● Best to do this on your 
deployment platform, since 
different op implementations 
may need varying scratch 
buffer sizes

* Call MicroInterpreter::arena_used_bytes() to get the actual memory size used.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/micro_interpreter.h#L173


The OpsResolver

TFLite Micro: 
NN Operations



Why Care About 
Binary Size?

01101010
10010101
11010101
01101010
10110110
011

● Executable code used by a 
framework takes up space in Flash



Cortex-M

SRAM
(256KB)

On-Chip

eFlash
(1 MB)

Cache (4KB)  

Why Care About 
Binary Size?
● Executable code used by a 

framework takes up space in Flash

● Flash is a limited resource on 
embedded devices and often just 
tens of kilobytes available



01101010
10010101
11010101
01101010
10110110
011

Why Care About 
Binary Size?
● Executable code used by a 

framework takes up space in Flash

● Flash is a limited resource on 
embedded devices and often just 
tens of kilobytes available

● If compiled code is too large, it 
won’t be usable by applications.



Micro

Core 
functionality

Model 
operators

Model loading

Memory 
plannerError reporting

...

conv2D

conv3D

tanh

depthwise_conv2d

l2_normalize

sigmoid

max_pool

...

< 
20KBs



Optimizing Operator 
Usage in TFL Micro
● There are many operators in 

TensorFlow (~1400 and growing)



● There are many operators in 
TensorFlow (~1400 and growing)

● Not all operators are used or 
even needed to perform inference

Optimizing Operator 
Usage in TFL Micro

data
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● There are many operators in 
TensorFlow (~1400 and growing)

● Not all operators are used or 
even needed to perform inference

● Bring in or load only those that 
are important to conserve 
memory usage

Optimizing Operator 
Usage in TFL Micro

Model 
operators

conv2D

conv3D

tanh

depthwise_conv2d

l2_normalize

sigmoid

max_pool

...



Allow developers to specify which ops they want to be included in the binary

How to Reduce the Size Taken by Ops?

tflite::MicroMutableOpResolver<4> 
op_resolver(error_reporter);
if (op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
    return;
}
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static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

  return;

}
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static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

  return;

}

Reshape_2

DepthwiseConv2D
W (1⨉10⨉8⨉8)
B (8)

FullyConnected
W (4⨉4000)
B (4)

Softmax

labels_softmax



Ti
ny

C
on

v 
K

ey
w

or
d 

S
po

tti
ng

 M
od

el

static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

  return;

}

Reshape_2

DepthwiseConv2D
W (1⨉10⨉8⨉8)
B (8)

FullyConnected
W (4⨉4000)
B (4)

Softmax

labels_softmax
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static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

  return;

}

Reshape_2

DepthwiseConv2D
W (1⨉10⨉8⨉8)
B (8)

FullyConnected
W (4⨉4000)
B (4)

Softmax

labels_softmax
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static tflite::MicroMutableOpResolver<4> micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {

  return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {

  return;

}

Reshape_2

DepthwiseConv2D
W (1⨉10⨉8⨉8)
B (8)

FullyConnected
W (4⨉4000)
B (4)

Softmax

labels_softmax



 https://netron.app

Which Ops
to Include?

data

Conv
W (64⨉3⨉3⨉3)
B (64)

Relu

MaxPool

Conv
W (16⨉64⨉1⨉1)
B (16)

Relu

Conv
W (16⨉64⨉1⨉1)
B (16)

Conv
W (16⨉64⨉1⨉1)
B (16)

Relu Relu

Concat

https://netron.app/


If memory is not an issue, you can choose to simply include all operators, 
both used and unused, at the expense of increased memory consumption

static tflite::AllOpsResolver resolver;

// Build an interpreter to run the model with.
static tflite::MicroInterpreter static_interpreter(
    model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;



● Selective op registration 
reduces memory 
consumption by 30%

● Memory reduction varies by 
model, depending on the 
operators used by the model

Memory 
Improvements



Compatible with the TensorFlow training environment.
Built to fit on embedded systems:

- Very small binary footprint
- No dynamic memory allocation
- No dependencies on complex parts of the standard C/C++ libraries
- No operating system dependencies, can run on bare metal
- Designed to be portable across a wide variety of systems

In Summary, what is TensorFlow Lite Micro?

Micro



Thank You!



Paper Discussions



Link

Paper Discussion #1 - TFLite

https://arxiv.org/abs/2010.08678


Link

Paper Discussion #2 - MCUNet

https://arxiv.org/abs/2007.10319


Guest Speaker



Tianqi Chen is a distinguished 
researcher, primarily recognized as 
the creator of TVM, an open-source 
machine learning compiler stack, 
designed to enable efficient 
deployment of deep learning models 
on a variety of hardware platforms. 
Chen’s contributions have been 
pivotal in progressing machine 
learning frameworks.

Tianqi Chen

Personal Website

Google Scholar

https://tqchen.com/
https://scholar.google.com/citations?user=7nlvOMQAAAAJ

