CS249r: Model Optimizations

Oct. 2, 2023

Course Logistics

Assignment #1

- Due Dates:
 - Part 1: Oct 2nd (TODAY)
 - Part 2: Oct 10th

• Questions/Concerns?

Scribing

- Week of topic
 - Meet with Matthew & VJ (schedule 0 via Slack)
 - Create a google doc \bigcirc
 - Share with staff \bigcirc
 - Iterate on rough outline with VJ/Matt \bigcirc
 - After 👍 from staff, put changes in a \bigcirc single forked repo
 - Create **one PR** with the entire chapter 0
 - Classmates will peer review using the 0 PR

Embedded Al: Principles, Algor × + (localhost:3902 $\leftarrow \rightarrow C$ Q (1) (1) M 10 🖈 🖬 💁 E 🖹 TinyML 🗎 Harvard 🗎 Funding 🗎 MLC 🗎 Meta 📄 Nora 📄 LLMs 🔅 🔯 🗛 🔩 🛆 LLMx 🔥 CS249r Other Bookmarks Table of contents **Embedded AI: Principles, Algorithms,** Embedded AI: Preface

Principles. Algorithms, and Applications 00.1.2 1

FRONT MATTER

Acknowledgements

About This Book

1 Introduction

2 Embedded Systems

3 Deep Learning Primer 4 Embedded ML

Preface

Dedication

Copyright

WELCOME

DEEP DIVE

5 ML Workflow

6 Data Engineering

7 Pre-processing

8 ML Frameworks

9 Model Training

11 Optimizations

12 Deployment

15 MLOps

13 On-Device Learning 14 Hardware Acceleration

16 Privacy and Security

17 AI Sustainability

18 Responsible AI

19 Generative Al

References

Appendices

B Resources

C Communities

D Case Studies

A Tools

10 Efficient Al

and Applications

Preface

In "Embedded AI: Principles, Algorithms, and Applications", we will embark on a critical exploration of the rapidly evolving field of artificial intelligence in the context of embedded systems, originally nurtured from the foundational course, tinvML from CS249r.

The goal of this book is to bring about a collaborative endeavor with insights and contributions from students. practitioners and the wider community, blossoming into a comprehensive guide that delves into the principles governing embedded AI and its myriad applications.

"If you want to go fast, go alone, if you want to go far, go together."-African Proverb

As a living document, this open-source textbook aims to bridge gaps and foster innovation by being globally accessible and continually updated, addressing the pressing need for a centralized resource in this dynamic field. With a rich tapestry of knowledge woven from various expert perspectives, readers can anticipate a guided journey that unveils the intricate dance between cutting-edge algorithms and the principles that ground them, paving the way for the next wave of technological transformation.

The Philosophy Behind the Book

We live in a world where technology perpetually reshapes itself, fostering an ecosystem of open collaboration and knowledge sharing stands as the cornerstone of innovation. This philosophy fuels the creation of "Embedded Al: Principles, Algorithms, and Applications." This is a venture that transcends conventional textbook paradigms to foster a living repository of knowledge. Anchoring its content on principles, algorithms, and applications, the book aims to cultivate a deep-rooted understanding that empowers individuals to navigate the fluid landscape of embedded AI with agility and foresight. By embracing an open approach, we not only democratize learning but also pave avenues for fresh perspectives and iterative enhancements, thus fostering a community where knowledge is not confined but is nurtured to grow, adapt, and illuminate the path of progress in embedded AI technologies globally.

How to Contact Us How to Contribute Contributors O Edit this page Report an issue

Book

The Philosophy Behind the

Conventions Used in This

View source

Peer Reviewing

- This week (10/2 10/8)
 - Navigate to the PR for <u>Data</u>
 <u>Engineering</u>: [Will Update Link to PR]
 - Render the chapter using Quarto
 - Read over the chapter and make comments directly on the GitHub PR
 - See <u>scribing instructions</u>

FRONT MATTER

Acknowledgements

About This Book

1 Introduction

2 Embedded Systems

3 Deep Learning Primer 4 Embedded ML

Preface

Dedication

Copyright

WELCOME

DEEP DIVE

5 ML Workflow

6 Data Engineering

7 Pre-processing

8 ML Frameworks

9 Model Training

11 Optimizations

13 On-Device Learning

17 AI Sustainability

18 Responsible AI

19 Generative Al

References

Appendices

B Resources

C Communities

D Case Studies

A Tools

14 Hardware Acceleration

12 Deployment

15 MLOps 16 Privacy and Security

10 Efficient Al

Embedded AI: Principles, Algorithms, and Applications

Preface

In "Embedded AI: Principles, Algorithms, and Applications", we will embark on a critical exploration of the rapidly evolving field of artificial intelligence in the context of embedded systems, originally nurtured from the foundational course, timyML from C5249r.

The goal of this book is to bring about a collaborative endeavor with insights and contributions from students, practitioners and the wider community, blossoming into a comprehensive guide that delves into the principles governing embedded AI and its myriad applications.

"If you want to go fast, go alone, if you want to go far, go together." – African Proverb

As a living document, this open-source textbook aims to bridge gaps and foster innovation by being globally accessible and continually updated, addressing the pressing need for a centralized resource in this dynanic field. With a rich tapestry of knowledge woven from various expert perspectives, readers can anticipate a guided journey that unveils the intricate dance between cutting-edge algorithms and the principles that ground them, paying the way for the next wave of technological transformation.

The Philosophy Behind the Book

We live in a world where technology perpetually reshapes itself, fostering an ecosystem of open collaboration and knowledge sharing stands as the cornerstone of innovation. This philosophy fuels the creation of "Embedded AI: Principles, Algorithms, and Applications." This is a venture that transcends conventional textbook paradigms to foster a living repository of knowledge. Anchoring its content on principles, algorithms, and applications, the book aims to cultivate a deep-rooted understanding that empowers individuals to navigate the fluid landscape of embedded AI with agility and foresight. By embracing an open approach, we not only democratize learning but also pave avenues for fresh perspectives and iterative enhancements, thus fostering a community where knowledge is not confined but is nurtured to grow, adapt, and illuminate the path of progress in embedded AI technologies globally. How to Contact Us How to Contribute Contributors O Edit this page Report an issue

Table of contents

The Philosophy Behind the

Conventions Used in This

Preface

Book

C Edit this page Report an issu-View source

Peer Reviewing - Quick Demo

- 1. Scribe: Jessica
- 2. Peer Reviewer: Ike
- 3. Scribe makes <u>PR</u> from their <u>group's forked repo</u>
- 4. Staff will provide classmates with link to the group's repo, and a link to the PR
- 5. Use the GitHub interface to comment directly on the PR
 - To render the book locally, pull the group's forked repo and run "quarto publish"

Project Sign-Ups due by 11:59pm today!

- Join the #projects channel and post your interests
- Once you find a group, sign up on the spreadsheet

• Reducing latency and cost for inference for both cloud and edge devices (e.g. mobile, IoT)

- Reducing latency and cost for inference for both cloud and edge devices (e.g. mobile, IoT)
- **Deploying models on edge devices** with restrictions on processing, memory and/or power-consumption

- Reducing latency and cost for inference for both cloud and edge devices (e.g. mobile, IoT)
- **Deploying models on edge devices** with restrictions on processing, memory and/or power-consumption
- **Reducing payload size** for over-the-air model updates

- Reducing latency and cost for inference for both cloud and edge devices (e.g. mobile, IoT)
- **Deploying models on edge devices** with restrictions on processing, memory and/or power-consumption
- **Reducing payload size** for over-the-air model updates
- Enabling execution on hardware restricted-to or optimized-for fixed-point operations
- Optimizing models for special purpose hardware accelerators.

Model Pruning

The MLOps Personas

.

Pruning

PRUNING SYNAPSES

Magnitude Pruning

• Sparse models are **easier to compress**

 $thresh(w_i) = \left\{ \begin{array}{ll} w_i : \ if \ |w_i| > \lambda \\ 0 : \ if \ |w_i| \le \lambda \end{array} \right\}$

Magnitude Pruning

- Sparse models are **easier to compress**
- We can skip the zeroes during inference for latency improvements

$$thresh(w_i) = \left\{ \begin{array}{ll} w_i : \ if \ |w_i| > \lambda \\ 0 : \ if \ |w_i| \le \lambda \end{array} \right\}$$

Magnitude Pruning

- Sparse models are **easier to compress**
- We can skip the zeroes during inference for latency improvements
- Up to 6x improvement

$$thresh(w_i) = \left\{ \begin{array}{ll} w_i : \ if \ |w_i| > \lambda \\ 0 : \ if \ |w_i| \le \lambda \end{array} \right\}$$

$$thresh(w_i) = \left\{ \begin{array}{ll} w_i : \ if \ |w_i| > \lambda \\ 0 : \ if \ |w_i| \le \lambda \end{array} \right\}$$

 $\lambda = s * \sigma_l$ where σ_l is the std of layer l as measured on the dense model

Unstructured Pruning

PRUNING SYNAPSES

PRUNING

NEURONS

Structured Pruning

Image Classification

Model	Non-sparse Top-1 Accuracy	Sparse Accuracy	Sparsity	
InceptionV3	78.1%	78.0%	50%	
		76.1%	75%	
		74.6%	87.5%	
MobilenetV1 224	71.04%	70.84%	50%	
The models were tested on Imagenet.				

Language Translation

Model	Non-sparse BLEU	Sparse BLEU	Sparsity
GNMT EN-DE	26.77	26.86	80%
		26.52	85%
		26.19	90%
GNMT DE-EN	29.47	29.50	80%
		29.24	85%
		28.81	90%

Keyword Spotting

Model	Non-sparse Accuracy	Structured Sparse Accuracy (2 by 4 pattern)	Random Sparse Accuracy (target sparsity 50%)
DS-CNN-L	95.23	94.33	94.84

Pruning

PRUNING SYNAPSES

PRUNING NEURONS

Model Quantization

Quantization is the process of transforming an ML program into an approximated representation with available lower precision operations.

Quantization

Why do we Quantize?

Reduce Memory

8-bit integer parameters means 4x smaller model

Storage & RAM Size

Storage size: Smaller

neural network models occupy less storage space on your device, and in moving from 32-bits to 8-bits we readily get **4x** reduction in memory. The Arduino Nano 33 BLE only has 256KB of RAM (memory) and 1MB of Flash (storage)

Storage & RAM Size

Less memory usage: Smaller models use less RAM when they are run, which frees up memory for other parts of your application to use, and can translate to better performance and stability.

Weight Ranges

Weight distribution for AlexNet shows how most weight values are **concentrated** in a small range.

Source: "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding" by Song Han, Huizi Mao, William J. Dally

Model Size

8-bit integer parameters means 4x smaller model Integer operations are faster

Latency

- Int8 (v. fp32) format severely reduces the computation to run inference using a model, resulting in lower latency
- Latency optimizations can also have a notable impact on power consumption.

Int8 v. Float (CPU time per inference)

Quantized models are up to 2–4x faster on CPU and 4x smaller.

Portability Trade-offs

Not all embedded systems are created equal. Sacrifice **portability** across systems for **efficiency**.

Single Precision IEEE 754 Floating-Point Standard

Why Quantization is Necessary

AVR microcontroller

- Manufacturer: Atmel
- ATmega328P-PU MCU

Features

- Core size: 8-bit
- Speed: up to 20MHz
- Flash memory size: 32Kb (16K x 16)
- RAM size: 2K x 8

How do we Quantize?

Reconstructed 32-bit float values

Quantization Types

Reduced Float

Hybrid Quantization

Integer Quantization

Reduced float

- float16 parameters
- float16 computations

Reduced Float

Hybrid Quantization

Integer Quantization

Reduced float

- float16 parameters
- float16 computations

Hybrid Quantization

Integer Quantization

Reduced float

- float16 parameters
- float16 computations

Benefits

2x reduction in model parameters (32 bit \rightarrow 16 bit)

Reduced float

- float16 parameters
- float16 computations

Benefits

2x reduction in model parameters (32 bit \rightarrow 16 bit)

sign FP32 cexponent (8 bits) fraction (23 bits) sign FP16 exponent (5 bits) fraction (10 bits)

Potential future speed-ups faster as hardware enables optimized operations

Negligible accuracy loss

Quantization Types

Reduced Float

Hybrid Quantization

Integer Quantization

Hybrid quantization

- 8-bit integer weights
- 32-bit float biases & activations
- Integer and floating point computations

Benefits

4x reduction in model parameters (32 bit \rightarrow 8 bit)

Hybrid quantization

- 8-bit integer weights
- 32-bit float biases & activations
- Integer and floating point computations

Benefits

4x reduction in model parameters (32 bit \rightarrow 8 bit)

10-50% faster execution for Convolution Models (CPU hybrid v. CPU float)

2-3x faster on fully-connected & RNN-based models (CPU quant v. CPU float)

Hybrid quantization

- 8-bit integer weights
- 32-bit float biases & activations
- Integer and floating point computations

Benefits

4x reduction in model parameters (32 bit \rightarrow 8 bit)

10-50% faster execution for Convolution Models (CPU hybrid v. CPU float)

2-3x faster on fully-connected & RNN-based models (CPU quant v. CPU float)

Quantization Types

Reduced Float

Hybrid Quantization

Integer Quantization

Integer quantization

- 8-bit integer weights
- 8 and 16-bit biases & activations
- Only integer computations

Benefits

4x reduction in model parameters (32 bit \rightarrow 8 bit)

1.5x faster execution for Convolution Models (CPU integer v. CPU float)

2-4x faster on fully-connected & RNN-based models (CPU quant v. CPU float)

Enables execution on ML accelerators (e.g., Edge-TPU)

Technique	Ease of use	Accuracy	Latency	Compatibility
Reduced float (post-training)	No data required	Negligible loss	Same or faster than float32	Float16 support or fallback to float32
"Hybrid" quantization (post-training)	No data required	Small loss (≤ float16)	Faster than float	Needs float and integer support
Integer quantization (post-training0	Unlabeled data	Accuracy ≤ hybrid	Fastest	Integer only
Integer quantization (during training)	Labeled training data	Accuracy ≥ integer	Fastest	Integer only

Technique	Ease of use	Accuracy	Latency	Compatibility
Reduced float (post-training)	No data required	Negligible loss	Same or faster than float32	Float16 support or fallback to float32
"Hybrid" quantization (post-training)	No data required	Small loss (≤ float16)	Faster than float	Needs float and integer support
	Unlabeled data	Accuracy ≤ hybrid	Fastest	Integer only
Integer quantization (during training)		Accuracy ≥ integer	Fastest	Integer only

Technique	Ease of use	Accuracy	Latency	Compatibility
Reduced float (post-training)	No data required	Negligible loss	Same or faster than float32	Float16 support or fallback to float32
	No data required	Small loss (≤ float16)	Faster than float	Needs float and integer support
Integer quantization (post-training0	Unlabeled data	Accuracy ≤ hybrid	Fastest	Integer only
		Accuracy ≥ integer	Fastest	Integer only

Technique	Ease of use	Accuracy	Latency	Compatibility	
	No data required	Negligible loss	Same or faster than float32	Float16 support or fallback to float32	
	No data required	Small loss (≤ float16)	Faster than float	Needs float and integer support	
		Accuracy ≤ hybrid	Fastest	Integer only	
Integer quantization (during training)	Labeled training data	Accuracy ≥ integer	Fastest	Integer only	

Quantization in Deep Learning

Quantization in Deep Learning

Paper Discussions

Paper Discussion #1 - A Survey of Quantization Methods for Efficient Neural Network Inference

Amir Gholami*, Sehoon Kim*, Zhen Dong*, Zhewei Yao*, Michael W. Mahoney, Kurt Keutzer University of California, Berkeley {amirgh, sehoonkim, zhendong, zheweiy, mahoneymw, keutzer}@berkeley.edu

Abstract-As soon as abstract mathematical computations were adapted to computation on digital computers, 202 the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical Jun representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the N accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models CS. in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits 3 630v or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged m recently as an important and very active sub-area of research in the efficient implementation of computations 03 associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical arXiv:21 values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

means that it is not possible to deploy them for many resource-constrained applications. This creates a problem for realizing pervasive deep learning, which requires real-time inference, with low energy consumption and high accuracy, in resource-constrained environments. This pervasive deep learning is expected to have a significant impact on a wide range of applications such as real-time intelligent healthcare monitoring, autonomous driving, audio analytics, and speech recognition.

Achieving efficient, real-time NNs with optimal accuracy requires rethinking the design, training, and deployment of NN models [71]. There is a large body of literature that has focused on addressing these issues by making NN models more efficient (in terms of latency, memory footprint, and energy consumption, etc.), while still providing optimal accuracy/generalization trade-offs. These efforts can be broadly categorized as follows.

a) Designing efficient NN model architectures: One line of work has focused on optimizing the NN model architecture in terms of its micro-architecture [101, 111, 127, 167, 168, 212, 253, 280] (e.g., kernel types such as depth-wise convolution or low-rank factorization) as well as its macro-architecture [100, 101, 104, 110, 214, 233] (e.g., module types such as residual, or inception). The classical techniques here mostly found new architecture modules using manual search, which is not scalable. As such, a new line of work is to design Automated machine learning (AutoML) and Neural Architecture Search (NAS) methods. These aim to find in an automated way the right NN architecture under given constraints of model size

Paper Discussion #2 - The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks

THE LOTTERY TICKET HYPOTHESIS: FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle MIT CSAIL jfrankle@csail.mit.edu Michael Carbin MIT CSAIL mcarbin@csail.mit.edu

ABSTRACT

Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, decreasing storage requirements and improving computational performance of inference without compromising accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to train from the start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of training effectively. Based on these results, we articulate the *lottery ticket hypothesis*: dense, randomly-initialized, feed-forward networks contain subnetworks (*winning tickets*) that—when trained in isolation—reach test accuracy comparable to the original network in a similar number of iterations. The winning tickets we find have won the initialization lottery: their connections have initial weights that make training particularly effective.

We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher test accuracy.

Guest Speaker

Song Han

Song Han is an associate professor at MIT EECS. He is one of the pioneers of TinyML research that brings deep learning to IoT devices, enabling "learning on the edge". Song's cutting-edge research in efficient AI computing has profoundly influenced the industry. He was the cofounder of DeePhi (now part of AMD), and cofounder of OmniML (now part of NVIDIA).

Personal Website

Google Scholar

• Mimic the inference path during the training phase

- Mimic the inference path during the training phase
- Expose the training pipeline to the errors observed

- Mimic the inference path during the training phase
- Expose the training pipeline to the errors observed
- Allow the training phase to recover the error "naturally"

- Mimic the inference path during the training phase
- Expose the training pipeline to the errors observed
- Allow the training phase to recover the error "naturally"
- Weights and inputs use the same int8—mimic int8 MAC

	Floating-point Baseline	Post-training Quantization (PTQ)	Quantization-Aware Training (QAT)
MobileNet v1 1.0 224	71.03%	69.57%	71.06%
MobileNet v2 1.0 224	70.77%	70.20%	70.01%
Resnet v1 50	76.30%	75.95%	76.10%

Framework Differences

Model	TensorFlow	TensorFlow Lite	TensorFlow Lite Micro
Training	Yes	No	No
Inference	Yes (but inefficient on edge)	Yes (and efficient)	Yes (and even more efficient)
How Many Ops	~1400	~130	~50
Native Quantization Tooling + Support	No	Yes	Yes