
CS249r: Acceleration for
ML: GPUs, TPUs and FPGAs

Oct 23

Course Logistics

● Assignment 1
○ Why: Vision (Camera) use cases + Dataset generation
○ What: End-to-end ML workflow
○ How: Frameworks (Edge Impulse) + Embedded Hardware (Nicla)

● Assignment 2
○ Why: Audio (Microphone) use cases
○ What: ML Pipeline (Data preprocessing + Model optimizations)
○ How: NAS (Edge Impulse) + Quantization/Pruning (TFLite)

● Assignment 3 - Model development
○ Why: Time series (IMU) use cases
○ What: ML frameworks programming (Tensorflow/TFLite/TFLM)
○ How: Bare metal implementation of end-to-end ML workflow

● Assignment 4 - Responsible AI
○ Why: Sustainability + Responsibility
○ What: Sustainability-aware system design and safe AI
○ How: TinyML Footprint + Adversarial Nibbler

Assignment - Why, What, How

● Due tonight 11:59pm
● Any questions?
● Please check out the #assignment2 slack channel for updates and answers

to frequently asked questions

Assignment 2

Due: November 6 at 11:59 pm

Objective:
● Explore Tensorflow ecosystem (Tensorflow ->

Tensorflow Lite -> Tensorflow Lite Micro)
● Model Optimization (quantization/pruning)

using IMU data from Arduino Nicla Vision

Extra Credit: Deployment of model on Nicla

Assignment 3: Magic Nicla Wand

● Week of topic
○ Meet with Matthew & VJ
○ Create a google doc
○ Share with staff
○ Iterate on rough outline with VJ/Matt
○ After 👍from staff, put changes in a

single forked repo
○ Create one PR with the entire chapter
○ Classmates will peer review using the

PR

Scribing (again!)

● Grading (20% of your grade)
○ Part 1:

i. Paper review 10%
● Content creation - 5%
● Content curation - 5%

○ Part 2
i. Paper presentation 10%

● References - 3%
● Figures - 2%
● Clarity - 5%

Scribing

● AI Frameworks
○ Available as a PR
○ Will be merged soon (EOD or

tomorrow)

Scribing

● This week (Oct 23)
○ Review Model optimizations chapter

● Next week
○ Review On-device learning chapter
○ Review of Benchmarking AI

Scribing (again!)

● Assignment 2
○ Due: October 23rd (Monday)

● Mid-Project Review
○ Due: October 30th (Monday)

● Assignment 3
○ Due: November 6th (Monday)

● Assignment 4 Part 1
○ Due: November 20th (Monday)

● Assignment 4 Part 2
○ Due: November 27th (Monday)

● Project Presentations
○ Due: December 4th (Monday)

● Final Report
○ Due: December 11th (Monday)

Assignment Schedule Updates

Mid-Project Presentation (5 slides/3 mins) – Oct 30th

Projects

❌

Put your slides in here
● Add your title slide
● Answer the questions with the template slides
● Stay on time

Project Update Slide Template

https://docs.google.com/presentation/d/1PfXTEoBOUEyMRWsmG7HGVsV6-q8dL9aAcdOBBEvCNAo/edit?resourcekey=0-4cSgae_76FVh2zDwq-xi8A#slide=id.g2922e1c9166_0_408

Lecture

1. Overview and Introduction to Embedded Machine Learning
2. Data Engineering
3. Embedded Machine Learning Frameworks
4. Efficient Model Representation and Compression
5. Performance Metrics and Benchmarking of ML Systems
6. Learning on the Edge
7. Hardware Acceleration for Edge ML: GPUs, TPUs and FPGAs
8. Embedded MLOps
9. Secure and Privacy-Preserving On-Device ML

10. Responsible AI
11. Sustainability at the Edge
12. Generative AI at the Edge

Course Topics

Benchmarking ML Systems

Board MCU / ASIC Clock Memory Sensors Radio

Himax
WE-I Plus EVB

HX6537-A
32-bit EM9D DSP 400 MHz 2MB flash

2MB RAM
Accelerometer, Mic,

Camera None

Arduino
Nano 33 BLE Sense

32-bit
nRF52840 64 MHz 1MB flash

256kB RAM

Mic, IMU, Temp,
Humidity, Gesture,
Pressure, Proximity,

Brightness, Color
BLE

SparkFun
Edge 2

32-bit
ArtemisV1 48 MHz 1MB flash

384kB RAM
Accelerometer, Mic,

Camera BLE

Espressif
EYE

32-bit
ESP32-D0WD 240 MHz 4MB flash

520kB RAM Mic, Camera WiFi, BLE

TF Micro

SoftwareHardware

Serving
Challenges

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

TF Micro

SoftwareHardware

Serving
Challenges

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library
Features

Limited Operating
System Support

ML
Hardware X

ML
Hardware Y

● Machine learning system
stack is complicated

● Many different models,
datasets, models,
frameworks, formats,
compilers, libraries,
operating systems, targets

● The cross-product makes
it challenging to decipher
system performance

TinyML System Stack is Complicated

Apples-to-apples comparison

ML
System X

ML
System Y

What task?
What model?

What dataset?
What batch size?

What quantization?
What software

libraries?
…

Benchmarking
Use to
• Compare solutions

Benchmarking
Use to
• Compare solutions
• Inform selection

Benchmarking
Use to
• Compare solutions
• Inform selection
• Measure and track progress

Benchmarking
Use to
• Compare solutions
• Inform selection
• Measure and track progress
• Raise the bar, advance the

field

Benchmarking
Use to
• Compare solutions
• Inform selection
• Measure and track progress
• Raise the bar, advance the

field

Requires
• Methodology that is both fair

and rigorous

Benchmarking
Use to
• Compare solutions
• Inform selection
• Measure and track progress
• Raise the bar, advance the

field

Requires
• Methodology that is both fair

and rigorous
• Community support and

consensus

Benchmarking
Use to
• Compare solutions
• Inform selection
• Measure and track progress
• Raise the bar, advance the

field

Requires
• Methodology that is both fair

and rigorous
• Community support and

consensus

Provides
• Standardization of use cases

and workloads

Benchmarking
Use to
• Compare solutions
• Inform selection
• Measure and track progress
• Raise the bar, advance the

field

Requires
• Methodology that is both fair

and rigorous
• Community support and

consensus

Provides
• Standardization of use cases

and workloads
• Comparability across

heterogeneous HW/SW systems

Benchmarking
Use to
• Compare solutions
• Inform selection
• Measure and track progress
• Raise the bar, advance the

field

Requires
• Methodology that is both fair

and rigorous
• Community support and

consensus

Provides
• Standardization of use cases

and workloads
• Comparability across

heterogeneous HW/SW systems
• Complex characterization of

system compromises

Benchmarking
Use to
• Compare solutions
• Inform selection
• Measure and track progress
• Raise the bar, advance the

field

Requires
• Methodology that is both fair

and rigorous
• Community support and

consensus

Provides
• Standardization of use cases

and workloads
• Comparability across

heterogeneous HW/SW systems
• Complex characterization of

system compromises
• Verifiable and Reproducible

results

Benchmarking
Use to
• Compare solutions
• Inform selection
• Measure and track progress
• Raise the bar, advance the

field

Requires
• Methodology that is both fair

and rigorous
• Community support and

consensus

Provides
• Standardization of use cases

and workloads
• Comparability across

heterogeneous HW/SW systems
• Complex characterization of

system compromises
• Verifiable and Reproducible

results

Enforce performance
result replicability to
ensure reliable results

Goals

Enforce performance
result replicability to
ensure reliable results

Use representative
workloads, reflecting
production use-cases

Goals

Enforce performance
result replicability to
ensure reliable results

Use representative
workloads, reflecting
production use-cases

Encourage innovation
to improve the

state-of-the-art of ML

Goals

Enforce performance
result replicability to
ensure reliable results

Use representative
workloads, reflecting
production use-cases

Encourage innovation
to improve the

state-of-the-art of ML

Accelerate progress in
ML via fair and useful

measurement

Goals

Enforce performance
result replicability to
ensure reliable results

Use representative
workloads, reflecting
production use-cases

Encourage innovation
to improve the

state-of-the-art of ML

Accelerate progress in
ML via fair and useful

measurement

Serve both the
commercial and

research
communities

Goals

Enforce performance
result replicability to
ensure reliable results

Use representative
workloads, reflecting
production use-cases

Encourage innovation
to improve the

state-of-the-art of ML

Accelerate progress in
ML via fair and useful

measurement

Serve both the
commercial and

research
communities

Keep benchmarking
affordable so that all

can participate

Goals

Wide Array of ML Tasks
Task Category Use Case

Audio

Audio Wake Words
Context Recognition

Control Words
Keyword Detection

Image

Visual Wake Words
Object Detection

Gesture Recognition
Object Counting
Text Recognition

Physiological /
Behavioral Metrics

Segmentation
Anomaly Detection

Forecasting
Activity Detection

Industry Telemetry
Sensing

Predictive Maintenance
Motor Control

Wide Array of ML Tasks
Task Category Use Case Model Type

Audio

Audio Wake Words
Context Recognition

Control Words
Keyword Detection

DNN
CNN
RNN
LSTM

Image

Visual Wake Words
Object Detection

Gesture Recognition
Object Counting
Text Recognition

DNN
CNN
SVM

Decision Tree
KNN

Linear

Physiological /
Behavioral Metrics

Segmentation
Anomaly Detection

Forecasting
Activity Detection

DNN
Decision Tree

SVM
Linear

Industry Telemetry
Sensing

Predictive Maintenance
Motor Control

DNN
Decision Tree

SVM
Linear

Naive Bayes

Wide Array of ML Tasks
Task Category Use Case Model Type Datasets

Audio

Audio Wake Words
Context Recognition

Control Words
Keyword Detection

DNN
CNN
RNN
LSTM

Speech Commands
Audioset

ExtraSensory
Freesound

DCASE

Image

Visual Wake Words
Object Detection

Gesture Recognition
Object Counting
Text Recognition

DNN
CNN
SVM

Decision Tree
KNN

Linear

Visual Wake Words
CIFAR10
MNIST

ImageNet
DVS128 Gesture

Physiological /
Behavioral Metrics

Segmentation
Anomaly Detection

Forecasting
Activity Detection

DNN
Decision Tree

SVM
Linear

Physionet
HAR
DSA

Opportunity

Industry Telemetry
Sensing

Predictive Maintenance
Motor Control

DNN
Decision Tree

SVM
Linear

Naive Bayes

UCI Air Quality
UCI Gas
UCI EMG

NASA's PCoE

A Principled Approach to Subsetting
Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?

A Principled Approach to Subsetting
Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?

2. Benchmark selection Which benchmark task to select?

A Principled Approach to Subsetting
Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?

2. Benchmark selection Which benchmark task to select?

3. Metric definition What is the measure of “performance” in ML systems?

A Principled Approach to Subsetting
Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?

2. Benchmark selection Which benchmark task to select?

3. Metric definition What is the measure of “performance” in ML systems?

4. Implementation equivalence How do submitters run on different hardware/software systems?

A Principled Approach to Subsetting
Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?

2. Benchmark selection Which benchmark task to select?

3. Metric definition What is the measure of “performance” in ML systems?

4. Implementation equivalence How do submitters run on different hardware/software systems?

5. Issues with optimizations Quantization, calibration, and/or retraining?

A Principled Approach to Subsetting
Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?

2. Benchmark selection Which benchmark task to select?

3. Metric definition What is the measure of “performance” in ML systems?

4. Implementation equivalence How do submitters run on different hardware/software systems?

5. Issues with optimizations Quantization, calibration, and/or retraining?

6. Results Do we normalize and/or summarize results?

MLPerf “Tiny” Tasks

MLPerf “Tiny” Tasks

FFT

< 256 values >

Average

< 43 values >

30ms

Dataset
selection (public

domain)
Model selection Model training

code
Derive “Tiny”

version:
Quantization

Embedded
implementation

Benchmarking
harness

integration
Deploy on

device
Example

benchmark run
Problem

definition

Anomalous Sound
Detection System

Anomaly

Normal

FP32 INT8

Training
Code

Problem AD
Model FC-AE
Size 270 Kpar
Latency 10.4 ms/inf.
Accuracy .86 AUC
Energy 516 μJ/inf.

ARM
mbed OS

Dataset
selection (public

domain)
Model selection Model training

code
Derive “Tiny”

version:
Quantization

Embedded
implementation

Benchmarking
harness

integration
Deploy on

device
Example

benchmark run
Problem

definition

Anomalous Sound
Detection System

Dataset
selection (public

domain)
Model selection Model training

code
Derive “Tiny”

version:
Quantization

Embedded
implementation

Benchmarking
harness

integration
Deploy on

device
Example

benchmark run
Problem

definition

Anomalous Sound
Detection System

Normal

Anomaly

Dataset
selection (public

domain)
Model selection Model training

code
Derive “Tiny”

version:
Quantization

Embedded
implementation

Benchmarking
harness

integration
Deploy on

device
Example

benchmark run
Problem

definition

Anomalous Sound
Detection System

Anomaly

Normal

Dataset
selection (public

domain)
Model selection Model training

code
Derive “Tiny”

version:
Quantization

Embedded
implementation

Benchmarking
harness

integration
Deploy on

device
Example

benchmark run
Problem

definition

Anomalous Sound
Detection System

Anomaly

Normal

FP32

Training
Code

Dataset
selection (public

domain)
Model selection Model training

code
Derive “Tiny”

version:
Quantization

Embedded
implementation

Benchmarking
harness

integration
Deploy on

device
Example

benchmark run
Problem

definition

Anomalous Sound
Detection System

Anomaly

Normal

FP32 INT8

Training
Code

Dataset
selection (public

domain)
Model selection Model training

code
Derive “Tiny”

version:
Quantization

Embedded
implementation

Benchmarking
harness

integration
Deploy on

device
Example

benchmark run
Problem

definition

Anomalous Sound
Detection System

Anomaly

Normal

FP32 INT8

Training
Code

ARM
mbed OS

Dataset
selection (public

domain)
Model selection Model training

code
Derive “Tiny”

version:
Quantization

Embedded
implementation

Benchmarking
harness

integration
Deploy on

device
Example

benchmark run
Problem

definition

Anomalous Sound
Detection System

Anomaly

Normal

FP32 INT8

Training
Code

Problem AD
Model FC-AE
Size 270 Kpar
Latency 10.4 ms/inf.
Accuracy .86 AUC
Energy 516 μJ/inf.

ARM
mbed OS

Metrics
Latency

Small fast dataset

Loop of inferences

No data-dependent
execution

Metrics
AccuracyLatency

Small fast dataset

Loop of inferences

No data-dependent
execution

Evaluate on larger dataset

Top-1 accuracy & AUC

CLOSED: meet threshold
v.

OPEN: part of the metrics

Metrics
AccuracyLatency Energy

Small fast dataset

Loop of inferences

No data-dependent
execution

Evaluate on larger dataset

Top-1 accuracy & AUC

CLOSED: meet threshold
v.

OPEN: part of the metrics

No
“cherry-picking”

Power Monitor
setup

Median result

V1.0 Results mlcommons.org/en/inference-tiny-10

https://mlcommons.org/en/inference-tiny-10/

Select Keyword Spotting Results

Submitter SoC Accelerator Accuracy Latency (mS) Energy (uJ)

Syntiant NDP120
Syntiant
Core 2 90% 1.48 43.8

STMicroelectronics STM32U575ZIT6Q None 90% 44.2 1138.5

FPGA Energy Configuration

Hardware Lottery Problem
Source:
Chu, Grace, et al. "Discovering multi-hardware mobile models via
architecture search." Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2021.

Example: Smart shoes
● Kicking
● Penalty kicking
● Passing
● Dribbling
● ...

Emerging TinyML
Use Cases

Example: Augmented Reality
● Eye tracking
● Hand tracking
● Computer vision
● Superresolution
● ...

Emerging TinyML
Use Cases

Toward Emerging Multi-DNN Models
Pipelined

DNNs

Keyword
Spotting

Speech
Processing

● Back-to-back execution
● Execution dependency

Toward Emerging Multi-DNN Models
Pipelined

DNNs

Keyword
Spotting

Speech
Processing

● Back-to-back execution
● Execution dependency

Concurrent
DNNs

Eye
Tracking

Obstacle
Detection

● Concurrent execution
● Execution deadline

Video
Processing

Toward Emerging Multi-DNN Models
Pipelined

DNNs

Keyword
Spotting

Speech
Processing

● Back-to-back execution
● Execution dependency

Concurrent
DNNs

Eye
Tracking

Obstacle
Detection

● Concurrent execution
● Execution deadline

Video
Processing

Concurrent &
Pipelined DNNs

● Challenges from both
pipelined and concurrent

Obstacle
Detection

Eye
Tracking

Foveated
Rendering

Enforce performance
result replicability to
ensure reliable results

Use representative
workloads, reflecting
production use-cases

Encourage innovation
to improve the

state-of-the-art of ML

Accelerate progress in
ML via fair and useful

measurement

Serve both the
commercial and

research
communities

Keep benchmarking
affordable so that all

can participate

Landscape of AI benchmarking

Data
Collection
& Curation

Model
Design Training Inference

Landscape of AI benchmarking

Training

Data
Collection
& Curation

Model
Design Training Inference

Landscape of AI benchmarking

Training Inference

Mobile Tiny

Data
Collection
& Curation

Model
Design Training Inference

Landscape of AI benchmarking

Data
Collection
& Curation

Model
Design Training Inference

Training Inference

Mobile Tiny

Landscape of AI benchmarking

Data
Collection
& Curation

Model
Design Training Inference

Training Inference

Mobile Tiny

Paper Discussions

The Need for Agile and Full-Stack
Frameworks

CPU/MCU Full-Blown Discrete
AcceleratorCPU + CFU

General-Purpose
Compute/Design

Highly-Specialized
Compute/Design

The Need for Agile and Full-Stack
Frameworks

CPU/MCU Full-Blown Discrete
AcceleratorCPU + CFU

General-Purpose
Compute/Design

Highly-Specialized
Compute/Design

The Need for Agile and Full-Stack
Frameworks

CPU/MCU Full-Blown Discrete
AcceleratorCPU + CFU

General-Purpose
Compute/Design

Highly-Specialized
Compute/Design

The Need for Agile and Full-Stack
Frameworks

CPU/MCU Full-Blown Discrete
AcceleratorCPU + CFU

General-Purpose
Compute/Design

Highly-Specialized
Compute/Design

Agile Design Methodology

Deploy Profile Optimize

Repeat

TFLM

RISC-V
Compiler

Symbiflow

Custom
TFLM OPs

Custom
Instructions

Custom CFU /
Memory Hierarchy

TFLM
Model Profiling

Cycle
Counters

Resource
Monitors

S
of

tw
ar

e
G

at
ew

ar
e

H
ar

dw
ar

e

The Need for Agile and Full-Stack
Frameworks

The Need for Agile and Full-Stack
Frameworks

Full-Stack Open-Source Framework

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e

Profile OptimizeDeploy

The Need for Agile and Full-Stack
Frameworks

Full-Stack Open-Source Framework

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e

Profile OptimizeDeploy

VexRISC-V
CPU

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries

F4PGA / Yosys+Nextpnr / Vivado / Radiant

LiteX
SoC

LiteX Supported
FPGA board

The Need for Agile and Full-Stack
Frameworks

Full-Stack Open-Source Framework

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e

Profile OptimizeDeploy

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries

F4PGA / Yosys+Nextpnr / Vivado / Radiant

LiteX
SoC

LiteX Supported
FPGA board

Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Cycle Counters

Resource Monitoring

VexRISC-V
CPU

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Custom TFLM
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX
SoC

VexRISC-V
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

Full-Stack Open-Source Framework

The Need for Agile and Full-Stack
Frameworks

Related Works

Accelerating TinyML on FPGAs

MCUs: KBs of RAM, Fixed/slow processor Specialized Hardware Customization (on FPGAs)

Real World Use Case

Chromebook Sensor Designed with CFU Playground

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Custom TFLM
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX
SoC

VexRISC-V
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

Full-Stack Open-Source Framework

CFU Playground

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Custom TFLM
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX
SoC

VexRISC-V
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

Full-Stack Open-Source Framework

CFU Playground

Acceleration via Custom Function Unit (CFU)

Custom Function Units (CFU)

System On-Chip (SoC) Integration

System On-Chip (SoC) Integration

System On-Chip (SoC) Integration

System On-Chip (SoC) Integration

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Custom TFLM
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX
SoC

VexRISC-V
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

CFU Software Interface

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Custom TFLM
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX
SoC

VexRISC-V
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

Access new instruction as C function call:
rslt = cfu_op(funct3, funct7, op1, op2);

 Compile-time constants C / C++ variables / expressions

CFU Software Interface

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Custom TFLM
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX
SoC

VexRISC-V
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

Custom instruction macros intermix with plain C code:
t1 = *x;
t2 = cfu_op(0, 0, t1, b);
t3 = cfu_op(1, 0, t2, b);
*x = t3;

CFU Software Interface

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Custom TFLM
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX
SoC

VexRISC-V
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

Custom instruction macros intermix with plain C code:
t1 = *x;
t2 = cfu_op(0, 0, t1, b);
t3 = cfu_op(1, 0, t2, b);
*x = t3;

Compiled and disassembled:
400001a0: 00812783 lw a5,8(sp)
400001a4: 00d7878b cfu[0,0] a5, a5, a3
400001a8: 00d7978b cfu[0,1] a5, a5, a3
400001ac: 00f12423 sw a5,8(sp)

No overhead!

ML Deployment Framework

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Custom TFLM
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX
SoC

VexRISC-V
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

 const int32_t input_offset = params.input_offset; // r = s(q - Z)

 for (int batch = 0; batch < batches; ++batch) {
 for (int out_y = 0; out_y < output_height; ++out_y) {
 const int in_y_origin = (out_y * stride_height) - pad_height;
 for (int out_x = 0; out_x < output_width; ++out_x) {
 const int in_x_origin = (out_x * stride_width) - pad_width;
 for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
 int32_t acc = 0;
 for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
 const int in_y = in_y_origin + dilation_height_factor * filter_y;
 for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
 const int in_x = in_x_origin + dilation_width_factor * filter_x;

 // Zero padding by omitting the areas outside the image.
 const bool is_point_inside_image =
 (in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
 (in_y < input_height);

 if (!is_point_inside_image) {
 continue;
 }

 for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
 int32_t input_val = input_data[Offset(input_shape, batch, in_y,
 in_x, in_channel)];
 int32_t filter_val = filter_data[Offset(
 filter_shape, out_channel, filter_y, filter_x, in_channel)];

 acc += filter_val * (input_val + input_offset);
 }
 }
 }
 (use acc)

Accelerated Kernels

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Custom TFLM
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX
SoC

VexRISC-V
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

 const int32_t input_offset = params.input_offset; // r = s(q - Z)

 // CFU: copy input_offset into the CFU
 cfu_init_offset(input_offset);

 for (int batch = 0; batch < batches; ++batch) {
 for (int out_y = 0; out_y < output_height; ++out_y) {
 const int in_y_origin = (out_y * stride_height) - pad_height;
 for (int out_x = 0; out_x < output_width; ++out_x) {
 const int in_x_origin = (out_x * stride_width) - pad_width;
 for (int out_channel = 0; out_channel < output_depth; ++out_channel) {

 //int32_t acc = 0;
 // CFU: set the CFU internal acc to ZERO
 cfu_clear_acc();

 for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
 const int in_y = in_y_origin + dilation_height_factor * filter_y;
 for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
 const int in_x = in_x_origin + dilation_width_factor * filter_x;

 ...

 for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
 int32_t input_val = input_data[Offset(input_shape, batch, in_y,
 in_x, in_channel)];
 int32_t filter_val = filter_data[Offset(
 filter_shape, out_channel, filter_y, filter_x, in_channel)];

 // acc += filter_val * (input_val + input_offset);
 // CFU: add-multiply-accumulate in the CFU
 cfu_macc_with_offset(filter_val, input_val);
 }
 }
 }

 // CFU: retrieve final acc value from the CFU
 int32_t acc = cfu_get_acc();

Hardware In-The-Loop

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Custom TFLM
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX
SoC

VexRISC-V
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

Diverse Family of FPGA Boards

Hardware In-The-Loop

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Custom TFLM
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX
SoC

VexRISC-V
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

Diverse Family of FPGA Boards

Hardware In-The-Loop

RISC-V Compiler

Tensorflow Lite for
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny
Benchmarks

Custom TFLM
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX
SoC

VexRISC-V
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

Diverse Family of FPGA Boards

FPGA Acceleration for Image
Classification

FPGA Acceleration for Image
Classification

CFU

Start with Software Optimizations!

FPGA Acceleration for Image
Classification

CFU

FPGA Acceleration for Image
Classification

CFU

FPGA Acceleration for Image
Classification

CFU

FPGA Acceleration for Image
Classification

CFU

FPGA Acceleration for Image
Classification

Image Classification on Arty

FPGA Acceleration for Image
Classification

Image Classification on Arty

FPGA Acceleration for Image
Classification

Image Classification on Arty

FPGA Acceleration for Image
Classification

Image Classification on Arty

2x speedup from SW Optimizations

FPGA Acceleration for Image
Classification

Image Classification on Arty

Total 55x speedup in 5 weeks

Human Presence Sensor

● In Chromebook:
○ An isolated camera+ML

subsystem embedded in the
display bezel

● User features:
○ Keep awake while present
○ Dim on leave
○ Wake on approach
○ Eavesdropper warning

FPGA Acceleration for Keyword Spotting

FOMU FPGA

FPGA Acceleration for Keyword Spotting

75× speedup on model inference

How it started: How it's going:

FPGA Acceleration for Keyword Spotting
Keyword Spotting on FOMU

75x speedup in under 4 weeks

Design Space Exploration
(CFU) Accelerator vs (Soft) CPU

CPU/MCU Full-Blown Discrete
AcceleratorCPU + CFU

General-Purpose
Compute/Design

Highly-Specialized
Compute/Design

(Manual) Design Space Exploration
(CFU) Accelerator vs (Soft) CPU

+

(CFU) Accelerator vs (Soft) CPU

(Automated) Design Space Exploration

(CFU) Accelerator vs (Soft) CPU

(Automated) Design Space Exploration

(CFU) Accelerator vs (Soft) CPU

(Automated) Design Space Exploration

(CFU) Accelerator vs (Soft) CPU

(Automated) Design Space Exploration

Design Space Exploration: CFU vs CPU

Design Space Exploration: CFU vs CPU

Design Space Exploration: CFU vs CPU

Design Space Exploration: CFU vs CPU

Design Space Exploration: CFU vs CPU

Design Space Exploration: CFU vs CPU

Design Space Exploration: CFU vs CPU

Design Space Exploration: CFU vs CPU

Fewer Resources

Design Space Exploration: CFU vs CPU

Fewer Resources,
Same Latency

Fewer
Resources,
Same Latency

Design Space Exploration: CFU vs CPU

Fewer
Resources,
Same Latency

Design Space Exploration: CFU vs CPU

Lower Latency,

Fewer
Resources,
Same Latency

Design Space Exploration: CFU vs CPU

Lower Latency,
Same Resources

Design Space Exploration: CFU vs CPU

CPU/MCU

Full-Blown Discrete

Accelerator

CPU + CFU

Key Takeaways
1. Full-stack framework that integrates open-source

tools to facilitate community-driven research.

2. Agile methodology to iteratively design and evaluate

tightly-coupled, bespoke TinyML accelerators.

3. Unique model-specific resource allocation

trade-offs between CFU, CPU, and memory.

4. Automated design space exploration of the CPU

paired with a CFU using Vizier.

Paper Discussions

Why are we reading these papers?

What are the important things we learn from these papers?

What can we compare and contrast with these papers?

Guest Speaker

Hardik is the Director of Hardware
Engineering at Bigstream. His
research interests are domain
specific hardware architectures for
accelerating machine learning. He
led the development of the first
open-source FPGA-based
hardware acceleration stack for
DNNs at Georgia Tech.

Hardik Sharma

Website

Google Scholar

https://hardiksharma.netlify.app/
https://scholar.google.com/citations?user=WxlqsisAAAAJ

