
CS249r: Learning on 
the Edge
Oct 16th



1. Course logistics
2. Lecture - Challenges with on-device training/learning/updates
3. Paper discussions
4. Guest speaker

Goals for today
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Course Logistics



Please check the website for the latest 
and most up to date information 

Schedule

❌



Four assignments
● Assignment 1
● Assignment 2
● Assignment 3
● Assignment 4

Each assignment focuses on different aspects

Want to connect the dots on why we picked what we picked and how you do it

Assignments Goals



● Assignment 1
○ Why: Vision (Camera) use cases + Dataset generation
○ What: End-to-end ML workflow
○ How: Frameworks (Edge Impulse) + Embedded Hardware (Nicla)

● Assignment 2
○ Why: Audio (Microphone) use cases
○ What: ML Pipeline (Data preprocessing + Model optimizations)
○ How: NAS (Edge Impulse) + Quantization/Pruning (TFLite)

● Assignment 3 - Model development
○ Why: Time series (IMU) use cases
○ What: ML frameworks programming (Tensorflow/TFLite/TFLM)
○ How: Bare metal implementation of end-to-end ML workflow

● Assignment 4 - Responsible AI
○ Why: Sustainability + Responsibility
○ What: Sustainability-aware system design and safe AI
○ How: TinyML Footprint + Adversarial Nibbler

Assignment - Why, What, How



● Assignment 2
○ Due: October 23rd (Monday)

● Mid-Project Review
○ Due: October 30th (Monday)

● Assignment 3 
○ Due: November 6th (Monday)

● Assignment 4 Part 1
○ Due: November 20th (Monday)

● Assignment 4 Part 2
○ Due: November 27th (Monday)

● Project Presentations
○ Due: December 4th (Monday)

● Final Report
○ Due: December 11th (Monday)

Assignment Schedule Updates



Deadlines
● Project Proposal – Oct 10th
● Mid-Project Presentation (5 slides/3 mins) – Oct 30th
● Final Project Presentation – Dec 4th
● Final Project Report – Dec 11th

Reviewed the projects
● More application centric, than TinyML engineering centric - that’s OK!
● Generally, groups of 1 ~ 3/4

Project Logistics



1. Cache 4 Trash
2. Coloring our Thoughts
3. Context Dependent Notification System
4. Decoding Sleep States through Neural Models in Wearable Devices
5. Does regularization during training improve performance of quantized models?
6. Early Wildfire Mapping via TFLite and Image Detection
7. Hand-Tracking for BrilliantLabs Monocle
8. Improving waste disposal practices through smart trash classification
9. Quant-Eyes: Fast and Efficient Quantized Models for On-Device Real-Time Eye Tracking

10. Quantization and Fine-Tuning in IMU-based Gesture Recognition
11. Real-time Visual Narration with tinyCLIP for the Visually Impaired
12. Saving power in ultrasound sensing for tracking neuromuscular function
13. WickWatcher

Project Topics



Waste Management and Environmental Sustainability
● Cache 4 Trash
● Improving waste disposal practices through smart trash classification

  
Visualization and Digital Art

● Coloring our Thoughts
● WickWatcher

Notifications and Context-aware Systems
● Context Dependent Notification System

Health and Biometric Monitoring
● Decoding Sleep States through Neural Models in Wearable Devices
● Saving power in ultrasound sensing for tracking neuromuscular function
● Hand-Tracking for BrilliantLabs Monocle

Quantization and Model Efficiency
● Does regularization during training improve performance of quantized models
● Quant-Eyes: Fast and Efficient Quantized Models for On-Device Real-Time Eye Tracking:
● Quantization and Fine-Tuning in IMU-based Gesture Recognition

Image Recognition and Processing
● Early Wildfire Mapping via TFLite and Image Detection
● Real-time Visual Narration with tinyCLIP for the Visually Impaired



● Create a project channel
● Add all staff to the channel
● Update description of the 

channel w/ project 
summary

Projects



Chapters
● Data engineering ✅
● ML frameworks ✅
● Model optimizations
● On-device learning (today!) 

○ Come say hi! 👋
New Contributors
● Itai, Oishi, Shreya (Data Engineering) 
🥳

● Marcelo - NICLA

Scribing Updates



General flow for how things are working →
● Collaboratively generate content
● Peer review + feedback + comments
● Resolve comments w/ staff
● Staff merge update

Comments on Implementation
● Put links to figures in Google Doc
● Make sure chapter renders correctly on quarto
● Check figure caption format is the same as other book chapters
● Make sure references render correctly and update refs.bib file—do 

not have a separate references section at the end of your chapter

Scribing Updates



1. Overview and Introduction to Embedded Machine Learning
2. Data Engineering
3. Embedded Machine Learning Frameworks
4. Efficient Model Representation and Compression
5. Performance Metrics and Benchmarking of ML Systems
6. Learning on the Edge
7. Hardware Acceleration for Edge ML: GPUs, TPUs and FPGAs
8. Embedded MLOps
9. Secure and Privacy-Preserving On-Device ML

10. Responsible AI
11. Sustainability at the Edge
12. Generative AI at the Edge

Course Topics
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To be filled in during class.

Will be passed around each class.

Attendance Sheet



Lecture
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What’s the impact of Continuous 
Monitoring on the rest of 

the MLOps pipeline?
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How do we realize GBoard with MLaaS

Servers



How do we realize GBoard with MLaaS

Servers

Model



● Data is aggregated from 
different sources at the server

Traditional ML Model



● Data is aggregated from 
different sources at the server

● Central server builds the 
machine learning model
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● Data is aggregated from 
different sources at the server

● Central server builds the 
machine learning model

● Central server distributes the 
global model to everyone

Traditional ML Model



● Send all of the raw clients’ user 
data to the server

Traditional Machine 
Learning as a Service

Servers



● Send all of the raw clients’ user 
data to the server

● All the ML model training is 
done in the remote cloud 
datacenters

Traditional Machine 
Learning as a Service

Servers



● Key concern with sending raw 
data to the server: Privacy

Traditional Machine 
Learning as a Service

Servers



● Key concern with sending raw 
data to the server: Privacy

● Exposes user’s raw data to the 
central server, which may 
potentially be compromised - 
risking the loss of private data 

Traditional Machine 
Learning as a Service

Servers



● Minimize 
○ Avoid collecting unnecessary data, and dispose or delete data periodically

● Protect 
○ Use encryption techniques to protect data

● Map the flow        of information
○ Context, the type of information, and who has access

● Informed consent 
○ Be transparent with users about how their data is being collected and used

How can privacy be preserved?

Minimize

Protect

Map the flow of information

Informed consent
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Cloud           Embedded

ML-dedicated hardware: CPU, GPU, TPU
ML-dedicated soųware: many tools
ML Tasks → Data collection and 
preprocessing, data transformation, model 
training, model deployment, inference

Cloud

GCP

Azure

AWS
x86/ARM CPU

~GB of RAM

~TB of storage

Distributed OS

Virtualization



Cloud           Embedded

ML-dedicated hardware: CPU, GPU, TPU
ML-dedicated soųware: many tools
ML Tasks → Data collection and 
preprocessing, data transformation, model 
training, model deployment, inference

No ML-dedicated Hardware
No ML-dedicated soųware
ML Tasks → Inference

Cloud

GCP

Azure

AWS

Edge

x86/ARM CPU

~GB of RAM

~TB of storage

Distributed OS

Virtualization

on perm

device1 device2

battery devices
power

offloading

offl
oa

din
g

in place

MCUs

~500kB SRAM

~2MB Flash
RTOS

No virtualization



Alternative approach?

● The key flaw behind the prior approach to training is the sending of raw 
client data to central server
○ Server has access to raw client data, exposing clients to intrusion of 

privacy by central server

Central Servers
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Federated ML

● Data is kept local to the 
endpoint device (data does not 
ever leave the device)

Local

Local



Federated ML

● Data is kept local to the 
endpoint device (data does not 
ever leave the device)

● Only local model updates are 
set to the central server

Local

Local

Lo
cal M

odel 

Updates



Local Data

Federated Learning

● A method to collaboratively 
learn a shared model while 
keeping data on device

Local Data

Local Data

Local Data

Local Data

Autocomplete:

Thank you for the feedback

Learned Model

Lo
ca

l u
pd
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es New global 

model



Federated ML

● Data is kept local to the 
endpoint device (data does not 
ever leave the device)

● Only local model updates are 
set to the central server

● Server creates a global model 
and sends it to the endpoints

Global Model

Local

Lo
cal M
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Updates

Local
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Why is Federated ML 
Useful?

Hyper-Personalized Low Cloud Infra 
Overheads

Minimum 
Latencies

Privacy Preserving



No Free Lunch

Unbalanced training samples

Need a high # of endpoint devices/clients

Slow and unreliable network connections
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No Free Lunch

Unbalanced training samples
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Federated Learning

Model 
Program 
Tensorflow

Simulate

FL Plan

Generate Deploy

FL 
Server

Upload model 
& metrics

Download 
plan & model

Analytics

Development Environment Production Environment
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Federated Learning
Concerns
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Computation Communication Noisy Gradients Secure Aggregation



● Data movement is extremely 
important to keep in mind for 
efficient system engineering

● Data movement is more costly 
than computation itself

Computation vs. 
Communication

DRAM

Buffer

PE

RegFile

ALU

ALU

ALU

ALU

ALU

⨁⨂

200x

6x

2x

1x

1x

Data Movement 
Energy Cost



Federated Learning
Concerns

PrivacySystems

Computation Communication Noisy Gradients Secure Aggregation



● Monitoring may not always be a feasible option
○ Low power communication protocol
○ Device isn’t wifi-enabled

● Monitoring opens up security and privacy risks

Continuous Monitoring for TinyML



● Monitoring may not always be a feasible option
○ Low power communication protocol
○ Device isn’t wifi-enabled

● Monitoring opens up security and privacy risks

● How can we enable Continuous Monitoring to enable Continuous 
Training without moving the data off the endpoint tiny ML device?

Continuous Monitoring for TinyML
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WiFi
BLE

Video/Voice
Consumer IoT

Cellular
Outdoor use case

Higher power

LPWAN
Sensors, Actuators, and Tags
Lowest Power, Lowest Cost



Data Rate ~100kbps - 100mbps ~100kbps - 100mbps 10kbps

Range Short Long Long Range (10 miles)

Battery Life Varies Medium Long Battery Life (10 yrs)

Cost Expensive Very Expensive Best Price

Use Cases Smart TV, WiFi Network, 
Bluetooth Speakers

Smart Grid, CCTV, 
Personal Communication 

(smartphones)

Monitoring, Metering, 
Temperature, Asset 
Tracking, Weather, 

Location

LAN
Bluetooth, ZigBee, WiFi

Cellular
2G, 3G, 4G

LPWAN
LoRa, Sigfox, NB-IoT



Long Range Long Battery Life High Capacity Low Cost

Deep indoor coverage 
(multi-floor buildings)

Star topology network 
design

Low-power optimized

Up to 10 year lifetime

Up to 10x versus 
Cellular M2M

Millions of messages 
per gateway

Multi-tenant 
interoperability

Public/Private network 
deployments

Minimal infrastructure

Low cost end-node

Open source software

Geolocation Updates Roaming Security

Indoor/outdoor

Accurate without GPS

No battery life impact

Firmware updates 
over-the-air for apps 
and LoRaWAN stack

Seamless handoffs 
from one network to 
another

Embedded end-to-end 
AES-128 encryption

Unique ID

Application

Network



● Vending machines could alert distributors 
when a product requires maintenance

Example Use Cases
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● Vending machines could alert distributors 
when a product requires maintenance

● Animal lovers can track pets or study 
migration patterns over longer distances

● Oil companies could receive alerts when 
home oil tanks are running low

● Logistics providers could track cargo 
containers on trucks, ships and trains 

Example Use Cases



● Natural Disaster Prevention
● Smart Agriculture Monitoring
● Animal Production Monitoring
● Endangered Species Protection
● Smart Industry Control
● Smart Cities, Homes, Buildings & Offices
● Supply Chain Logistics, Asset Tracking & 

Quality Management
● Smart Metering Facilities (Water, Gas, 

Electricity)

Example Use Cases



End Nodes

LoRa RF
LoRaWAN

TCP/IP TSL1.2
LoRaWAN

Gateway Network Server App Server

TCP/IP TSL1.2
Secure Payload

AES Secured Payload

Pet tracking

Vending 
machine

Smoke 
alarm

Water meter

LTE/Ethernet
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Network Communication Latency

Ba
tte

ry
 L

ife

Battery powered sensors
● Most energy efficient
● Must be supported by all devices
● Downlink available only after sensor TX

Battery powered actuators
● Energy efficient with latency controlled downlink
● Slotted communication (synchronized with 

beacon)

Main powered actuators
● Continuous Listening
● No latency for downlink communication

C
lass A

C
lass B

C
lass C



Network 
Server

Application 
Server
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Example
Use Case

Network 
Server

Metadata 
Unencrypted

Confirmation 
Unencrypted

Metadata added 
and encrypted

App Server

Uplink 
(“Heartbeat”)

Uplink 
(“Heartbeat”)

Uplink 
(“Heartbeat”)

Uplink 
(“Alert”)

Uplink 
(“Alert”)

Uplink 
(“Alert”)

Downlink 
(“Confirm”)

Data Encrypted

Unconůrmed Conůrmed

Metadata added 
and encrypted

Data 
Unencrypted
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Network 
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● No complicated network planning is required. 
Gateways can be added anywhere at any time

● Accurate message delivery is robust, since multiple 
gateways receive the same data packet during each 
uplink. This is called uplink spatial diversity

● There is no need to plan for different frequencies for 
each gateway, or to reallocate frequencies when the 
number of gateways change. All gateways are constantly 
listening to all frequencies of the network

● Mobile devices can operate at ultra low power thanks 
to the fact that any gateway can receive messages from 
any device at any time

Network Advantages 
for Class A Devices

Network 
Server

Application 
Server



● Class A device communication is 
initiated only by the end device

● Class B devices have 
regularly-scheduled windows, in 
addition to those that open when a 
Class A-style uplink is sent to server

● Class C devices achieve the lowest 
latency among all operating modes

Cross Comparison

Class A

Class B

Class C

En
er

gy
 C

on
su

m
pt

io
n

5 uA
Average

30 uA
Average

10 mA
Average
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Paper Discussions



Discuss
● Why did we read the two papers?
● What are the differences between them?
● <lead discussion>

Summary
● Discuss as a group

Discussion Questions



Guest Speaker



Nic is a professor of machine learning 
systems at Cambridge University. His 
research focuses on the design, 
architecture and algorithms of scalable 
and robust end-to-end machine learning 
systems. He is also the co-founder and 
Chief Scientific Officer of Flower Labs, a 
venture-backed AI company behind the 
Flower federated learning framework.

Nicholas Lane

Personal Website

Google Scholar

http://niclane.org/
https://scholar.google.com/citations?user=IleoLUgAAAAJ

