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Assignment #1

e Due Dates:
o Part 1: Oct 2nd (TODAY)
o Part 2: Oct 10th

e Questions/Concerns?



Scribing

Week of topic

O

Meet with Matthew & VJ (schedule
via Slack)

Create a google doc

Share with staff

Iterate on rough outline with VJ/Matt
After ¢k from staff, put changes in a
single forked repo

Create one PR with the entire chapter

Classmates will peer review using the
PR
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the i course, tinyML from CS249r.

The goal of this book is to bring about a

collaborative endeavor with insights and contributions from students,
practitioners and the wider c i ing into a c¢ i
guide that delves into the principles governing embedded Al and its myriad
applications.

“If you want to go fast, go alone, if you want to go far, go together.”-
African Proverb

As a living document, this open-source textbook aims to bridge gaps and
foster innovation by being globally accessible and continually updated,
addressing the pressing need for a centralized resource in this dynamic field.
With a rich tapestry of knowledge woven from various expert perspectives,
readers can anticipate a guided journey that unveils the intricate dance
between cutting-edge algorithms and the principles that ground them,
paving the way for the next wave of technological transformation.

The Philosophy Behind the Book

We live in a world where technology perpetually reshapes itself, fostering an
ecosystem of open ct ion and sharing stands as the
cornerstone of innovation. This philosophy fuels the creation of “Embedded
Al: Principles, Algorithms, and Applications.” This is a venture that transcends
conventional textbook paradigms to foster a living repository of knowledge.
Anchoring its content on principles, algorithms, and applications, the book
aims to cultivate a deep-rooted ing that empowers i id
navigate the fluid landscape of embedded Al with agility and foresight. By
embracing an open approach, we not only democratize learning but also
pave avenues for fresh perspectives and iterative enhancements, thus
fostering a community where knowledge is not confined but is nurtured to
grow, adapt, and illuminate the path of progress in embedded Al
technologies globally.
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Peer Reviewing

e This week (10/2 - 10/8)
o Navigate to the PR for Data
Engineering: [Will Update Link to
PR]
o Render the chapter using Quarto

o Read over the chapter and make
comments directly on the GitHub
PR

o See scribing instructions
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https://docs.google.com/document/d/1izDoWwFLnV8XK2FYCl23_9KYL_7EQ5OWLo-PCNUGle0/edit#heading=h.zcy4zbwrbk3r

Peer Reviewing - Quick Demo

Scribe: Jessica

Peer Reviewer: lke

Scribe makes PR from their group’s forked repo

Staff will provide classmates with link to the group’s repo, and a link to
the PR

5. Use the GitHub interface to comment directly on the PR

N =

a. Torender the book locally, pull the group’s forked repo and run
“quarto publish”


https://github.com/harvard-edge/cs249r_book/pulls
https://github.com/jessicaquaye/cs249r-demo/tree/main

Project Sign-Ups due by 11:59pm today!

e Join the #projects channel and post your interests
e Once you find a group, sign up on the spreadsheet
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Model Optimization Use Cases

e Reducing latency and cost for inference for both cloud and edge devices
(e.g. mobile, loT)



Model Optimization Use Cases

e Deploying models on edge devices with restrictions on processing,
memory and/or power-consumption



Model Optimization Use Cases

e Reducing payload size for over-the-air model updates



Model Optimization Use Cases

e Reducing latency and cost for inference for both cloud and edge devices
(e.g. mobile, loT)

e Deploying models on edge devices with restrictions on processing,
memory and/or power-consumption

e Reducing payload size for over-the-air model updates

e Enabling execution on hardware restricted-to or optimized-for fixed-point
operations

e Optimizing models for special purpose hardware accelerators.
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2X Faster Execution
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Automated Level Hybrid
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Magnitude Pruning

e Sparse models are easier to
compress

thresh(w;) = {w,- - lwil > A}

0: i [wi] <4



Magnitude Pruning

S A >4
thresh(w;) = { Wit i wil }

0: if lwi| <4
e We can skip the zeroes

during inference for latency
improvements



Magnitude Pruning

i - ] i A
thresh(wi)={w i lwil > }

0: i [wi] <4

e Up to 6ximprovement



Weights Pruning

Sensitivity Magnitude Structured
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w; o if lwi| >4

" thresh(w;) =
Sensitivity ! « 4 _
Pruning 0: lf |W,| <4

A =sx0; where o) is the std of layer | as measured on the dense model
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Unstructured Pruning
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Image Classification

Model Non-sparse Top-1 Accuracy
InceptionV3 78.1%
MobilenetV1 224 71.04%

The models were tested on Imagenet.

Sparse Accuracy

78.0%
76.1%
74.6%

70.84%

Sparsity
50%
75%
87.5%

50%



Language Translation

Model Non-sparse BLEU Sparse BLEU Sparsity

GNMT EN-DE 26.77 26.86 80%
26.52 85%
26.19 90%

GNMT DE-EN 29.47 29.50 80%
29.24 85%

28.81 90%



Keyword Spotting

Model Non-sparse Accuracy  Structured Sparse Accuracy (2 by 4 pattern) Random Sparse Accuracy (target sparsity 50%)

DS-CNN-L  95.23 94.33 94.84
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Model Quantization




Quantization

Quantization is the process of transforming an ML program
into an approximated representation with available lower
precision operations.



Quantization

float32

max(|x)

min(lx)

int8

127

-128 -



-5.31345

3.8958



-5.31345

3.8958



Why do we Quantize?




Lower Precision Efficiencies

Reduce
Memory

8-bit integer
parameters means
4x smaller model



Storage & RAM Size

Storage size:

and in
moving from 32-bits to
8-bits we readily get 4x
reduction in memory.

The Arduino Nano 33 BLE only has
256KB of RAM (memory) and 1MB
of Flash (storage)




Storage & RAM Size

Less memory usage: Smaller

models use less RAM when they are i S i = Dynamic Variables
run, which frees up memory for _1_1'__
other parts of your application to o »s s 7 w00 w5 w0 s

RAM Size [kB]
use, and can translate to better

performance and stability.



Weight Ranges

Weight distribution for
AlexNet shows how most
weight values are
concentrated in a small
range.

Count

5 le3

-0.10 -0.05 0.00 0.05 0.10
Weight Value



Model Size

17mb
4mb

MobileNet_v1
3.9x smaller

180mb . .
. original
. optimized

95mb

ResNet_v2 Inception_v3
4x smaller 4x smaller



Lower Precision Efficiencies

Reduce Faster
Memory Compute

8-bit integer Integer operations
parameters means are faster
4x smaller model



Latency

Int8 (v. fp32) format severely
reduces the computation to
run inference using a model,
resulting in lower latency

Latency optimizations can also
have a notable impact on




Int8 v. Float (CPU time per inference)

MobileNet v1 h
reshiet 2 —
Inception v3 _
0 500 1000 1500

Quantized models are up to 2—4x faster on CPU and 4x smaller.




Lower Precision Efficiencies

Reduce Faster Reduce
Memory Compute Power

8-bit integer Integer operations  Integer operations
parameters means are faster consume less
4x smaller model power




Lower Precision Efficiencies

Reduce Faster Reduce Reduce
Memory Compute Power Bandwidth

8-bit integer Integer operations  Integer operations  Smaller models and
parameters means are faster consume less dynamic values
4x smaller model power reduce bandwidth

pressure



Lower Precision Efficiencies

Reduce Faster Reduce Reduce Hardware
Memory Compute Power Bandwidth Compatibility
8-bit integer Integer operations  Integer operations  Smaller models and  Integer operations
parameters means are faster consume less dynamic values supported across
4x smaller model power reduce bandwidth CPU/DSP/NPUs

pressure



Single Precision

POrta bi“ty Trade_offs IEEE 754 Floating-Point Standard

[elemmm]  mom ] [o]emm]
— [

Not all embedded systems are
created equal. Sacrifice portability
across systems for efficiency.

Specific HW Implementation of a Library
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How do we Quantize?




5.4 Original 32-bit float values 0.0 +4.5
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5.4 Original 32-bit float values 0.0 +4.5

o1 ]|2|3]a4 8-bit encoding 251 | 252 | 253 | 254 | 255
-5.4 0.0 | | +4.5

Reconstructed 32-bit float values



Reduced Float

Qua ntization TypeS Hybrid Quantization

Integer Quantization



Reduced floa
e float1é parameters

e float16 computations



Reduced float

e float1é parameters
e float16 computations

sign
FP32 exponent (8 bits)

sign

Reduced Float



Reduced float

e float1é6 parameters
e float16 computations

sign
FP32 exponent (8 bits)

sign

Benefits

2x reduction in model parameters
(32 bit — 16 bit)



Reduced float

e float1é parameters
e float1é6 computations

sign
FP32 exponent (8 bits)

sign

Benefits

Potential future speed-ups faster
as hardware enables optimized
operations

Negligible accuracy loss



Quantization Types




Hybrid quantization

e 8-bit integer weights

e 32-bit float biases &
activations

e Integer and floating point
computations

Benefits

4x reduction in model parameters
(32 bit — 8 bit)



Hybrid quantization

e 8-bitinteger weights

e 32-bit float biases &
activations

e Integer and floating point
computations

Benefits

10-50% faster execution for
Convolution Models (CPU hybrid v.
CPU float)

2-3x faster on fully-connected &
RNN-based models (CPU quant v.
CPU float)



Float Input



Float Input Quantization



Float Input Quantization

Matrix
Multiplication



Float Input Quantization

Int32
. Output
V.
s
‘ . ‘\0\‘%

Matrix
Multiplication



Float Input Quantization

Int32

Output Quantization

y
%

‘ . .\O\'%
Matrix
Multiplication



Float Input Quantization

Int32
. Output
.
’)(0
‘ . ‘\<\®

Matrix
Multiplication

Quantization

Float 16

Activation




Float Input Quantization

Int32 Quantization Flogt 16
Output Output

N Float 16

Activation

Matrix
Multiplication




Hybrid quantization

e 8-bit integer weights

e 32-bit float biases &
activations

e |Integer and floating point
computations

Benefits

4x reduction in model parameters
(32 bit — 8 bit)

10-50% faster execution for
Convolution Models (CPU hybrid v.
CPU float)

2-3x faster on fully-connected &
RNN-based models (CPU quant v.
CPU float)



Quantization Types

Integer Quantization



Integer quantization

e 8-bit integer weights

e 8 and 16-bit biases &
activations

e Onlyinteger
computations

Benefits

4x reduction in model parameters
(32 bit — 8 bit)

1.5x faster execution for Convolution
Models (CPU integer v. CPU float)

2-4x faster on fully-connected &
RNN-based models (CPU quant v.
CPU float)

Enables execution on ML
accelerators (e.g., Edge-TPU)



Technique

Reduced float
(post-training)

“Hybrid” quantization
(post-training)

Integer quantization
(post-trainingO

Integer quantization
(during training)

Ease of
use

No data
required

No data
required

Unlabeled
data

Labeled
training
data

Accuracy

Negligible
loss

Small loss
(< float16)

Accuracy
< hybrid

Accuracy
2 integer

Latency Compatibility
Same or faster Al 2U)s sl
than floataz or fallback to

float32
Faster than Needs float and
float integer support
Fastest Integer only
Fastest Integer only



Technique

Reduced float
(post-training)

“Hybrid” quantization
(post-training)

Ease of
use

No data
required

No data
required



Ease of

Technique Ute

Integer quantization Unlabeled
(post-trainingO data



Technique

Integer quantization
(during training)

Ease of
use

Labeled
training
data



Quantization in Deep Learning

How much to quantize

16bit 8bit 4bit 2bit



Quantization in Deep Learning

Post-training How much to quantize

Quantization-aware 16bit 8bit 4bit 2bit
training



Weight Activation

What to Quantize

Quantization in Deep Learning

Post-training 1 ’ How much to quantize

Quantization-aware 16bit 8bit 4bit 2bit
training



Dynamic Static

Weight Activation

What to Quantize How to Quantize Hardware-aware

Quantization in Deep Learning

Post-training 1 ‘ How much to quantize Mixed-precision

Quantization-aware 16bit 8bit 4bit 2bit
training



Dynamic Static

Weight Activation

What to Quantize How to Quantize Hardware-aware

Quantization in Deep Learning

Post-training Whe ant How much to quantize Mixed-precision

Quantization-aware 16bit 8bit 4bit 2bit
training



Trained Model

Pruned Model Clustered
(fp32) Model (fp32)

Quantized,
Clustered Model
(int8)

Quantized, Pruned QAT, Pruned Pruned, Clustered
Model (int8) Model (int8) Model (fp32)

QAT, Clustered
Model (int8)

Quantized, QAT, Pruned,
Pruned, Clustered Clustered Model
Model (int8) (int8)
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Paper Discussion #1 - A Survey of Quantization
Methods for Efficient Neural Network Inference

arXiv:2103.13630v3 [cs.CV] 21 Jun 2021

Amir Gholami*, Sehoon Kim*, Zhen Dong*, Zhewei Yao*, Michael W. Mahoney, Kurt Keutzer
University of California, Berkeley

{amirgh, sehoonkim, zhendong,

Abstract—As soon as abstract mathematical computa-
tions were pted to p on digital p S,
the problem of efficient repr i ipulation, and
communication of the numerical values in those computa-
tions arose. Strongly related to the problem of numerical
representation is the problem of quantization: in what
manner should a set of real-valued bers be
distributed over a fixed di: set of bers to
the number of bits required and also to maximize the
accuracy of the attendant computations? This perennial
problem of quantization is particularly relevant whenever
memory and/or computational resources are severely re-
stricted, and it has come to the forefront in recent years due
to the remarkable performance of Neural Network models
in computer vision, natural language processing, and re-
lated areas. Moving from floating-point representations to
low-precision fixed integer values represented in four bits
or less holds the potential to reduce the memory footprint
and latency by a factor of 16x; and, in fact, reductions of
4x to 8x are often realized in practice in these applications.
Thus, it is not surprising that quantization has emerged
recently as an important and very active sub-area of
research in the efficient impl ion of p i
associated with Neural Networks. In this article, we survey
approaches to the problem of quantizing the numerical
values in deep Neural Network computations, covering the
ad /disad of current methods. With this
survey and its organization, we hope to have presented a
useful snapshot of the current research in quantization
for Neural Networks and to have given an intelligent
organization to ease the evaluation of future research in
this area.

zhewely, mahoneymw,

keutzer}@berkeley.edu

means that it is not possible to deploy them for many
resource-constrained applications. This creates a problem
for realizing pervasive deep learning, which requires
real-time inference, with low energy consumption and
high accuracy, in resource-constrained environments. This
pervasive deep learning is expected to have a significant
impact on a wide range of applications such as real-time
intelligent healthcare monitoring, autonomous driving,
audio analytics, and speech recognition.

Achieving efficient, real-time NNs with optimal ac-
curacy requires rethinking the design, training, and
deployment of NN models [71]. There is a large body of
literature that has focused on addressing these issues by
making NN models more efficient (in terms of latency,
memory footprint, and energy consumption, etc.), while
still providing optimal accuracy/generalization trade-offs.
These efforts can be broadly categorized as follows.

a) Designing efficient NN model architectures:
One line of work has focused on optimizing the NN model
architecture in terms of its micro-architecture [101, 111,
127, 167, 168, 212, 253, 280] (e.g., kernel types such as
depth-wise convolution or low-rank factorization) as well
as its macro-architecture [100, 101, 104, 110, 214, 233]
(e.g., module types such as residual, or inception). The
classical techniques here mostly found new architecture
modules using manual search, which is not scalable. As
such, a new line of work is to design Automated machine
learning (AutoML) and Neural Architecture Search (NAS)
methods. These aim to find in an automated way the right

NN architecture under given canctrainte af madel cize



Paper Discussion #2 - The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks

THE LOTTERY TICKET HYPOTHESIS:
FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle Michael Carbin

MIT CSAIL MIT CSAIL

jfrankle@csail.mit.edu mcarbin@csail.mit.edu
ABSTRACT

Neural network pruning techniques can reduce the parameter counts of trained net-
works by over 90%, decreasing storage requirements and improving computational
performance of inference without compromising accuracy. However, contemporary
experience is that the sparse architectures produced by pruning are difficult to train
from the start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose
initializations made them capable of training effectively. Based on these results, we
articulate the lottery ticket hypothesis: dense, randomly-initialized, feed-forward
networks contain subnetworks (winning tickets) that—when trained in isolation—
reach test accuracy comparable to the original network in a similar number of
iterations. The winning tickets we find have won the initialization lottery: their
connections have initial weights that make training particularly effective.

‘We present an algorithm to identify winning tickets and a series of experiments
that support the lottery ticket hypothesis and the importance of these fortuitous
initializations. We consistently find winning tickets that are less than 10-20% of
the size of several fully-connected and convolutional feed-forward architectures
for MNIST and CIFAR10. Above this size, the winning tickets that we find learn
faster than the original network and reach higher test accuracy.



Guest Speaker




Song Han

Song Han is an associate professor at MIT
EECS. He is one of the pioneers of TinyML
research that brings deep learning to loT
devices, enabling “learning on the edge”.
Song’s cutting-edge research in efficient Al
computing has profoundly influenced the
industry. He was the cofounder of DeePhi
(now part of AMD), and cofounder of
OmniML (now part of NVIDIA).

Personal Website

Google Scholar



https://songhan.mit.edu/
https://scholar.google.com/citations?user=E0iCaa4AAAAJ&hl=en
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MobileNet v11.0 224

MobileNet v2 1.0 224

Resnet v1 50

Floating-point
Baseline

70.77%

Post-training Quantization-Aware
Quantization Training
(PTQ) ((e2:\p)

69.57% 71.06%

70.20% 70.01%
75.95% 76.10%




Data Model Design

Tf.data Keras
Datasets Estimators

Training

Distribution Strategy
CPU GPU

Analysis

Tensorboard

Serialization

SavedModel

Model Repository

TensorFlow Hub
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TensorFlow Serving

Android, iOS, Raspberry Pi

TensorFlow Lite

Microcontrollers

TensorFlow Lite Micro

Browser and Node

TensorFlow.JS




Data Model Design

Tf.data Keras
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Training

Distribution Strategy
CPU GPU
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Android, iOS, Raspberry Pi

TensorFlow Lite

Microcontrollers

TensorFlow Lite Micro




Framework Differences

T B &

TensorFlow TensorFlow Lite TensorFlow Lite Micro




Training

Inference

How Many Ops

Native Quantization
Tooling + Support

T

TensorFlow

Yes

Yes
(but inefficient
on edge)

~1400

No

&

TensorFlow Lite

No

Yes
(and efficient)

~130

Yes

T

TensorFlow Lite Micro

No

Yes
(and even
more efficient)

~50

Yes



