
CS249r: Learning on
the Edge
Oct 16th

1. Course logistics
2. Lecture - Challenges with on-device training/learning/updates
3. Paper discussions
4. Guest speaker

Goals for today

2

Course Logistics

Please check the website for the latest
and most up to date information

Schedule

❌

Four assignments
● Assignment 1
● Assignment 2
● Assignment 3
● Assignment 4

Each assignment focuses on different aspects

Want to connect the dots on why we picked what we picked and how you do it

Assignments Goals

● Assignment 1
○ Why: Vision (Camera) use cases + Dataset generation
○ What: End-to-end ML workflow
○ How: Frameworks (Edge Impulse) + Embedded Hardware (Nicla)

● Assignment 2
○ Why: Audio (Microphone) use cases
○ What: ML Pipeline (Data preprocessing + Model optimizations)
○ How: NAS (Edge Impulse) + Quantization/Pruning (TFLite)

● Assignment 3 - Model development
○ Why: Time series (IMU) use cases
○ What: ML frameworks programming (Tensorflow/TFLite/TFLM)
○ How: Bare metal implementation of end-to-end ML workflow

● Assignment 4 - Responsible AI
○ Why: Sustainability + Responsibility
○ What: Sustainability-aware system design and safe AI
○ How: TinyML Footprint + Adversarial Nibbler

Assignment - Why, What, How

● Assignment 2
○ Due: October 23rd (Monday)

● Mid-Project Review
○ Due: October 30th (Monday)

● Assignment 3
○ Due: November 6th (Monday)

● Assignment 4 Part 1
○ Due: November 20th (Monday)

● Assignment 4 Part 2
○ Due: November 27th (Monday)

● Project Presentations
○ Due: December 4th (Monday)

● Final Report
○ Due: December 11th (Monday)

Assignment Schedule Updates

Deadlines
● Project Proposal – Oct 10th
● Mid-Project Presentation (5 slides/3 mins) – Oct 30th
● Final Project Presentation – Dec 4th
● Final Project Report – Dec 11th

Reviewed the projects
● More application centric, than TinyML engineering centric - that’s OK!
● Generally, groups of 1 ~ 3/4

Project Logistics

1. Cache 4 Trash
2. Coloring our Thoughts
3. Context Dependent Notification System
4. Decoding Sleep States through Neural Models in Wearable Devices
5. Does regularization during training improve performance of quantized models?
6. Early Wildfire Mapping via TFLite and Image Detection
7. Hand-Tracking for BrilliantLabs Monocle
8. Improving waste disposal practices through smart trash classification
9. Quant-Eyes: Fast and Efficient Quantized Models for On-Device Real-Time Eye Tracking

10. Quantization and Fine-Tuning in IMU-based Gesture Recognition
11. Real-time Visual Narration with tinyCLIP for the Visually Impaired
12. Saving power in ultrasound sensing for tracking neuromuscular function
13. WickWatcher

Project Topics

Waste Management and Environmental Sustainability
● Cache 4 Trash
● Improving waste disposal practices through smart trash classification

Visualization and Digital Art

● Coloring our Thoughts
● WickWatcher

Notifications and Context-aware Systems
● Context Dependent Notification System

Health and Biometric Monitoring
● Decoding Sleep States through Neural Models in Wearable Devices
● Saving power in ultrasound sensing for tracking neuromuscular function
● Hand-Tracking for BrilliantLabs Monocle

Quantization and Model Efficiency
● Does regularization during training improve performance of quantized models
● Quant-Eyes: Fast and Efficient Quantized Models for On-Device Real-Time Eye Tracking:
● Quantization and Fine-Tuning in IMU-based Gesture Recognition

Image Recognition and Processing
● Early Wildfire Mapping via TFLite and Image Detection
● Real-time Visual Narration with tinyCLIP for the Visually Impaired

● Create a project channel
● Add all staff to the channel
● Update description of the

channel w/ project
summary

Projects

Chapters
● Data engineering ✅
● ML frameworks ✅
● Model optimizations
● On-device learning (today!)

○ Come say hi! 👋
New Contributors
● Itai, Oishi, Shreya (Data Engineering)
🥳

● Marcelo - NICLA

Scribing Updates

General flow for how things are working →
● Collaboratively generate content
● Peer review + feedback + comments
● Resolve comments w/ staff
● Staff merge update

Comments on Implementation
● Put links to figures in Google Doc
● Make sure chapter renders correctly on quarto
● Check figure caption format is the same as other book chapters
● Make sure references render correctly and update refs.bib file—do

not have a separate references section at the end of your chapter

Scribing Updates

1. Overview and Introduction to Embedded Machine Learning
2. Data Engineering
3. Embedded Machine Learning Frameworks
4. Efficient Model Representation and Compression
5. Performance Metrics and Benchmarking of ML Systems
6. Learning on the Edge
7. Hardware Acceleration for Edge ML: GPUs, TPUs and FPGAs
8. Embedded MLOps
9. Secure and Privacy-Preserving On-Device ML

10. Responsible AI
11. Sustainability at the Edge
12. Generative AI at the Edge

Course Topics

14

To be filled in during class.

Will be passed around each class.

Attendance Sheet

Lecture

ML
Development

ML Training

Continuous
Training

Model
Deployment

Prediction
Serving

Continuous
Monitoring

Data, Model
Management

Convert
Model

Code &
Config

Training
Pipeline

Registered
Model

Serving
Package

Serving
Logs

TensorFlow
Lite Model

What’s the impact of Continuous
Monitoring on the rest of

the MLOps pipeline?

ML
Development

ML Training

Continuous
Training

Model
Deployment

Prediction
Serving

Continuous
Monitoring

Data, Model
Management

Convert
Model

Code &
Config

Training
Pipeline

Registered
Model

Serving
Package

Serving
Logs

TensorFlow
Lite Model

ML
Development

ML Training

Continuous
Training

Model
Deployment

Prediction
Serving

Continuous
Monitoring

Data, Model
Management

Convert
Model

Code &
Config

Training
Pipeline

Registered
Model

Serving
Package

Serving
Logs

TensorFlow
Lite Model

ML
Development

ML Training

Continuous
Training

Model
Deployment

Prediction
Serving

Continuous
Monitoring

Data, Model
Management

Convert
Model

Code &
Config

Training
Pipeline

Registered
Model

Serving
Package

Serving
Logs

TensorFlow
Lite Model

GBoard Example

GBoard Example

How do we realize GBoard with MLaaS

Servers

How do we realize GBoard with MLaaS

Servers

Model

● Data is aggregated from
different sources at the server

Traditional ML Model

● Data is aggregated from
different sources at the server

● Central server builds the
machine learning model

Traditional ML Model

● Data is aggregated from
different sources at the server

● Central server builds the
machine learning model

● Central server distributes the
global model to everyone

Traditional ML Model

● Send all of the raw clients’ user
data to the server

Traditional Machine
Learning as a Service

Servers

● Send all of the raw clients’ user
data to the server

● All the ML model training is
done in the remote cloud
datacenters

Traditional Machine
Learning as a Service

Servers

● Key concern with sending raw
data to the server: Privacy

Traditional Machine
Learning as a Service

Servers

● Key concern with sending raw
data to the server: Privacy

● Exposes user’s raw data to the
central server, which may
potentially be compromised -
risking the loss of private data

Traditional Machine
Learning as a Service

Servers

● Minimize
○ Avoid collecting unnecessary data, and dispose or delete data periodically

● Protect
○ Use encryption techniques to protect data

● Map the flow of information
○ Context, the type of information, and who has access

● Informed consent
○ Be transparent with users about how their data is being collected and used

How can privacy be preserved?

Minimize

Protect

Map the flow of information

Informed consent

Cloud Embedded

Cloud Embedded

ML-dedicated hardware: CPU, GPU, TPU
ML-dedicated soųware: many tools
ML Tasks → Data collection and
preprocessing, data transformation, model
training, model deployment, inference

Cloud

GCP

Azure

AWS
x86/ARM CPU

~GB of RAM

~TB of storage

Distributed OS

Virtualization

Cloud Embedded

ML-dedicated hardware: CPU, GPU, TPU
ML-dedicated soųware: many tools
ML Tasks → Data collection and
preprocessing, data transformation, model
training, model deployment, inference

No ML-dedicated Hardware
No ML-dedicated soųware
ML Tasks → Inference

Cloud

GCP

Azure

AWS

Edge

x86/ARM CPU

~GB of RAM

~TB of storage

Distributed OS

Virtualization

on perm

device1 device2

battery devices
power

offloading

offl
oa

din
g

in place

MCUs

~500kB SRAM

~2MB Flash
RTOS

No virtualization

Alternative approach?

● The key flaw behind the prior approach to training is the sending of raw
client data to central server
○ Server has access to raw client data, exposing clients to intrusion of

privacy by central server

Central Servers

Server

Node

Local
ModelDa

ta

Node

Local
ModelDa

ta

Node

Local
ModelDa

ta

Receive model from server, start training.

Server

Node

Local
ModelDa

ta

Node

Local
ModelDa

ta

Node

Local
ModelDa

ta

Receive model from server, start training.

Server

Node

Local Model

Partially trained models → server

Node

Local Model

Node

Local Model

Server

Node

Local
ModelDa

ta

Node

Local
ModelDa

ta

Node

Local
ModelDa

ta

Receive model from server, start training.

Server

Node

Local Model

Partially trained models → server

Node

Local Model

Node

Local Model

Server

Federated Model

Server combines and makes federated model

Server

Node

Local
ModelDa

ta

Node

Local
ModelDa

ta

Node

Local
ModelDa

ta

Receive model from server, start training.

Server

Node

Local Model

Partially trained models → server

Node

Local Model

Node

Local Model

Server

Federated Model

Server combines and makes federated model

Repeat

Federated ML

● Data is kept local to the
endpoint device (data does not
ever leave the device)

Local

Local

Federated ML

● Data is kept local to the
endpoint device (data does not
ever leave the device)

● Only local model updates are
set to the central server

Local

Local

Lo
cal M

odel

Updates

Local Data

Federated Learning

● A method to collaboratively
learn a shared model while
keeping data on device

Local Data

Local Data

Local Data

Local Data

Autocomplete:

Thank you for the feedback

Learned Model

Lo
ca

l u
pd

at
es New global

model

Federated ML

● Data is kept local to the
endpoint device (data does not
ever leave the device)

● Only local model updates are
set to the central server

● Server creates a global model
and sends it to the endpoints

Global Model

Local

Lo
cal M

odel

Updates

Local

Global Model

Local

Lo
cal M

odel

Updates

Local

Why is Federated ML
Useful?

Hyper-Personalized

Global Model

Local

Lo
cal M

odel

Updates

Local

Why is Federated ML
Useful?

Hyper-Personalized

Minimum
Latencies

Global Model

Local

Lo
cal M

odel

Updates

Local

Why is Federated ML
Useful?

Hyper-Personalized Low Cloud Infra
Overheads

Minimum
Latencies

Global Model

Local

Lo
cal M

odel

Updates

Local

Why is Federated ML
Useful?

Hyper-Personalized Low Cloud Infra
Overheads

Minimum
Latencies

Privacy Preserving

No Free Lunch

Unbalanced training samples

Need a high # of endpoint devices/clients

Slow and unreliable network connections

No Free Lunch

Unbalanced training samples

Need a high # of endpoint devices/clients

Slow and unreliable network connections

No Free Lunch

Unbalanced training samples

Need a high # of endpoint devices/clients

Slow and unreliable network connections

No Free Lunch

Unbalanced training samples

Need a high # of endpoint devices/clients

Slow and unreliable network connections

Federated Learning

Model
Program
Tensorflow

Simulate

FL Plan

Generate Deploy

FL
Server

Upload model
& metrics

Download
plan & model

Analytics

Development Environment Production Environment

Federated Learning
Concerns

PrivacySystems

Computation Communication Noisy Gradients Secure Aggregation

Federated Learning
Concerns

PrivacySystems

Computation Communication Noisy Gradients Secure Aggregation

Federated Learning
Concerns

PrivacySystems

Computation Communication Noisy Gradients Secure Aggregation

● Data movement is extremely
important to keep in mind for
efficient system engineering

● Data movement is more costly
than computation itself

Computation vs.
Communication

DRAM

Buffer

PE

RegFile

ALU

ALU

ALU

ALU

ALU

⨁⨂

200x

6x

2x

1x

1x

Data Movement
Energy Cost

Federated Learning
Concerns

PrivacySystems

Computation Communication Noisy Gradients Secure Aggregation

● Monitoring may not always be a feasible option
○ Low power communication protocol
○ Device isn’t wifi-enabled

● Monitoring opens up security and privacy risks

Continuous Monitoring for TinyML

● Monitoring may not always be a feasible option
○ Low power communication protocol
○ Device isn’t wifi-enabled

● Monitoring opens up security and privacy risks

● How can we enable Continuous Monitoring to enable Continuous
Training without moving the data off the endpoint tiny ML device?

Continuous Monitoring for TinyML

high

low

short longRANGE

BA
N

D
W

ID
TH

high

low

short longRANGE

BA
N

D
W

ID
TH

WiFi
BLE

Video/Voice
Consumer IoT

high

low

short longRANGE

BA
N

D
W

ID
TH

WiFi
BLE

Video/Voice
Consumer IoT

Cellular
Outdoor use case

Higher power

high

low

short longRANGE

BA
N

D
W

ID
TH

WiFi
BLE

Video/Voice
Consumer IoT

Cellular
Outdoor use case

Higher power

LPWAN
Sensors, Actuators, and Tags
Lowest Power, Lowest Cost

Data Rate ~100kbps - 100mbps ~100kbps - 100mbps 10kbps

Range Short Long Long Range (10 miles)

Battery Life Varies Medium Long Battery Life (10 yrs)

Cost Expensive Very Expensive Best Price

Use Cases Smart TV, WiFi Network,
Bluetooth Speakers

Smart Grid, CCTV,
Personal Communication

(smartphones)

Monitoring, Metering,
Temperature, Asset
Tracking, Weather,

Location

LAN
Bluetooth, ZigBee, WiFi

Cellular
2G, 3G, 4G

LPWAN
LoRa, Sigfox, NB-IoT

Long Range Long Battery Life High Capacity Low Cost

Deep indoor coverage
(multi-floor buildings)

Star topology network
design

Low-power optimized

Up to 10 year lifetime

Up to 10x versus
Cellular M2M

Millions of messages
per gateway

Multi-tenant
interoperability

Public/Private network
deployments

Minimal infrastructure

Low cost end-node

Open source software

Geolocation Updates Roaming Security

Indoor/outdoor

Accurate without GPS

No battery life impact

Firmware updates
over-the-air for apps
and LoRaWAN stack

Seamless handoffs
from one network to
another

Embedded end-to-end
AES-128 encryption

Unique ID

Application

Network

● Vending machines could alert distributors
when a product requires maintenance

Example Use Cases

● Vending machines could alert distributors
when a product requires maintenance

● Animal lovers can track pets or study
migration patterns over longer distances

Example Use Cases

● Vending machines could alert distributors
when a product requires maintenance

● Animal lovers can track pets or study
migration patterns over longer distances

● Oil companies could receive alerts when
home oil tanks are running low

Example Use Cases

● Vending machines could alert distributors
when a product requires maintenance

● Animal lovers can track pets or study
migration patterns over longer distances

● Oil companies could receive alerts when
home oil tanks are running low

● Logistics providers could track cargo
containers on trucks, ships and trains

Example Use Cases

● Natural Disaster Prevention
● Smart Agriculture Monitoring
● Animal Production Monitoring
● Endangered Species Protection
● Smart Industry Control
● Smart Cities, Homes, Buildings & Offices
● Supply Chain Logistics, Asset Tracking &

Quality Management
● Smart Metering Facilities (Water, Gas,

Electricity)

Example Use Cases

End Nodes

LoRa RF
LoRaWAN

TCP/IP TSL1.2
LoRaWAN

Gateway Network Server App Server

TCP/IP TSL1.2
Secure Payload

AES Secured Payload

Pet tracking

Vending
machine

Smoke
alarm

Water meter

LTE/Ethernet

Network Communication Latency

Ba
tte

ry
 L

ife

Battery powered sensors
● Most energy efficient
● Must be supported by all devices
● Downlink available only after sensor TX

C
lass A

Network Communication Latency

Ba
tte

ry
 L

ife

Battery powered sensors
● Most energy efficient
● Must be supported by all devices
● Downlink available only after sensor TX

Battery powered actuators
● Energy efficient with latency controlled downlink
● Slotted communication (synchronized with

beacon)

C
lass A

C
lass B

Network Communication Latency

Ba
tte

ry
 L

ife

Battery powered sensors
● Most energy efficient
● Must be supported by all devices
● Downlink available only after sensor TX

Battery powered actuators
● Energy efficient with latency controlled downlink
● Slotted communication (synchronized with

beacon)

Main powered actuators
● Continuous Listening
● No latency for downlink communication

C
lass A

C
lass B

C
lass C

Network
Server

Application
Server

Example
Use Case

Network
Server

Metadata
Unencrypted

Metadata added
and encrypted

App Server

Uplink
(“Heartbeat”)

Uplink
(“Heartbeat”)

Uplink
(“Heartbeat”)

Data Encrypted

Unconůrmed

Metadata added
and encrypted

Data
Unencrypted

Example
Use Case

Network
Server

Metadata
Unencrypted

Metadata added
and encrypted

App Server

Uplink
(“Heartbeat”)

Uplink
(“Heartbeat”)

Uplink
(“Heartbeat”)

Uplink
(“Alert”)

Uplink
(“Alert”)

Uplink
(“Alert”)

Data Encrypted

Metadata added
and encrypted

Data
Unencrypted

Unconůrmed

Example
Use Case

Network
Server

Metadata
Unencrypted

Confirmation
Unencrypted

Metadata added
and encrypted

App Server

Uplink
(“Heartbeat”)

Uplink
(“Heartbeat”)

Uplink
(“Heartbeat”)

Uplink
(“Alert”)

Uplink
(“Alert”)

Uplink
(“Alert”)

Downlink
(“Confirm”)

Data Encrypted

Unconůrmed Conůrmed

Metadata added
and encrypted

Data
Unencrypted

Example
Use Case

Network
Server

App Server

Dow
nlink

Up
lin

k

● No complicated network planning is required.
Gateways can be added anywhere at any time

● Accurate message delivery is robust, since multiple
gateways receive the same data packet during each
uplink. This is called uplink spatial diversity

● There is no need to plan for different frequencies for
each gateway, or to reallocate frequencies when the
number of gateways change. All gateways are constantly
listening to all frequencies of the network

● Mobile devices can operate at ultra low power thanks
to the fact that any gateway can receive messages from
any device at any time

Network Advantages
for Class A Devices

Network
Server

Application
Server

● Class A device communication is
initiated only by the end device

● Class B devices have
regularly-scheduled windows, in
addition to those that open when a
Class A-style uplink is sent to server

● Class C devices achieve the lowest
latency among all operating modes

Cross Comparison

Class A

Class B

Class C

En
er

gy
 C

on
su

m
pt

io
n

5 uA
Average

30 uA
Average

10 mA
Average

Federated Learning
Concerns

PrivacySystems

Computation Communication Noisy Gradients Secure Aggregation

Federated Learning
Concerns

PrivacySystems

Computation Communication Noisy Gradients Secure Aggregation

Paper Discussions

Discuss
● Why did we read the two papers?
● What are the differences between them?
● <lead discussion>

Summary
● Discuss as a group

Discussion Questions

Guest Speaker

Nic is a professor of machine learning
systems at Cambridge University. His
research focuses on the design,
architecture and algorithms of scalable
and robust end-to-end machine learning
systems. He is also the co-founder and
Chief Scientific Officer of Flower Labs, a
venture-backed AI company behind the
Flower federated learning framework.

Nicholas Lane

Personal Website

Google Scholar

http://niclane.org/
https://scholar.google.com/citations?user=IleoLUgAAAAJ

