CS249r: Acceleration for
ML: GPUs, TPUs and FPGAs

Oct 23

Course Logistics

Assignment - Why, What, How

e Assignment 1
o Why: Vision (Camera) use cases + Dataset generation
o What: End-to-end ML workflow
o How: Frameworks (Edge Impulse) + Embedded Hardware (Nicla)
e Assignment 2
o Why: Audio (Microphone) use cases
o What: ML Pipeline (Data preprocessing + Model optimizations)
o How: NAS (Edge Impulse) + Quantization/Pruning (TFLite)
e Assignment 3 - Model development
o Why: Time series (IMU) use cases
o What: ML frameworks programming (Tensorflow/TFLite/TFLM)
o How: Bare metal implementation of end-to-end ML workflow
e Assignment 4 - Responsible Al
o Why: Sustainability + Responsibility
o What: Sustainability-aware system design and safe Al
o How: TinyML Footprint + Adversarial Nibbler

Assignment 2

e Due tonight 11:59pm

e Any questions?
e Please check out the #assignment2 slack channel for updates and answers

to frequently asked questions

Assignment 3: Magic Nicla Wand

Due: November 6 at 11:59 pm

Objective:
e Explore Tensorflow ecosystem (Tensorflow ->
Tensorflow Lite -> Tensorflow Lite Micro)
e Model Optimization (quantization/pruning)
using IMU data from Arduino Nicla Vision

Extra Credit: Deployment of model on Nicla

Scribing (again!)

e Week of topic

O

O

Meet with Matthew & VJ

Create a google doc

Share with staff

Iterate on rough outline with VJ/Matt
After ¢k from staff, put changes in a
single forked repo

Create one PR with the entire chapter
Classmates will peer review using the
PR

® © ® O MACHINELEARNING SYSTEN X +

<« C ¢ @ harvard-edge.github.io/cs249r_book/ h K HE - FO

B TinyML B3 Harvard B Funding B MLC B Nora B3 LLMs &3 B 4 Q <& cs249rBook & LLMx

MACHINE LEARNING SYSTEMS

FRONT MATTER v
Preface

Dedication
Acknowledgements
Contributors
Copyright

About the Book

MAIN

1 Introduction

2 Embedded Systems
3 Deep Learning
Primer

4 Embedded Al

5 Al Workflow

6 Data Engineering

7 Al Frameworks

8 Al Training

9 Efficient Al

10 Model
Optimizations

11 Al Acceleration
12 Benchmarking Al
13 On-Device Learning
14 Embedded AlOps
15 Privacy and
Security

16 Responsible Al

17 Generative Al

18 Al for Good

19 Sustainable Al

20 Robust Al
EXERCISES v
Setup Nicla Vision

CV on Nicla Vision
References
Appendices v
A Tools

B Datasets

C Model Zoo

D Resources

E Communities

F Case Studies

MACHINE LEARNING SYSTEMS

for TinyML

ABSTRACT

Machine Learning Systems for TinyML offers comprehensive guidance on
deploying machine learning on embedded devices. As edge computing and
the Internet of Things proliferate, this textbook provides professionals and
students the expertise to implement performant Al on resource-constrained
hardware. A unique aspect of this book elucidates the entire machine
learning workflow, from data engineering through training, optimization,
acceleration, and production deployment. Key topics covered include deep
learning and classical ML algorithms for embedded systems, efficient neural
network architectures, hardware-aware training techniques, model
compression, benchmarking for tinyML, and on-device learning. Additional
chapters highlight cutting-edge advances like on-device data generation
and crucial considerations around reliability, privacy, security, and
responsible Al. With its rigorous approach spanning theory and practice
across diverse tinyML application domains like smart homes, wearables,
and industrial loT, the book enables readers to develop specialized
knowledge. Using concrete use cases and hands-on examples, readers will
learn to apply machine learning to transform embedded and loT systems.
Overall, this indispensable guide provides a research-based foundation for
leveraging machine learning in embedded systems.

Preface

‘Welcome to “Machine Learning Systems for
TinyML" This book is your gateway to the
fast-paced world of artificial intelligence
within embedded systems. It as an extension
of the foundational course, tinyML from
CS249r at Harvard University.

Our aim? To make this book a collaborative

effort that brings together insights from

students, professionals, and the broader community. We want to create a
one-stop guide that dives deep into the nuts and bolts of embedded Al and
its many uses.

“If you want to go fast, go alone. If you want to go far, go together.” -
African Proverb

This isn't just a static textbook; it's a living, breathing document. We're
making it open-source and continually updated to meet the ever-changing

@Y e x08

& cs2a9r

oz L~ <

Table of contents

Preface

Why We Wrote This
Book

What You'll Need to
Know

Book Conventions
Want to Help Out?
Getin Touch

Contributors

© Edit this page
Report an issue
View source

Scribing

Grading (20% of your grade

o Part1:
i. Paperreview 10%
« Content creation- 5%
« Content curation - 5%
o Part2
i. Paper presentation 10%
o References-3%
o Figures-2%
o Clarity - 5%

® © ® O MACHINELEARNING SYSTEN X +

<« C ¢ @ harvard-edge.github.io/cs249r_book/ h K HE - FO

B TinyML B3 Harvard B Funding B MLC B Nora B3 LLMs &3 B 4 Q <& cs249rBook & LLMx

MACHINE LEARNING SYSTEMS

FRONT MATTER v
Preface

Dedication
Acknowledgements
Contributors
Copyright

About the Book

MAIN

1 Introduction

2 Embedded Systems
3 Deep Learning
Primer

4 Embedded Al

5 Al Workflow

6 Data Engineering

7 Al Frameworks

8 Al Training

9 Efficient Al

10 Model
Optimizations

11 Al Acceleration
12 Benchmarking Al
13 On-Device Learning
14 Embedded AlOps
15 Privacy and
Security

16 Responsible Al

17 Generative Al

18 Al for Good

19 Sustainable Al

20 Robust Al
EXERCISES v
Setup Nicla Vision

CV on Nicla Vision
References
Appendices v
A Tools

B Datasets

C Model Zoo

D Resources

E Communities

F Case Studies

MACHINE LEARNING SYSTEMS

for TinyML

ABSTRACT

Machine Learning Systems for TinyML offers comprehensive guidance on
deploying machine learning on embedded devices. As edge computing and
the Internet of Things proliferate, this textbook provides professionals and
students the expertise to implement performant Al on resource-constrained
hardware. A unique aspect of this book elucidates the entire machine
learning workflow, from data engineering through training, optimization,
acceleration, and production deployment. Key topics covered include deep
learning and classical ML algorithms for embedded systems, efficient neural
network architectures, hardware-aware training techniques, model
compression, benchmarking for tinyML, and on-device learning. Additional
chapters highlight cutting-edge advances like on-device data generation
and crucial considerations around reliability, privacy, security, and
responsible Al. With its rigorous approach spanning theory and practice
across diverse tinyML application domains like smart homes, wearables,
and industrial loT, the book enables readers to develop specialized
knowledge. Using concrete use cases and hands-on examples, readers will
learn to apply machine learning to transform embedded and loT systems.
Overall, this indispensable guide provides a research-based foundation for
leveraging machine learning in embedded systems.

Preface

‘Welcome to “Machine Learning Systems for
TinyML" This book is your gateway to the
fast-paced world of artificial intelligence
within embedded systems. It as an extension
of the foundational course, tinyML from
CS249r at Harvard University.

Our aim? To make this book a collaborative

effort that brings together insights from

students, professionals, and the broader community. We want to create a
one-stop guide that dives deep into the nuts and bolts of embedded Al and
its many uses.

“If you want to go fast, go alone. If you want to go far, go together.” -
African Proverb

This isn't just a static textbook; it's a living, breathing document. We're
making it open-source and continually updated to meet the ever-changing

G U enO$

& cs2a9r

oz L~ <

Table of contents

Preface

Why We Wrote This
Book

What You'll Need to
Know

Book Conventions
Want to Help Out?
Getin Touch

Contributors

© Edit this page
Report an issue
View source

Scribing

e Al Frameworks
o Available as a PR
o Will be merged soon (EOD or
tomorrow)

® © ® O MACHINELEARNING SYSTEN X +

<« C (¢ @& harvard-edge.github.io/cs249r_book/ U S »~ T OG Y e 0§

BES TinyML ES Harvard E5 Funding B9 MLC B Nora EBS LiMs &3

B 4 Q <& cs249rBook & LLMx

MACHINE LEARNING SYSTEMS

FRONT MATTER v
Preface

Dedication
Acknowledgements
Contributors
Copyright

About the Book

MAIN

1 Introduction

2 Embedded Systems
3 Deep Learning
Primer

4 Embedded Al

5 Al Workflow

6 Data Engineering

7 Al Frameworks

8 Al Training

9 Efficient Al

10 Model
Optimizations

11 Al Acceleration
12 Benchmarking Al
13 On-Device Learning
14 Embedded AlOps
15 Privacy and
Security

16 Responsible Al

17 Generative Al

18 Al for Good

19 Sustainable Al

20 Robust Al
EXERCISES v
Setup Nicla Vision

CV on Nicla Vision
References
Appendices v
A Tools

B Datasets

C Model Zoo

D Resources

E Communities

F Case Studies

MACHINE LEARNING SYSTEMS

for TinyML

ABSTRACT

Machine Learning Systems for TinyML offers comprehensive guidance on
deploying machine learning on embedded devices. As edge computing and
the Internet of Things proliferate, this textbook provides professionals and
students the expertise to implement performant Al on resource-constrained
hardware. A unique aspect of this book elucidates the entire machine
learning workflow, from data engineering through training, optimization,
acceleration, and production deployment. Key topics covered include deep
learning and classical ML algorithms for embedded systems, efficient neural
network architectures, hardware-aware training techniques, model
compression, benchmarking for tinyML, and on-device learning. Additional
chapters highlight cutting-edge advances like on-device data generation
and crucial considerations around reliability, privacy, security, and
responsible Al. With its rigorous approach spanning theory and practice
across diverse tinyML application domains like smart homes, wearables,
and industrial loT, the book enables readers to develop specialized
knowledge. Using concrete use cases and hands-on examples, readers will
learn to apply machine learning to transform embedded and loT systems.
Overall, this indispensable guide provides a research-based foundation for
leveraging machine learning in embedded systems.

Preface

‘Welcome to “Machine Learning Systems for
TinyML" This book is your gateway to the
fast-paced world of artificial intelligence
within embedded systems. It as an extension
of the foundational course, tinyML from
CS249r at Harvard University.

Our aim? To make this book a collaborative

effort that brings together insights from

students, professionals, and the broader community. We want to create a
one-stop guide that dives deep into the nuts and bolts of embedded Al and
its many uses.

“If you want to go fast, go alone. If you want to go far, go together.” -
African Proverb

This isn't just a static textbook; it's a living, breathing document. We're
making it open-source and continually updated to meet the ever-changing

& cs2aor

00 L+ <~

Table of contents

Preface

Why We Wrote This
Book

What You'll Need to
Know

Book Conventions
Want to Help Out?
Getin Touch

Contributors

© Edit this page
Report an issue
View source

® © ® O MACHINELEARNING SYSTEN X + Y

]] []
I <« C O & harvard-edge.github.io/cs249r_book/ bk HE=FOGU O Y
L] B TiyML B3 Harvard B3 Funding B MLC B Nora B LMs €3 B 4 Q & cs2a9rBook & LLMx & CS249r »

MACHINE LEARNING SYSTEMS 0OF Ly <
®
. Table of contents P
e This week (Oct 23 s~ MACHINE LEARNING SYSTEMS
Preface or linyi Why We Wrote This

ABSTRACT What You'll Need to

. . . .
O Rev I eW M O d e I O pt I I n I Z at I 0 n S C h a pt e r ﬁz:z:xjiemems Machine Learning Systems for TinyML offers comprehensive guidance on Know

Book C i
Copyright deploying machine learning on embedded devices. As edge computing and v\:m or:./eln I;"i
t t t
About the Book the Internet of Things proliferate, this textbook provides professionals and G:;n :ou:hp Y

students the expertise to implement performant Al on resource-constrained
® extwee AN Convbutors
hardware. A unique aspect of this book elucidates the entire machine
1 Introduction

2 Efbedded Systeins acceleration, and production deployment. Key topics covered include deep Report an issue

O Rev i eW O n _d evi C e I e a rn i n g C h a pt e r gn?::rp Leaming learning and classical ML algorithms for embedded systems, efficient neural View source

network architectures, hardware-aware training techniques, model
4 Embedded Al

5 Al Workflow chapters highlight cutting-edge advances like on-device data generation

. .
O Rev I eW Of B e n C h m a rkl n g A I 6 Data Engineering and crucial considerations around reliability, privacy, security, and

learning workflow, from data engineering through training, optimization, © Edit this page

compression, benchmarking for tinyML, and on-device learning. Additional

7 Al Frameworks responsible Al. With its rigorous approach spanning theory and practice

8 Al Training across diverse tinyML application domains like smart homes, wearables,

9 Efficient Al and industrial loT, the book enables readers to develop specialized

10 Model knowledge. Using concrete use cases and hands-on examples, readers will
Optimizations learn to apply machine learning to transform embedded and loT systems.
11 Al Acceleration Overall, this indispensable guide provides a research-based foundation for
12 Benchmarking Al leveraging machine learning in embedded systems.

13 On-Device Learning
14 Embedded AlOps
15 Privacy and
Security

16 Responsible Al

17 Generative Al

18 Al for Good

19 Sustainable Al

Preface

‘Welcome to “Machine Learning Systems for
TinyML" This book is your gateway to the
fast-paced world of artificial intelligence
within embedded systems. It as an extension
of the foundational course, tinyML from

20 Robust Al CS249r at Harvard University.
EXERCISES v
Setup Nicla Vision Our aim? To make this book a collaborative
CV on Nicla Vision effort that brings together insights from
References students, professionals, and the broader community. We want to create a
one-stop guide that dives deep into the nuts and bolts of embedded Al and
Appendices v :
its many uses.
A Tools
B Datasets . }
C Model Zoo If you want to go fast, go alone. If you want to go far, go together.” —

D Resources African Proverb

E Communities
E Case Studies This isn't just a static textbook; it's a living, breathing document. We're

making it open-source and continually updated to meet the ever-changing

Assignment Schedule Updates

Mid-Project Review

o Due: October 30th (Monday)
Assignment 3

o Due: November 6th (Monday)
Assignment 4 Part 1

o Due: November 20th (Monday)
Assignment 4 Part 2

o Due: November 27th (Monday)
Project Presentations

o Due: December 4th (Monday)
Final Report

o Due: December 11th (Monday)

‘@EQE%M@B’

7S Generate

Feedback
Content X

Professor

Draft 0.5v

—\

B T Peer Review 8 2 Comments 7

Feedback X

‘ Resolve Comments ga+Ed

Draft 1.0v

£ Staff

Publish

& https://harvard-edge.github.io/cs249r_book/

Projects

Mid-Project Presentation (5 slides/3 mins) — Oct 30th

Required

e Edge Impulse (paper),
o Hidden Technical Debt in Machine Learning

0ct |\ ops s || e Mid-Project Review
Edge Impulse Optional
e Data Cascades in High-Stakes Al (paper),
* Pytorch RPC (paper)
A C
l Paper Reading Table Leads
MLOps Hidden Technical Debt

Table 1 Vijay Edupuganti

Table 2 Annie Landefeld

Table 3 Andrew Bass

Table 4 Aghyad Deeb

Table 5

[Jared Ni

Project Update Slide Template

Put your slides in here
e Add your title slide
e Answer the questions with the template slides
e Stayontime

https://docs.google.com/presentation/d/1PfXTEoBOUEyMRWsmG7HGVsV6-q8dL9aAcdOBBEvCNAo/edit?resourcekey=0-4cSgae_76FVh2zDwq-xi8A#slide=id.g2922e1c9166_0_408

Lecture

Course Topics

w2

Overview and Introduction to Embedded Machine Learning
Data Engineering

Embedded Machine Learning Frameworks

Efficient Model Representation and Compression

© N o

11.
12.

Learning on the Edge

Hardware Acceleration for Edge ML: GPUs, TPUs and FPGAs
Embedded MLOps

Secure and Privacy-Preserving On-Device ML

Responsible Al

Sustainability at the Edge

Generative Al at the Edge

Benchmarking ML Systems

VIDIA GH200

N

Grace Hopper superchiP
processor for the Era of Accelerated computing

and Generative Al

-

38
§;;|
38

¥

N pa
LT

10.10.10.161

Al Chip Landscape

Startup Worldwide

S5

[IP/Design Sevice

Tech Giants/System — IC Vender/Fabless o Startup in China =
Google (inteD Cambricon @ FPGA arm
* T m ’
=. Microsoft SAMSUNG P VVAV= - Synopsys
BITMAIN g gt 7 2 S
<& NVIDIA. ©m)
intellLi fusion Graphcore” Processing in Memory imagination
Qu wxm
<> Think Force CEVA
it AMDDY
g #mes s habana cadence
£ XILINX. ROATYED D hmsiony
W = Optical Computing @SiFive
uNISOC ((Enﬂome & thinci ARTERISIZ
uGKTELLIGH
< §a .
el P () €y KALRAY 88 LIGHTMATTER ladloortec
e groq Design service with
HUAWET e In-house IP
BaiEm e Bsiiicon
Automated Driving —~ A
T o - L brainchip € BROADCOM'
Smart Voice
. . GuUC
Q'{m — PEZY Computing 2 Risferred
Hewlett Pack
Enterprise ReneESAS IRokid| & Eta Compute (Feron
TOSHIBA g _—
FUﬁTSU A3 ey GREENWAVE! },s & o < FARADAY
F=Rm
@ 77 2 More on https://basicmi.github.io/Al-Chip/
Compilers Benchmarks
Western Digital.
L4 -
IR 4 TensorFlow & O GLOW L= A NVIDIA. TensorRT MLPerf AI - Benchmark Al Matrix.
@ piciaviL - nGraph OoNNC Gﬁg' DAWNBench

All information contained within this infographic is gathered from the internet and periodically updated, no guarantee is given that the information provided is correct, complete, and up-to-date.

&

S

Himax Accelerometer, Mic, N
WE-I Plus EVB Camera one
Mic, IMU, Temp,
Arduino Humidity, Gesture, BLE
Nano 33 BLE Sense Pressure, Proximity,
Brightness, Color

SparkFun Accelerometer, Mic, BLE
Edge 2 Camera

Espressif : -

Broadest Range of ML-optimized Processing Solutions

Cortex-A, Mali and
Ethos-N

TOP/s

Cortex-M55

Different Systems Applicable to Ethos-U

arm arm CORTEX-M based system
CORTEX- A/NEOVERSE based system

TrustZone for Armv8-M

Application Low Power Domain
Domain or Secure Enclave Ethos-U65 microNPU

High Performance
Configurable

Cortex-M Ethos-Ué65 MAC engine
Cortex-A/ Cortex-M

Neoverse ‘ processor Elementwise engine

(CPU) I Local memory
Address Filter

Weight decode

Interconnect 1 Control unit DMA

System FLASH System SRAM

System FLASH System SRAM

Serving
Challenges

|

Hardware

Missing Library Limited Operating

Heterogeneity Resource Constraints Features System Support

& e

Serving
Challenges

Hardware

Missing Library Limited Operating

Heterogeneity Resource Constraints Features System Support

| !—‘—\ !—‘—\
e L | Rl

on J oo

CPU GPU FPGA Flexible Dataflow Fixed Dataflow
Accelerator Accelerator*

< Flexibility
Efficiency >

* When the dataflow is optimal for a workload; Efficiency can drop under workload change

L Hardware Y

TinyML System Stack is Complicated

Machine learning system
stack is complicated sensers i S a

ML Applicaions PasonOclecion KewondSpoting Anomaly Defctn
Many different models, ML Datasets Visual Wake Words Goagle Speech ToyAOMOS
datasets, models, s MobieNet Moo R —
frameworks, formats, Training errtion oot
compilers, libraries, Sraph Formats e o
operating systems, targets e Tonsatiow i o o o
The cross-product makes opimes torenes S - e o
it challenging to decipher Speratng Sysems eEo os Rk zest Vo
system performance Hardware Targets Moy bse ey Accolerators

Apples-to-apples comparison

What task?
What model?
What dataset?
What batch size?
What quantization?
What software
libraries?

")

bench-mark

/'ben(t)SHmark/

See definitions in:

All

noun

o i

verb

Technology Surveying

a standard or point of reference against which things may be compared or assessed.
"a benchmark case”

Similar: standard I basis gauge criterion specification v

. asurveyor's mark cut in a wall, pillar, or building and used as a reference point in measuring

altitudes.

evaluate or check (something) by comparison with a standard.
"we are benchmarking our performance against external criteria”

Definitions from Oxford Languages Feedback

Benchmarking

Use to
* Compare solutions

Benchmarking

Use to

e Inform selection

Benchmarking

Use to

* Measure and track progress

Benchmarking

Use to

e Raise the bar, advance the
field

Benchmarking

Requires

* Methodology that is both fair
and rigorous

Benchmarking

Requires

« Community support and
consensus

Benchmarking

Provides

e Standardization of use cases
and workloads

Benchmarking

Provides

 Comparability across
heterogeneous HW/SW systems

Benchmarking

Provides

 Complex characterization of
system compromises

Benchmarking

Provides

* Verifiable and Reproducible
results

Benchmarking

Use to

* Compare solutions

* Inform selection

* Measure and track progress

e Raise the bar, advance the
field

Requires
* Methodology that is both fair
and rigorous

« Community support and
consensus

Provides

e Standardization of use cases
and workloads

 Comparability across
heterogeneous HW/SW systems

 Complex characterization of
system compromises

* Verifiable and Reproducible
results

MLPerf

Goals
v

Enforce performance
result replicability to

/ ensure reliable results
MLPerf

Goals

4
MLPerf

v/

Enforce performance
result replicability to
ensure reliable results

Use representative
workloads, reflecting
production use-cases

Goals

4
MLPerf

v/

Enforce performance
result replicability to
ensure reliable results

Use representative
workloads, reflecting
production use-cases

to improve the
state-of-the-art of ML

Goals

4
MLPerf

v/

Enforce performance
result replicability to
ensure reliable results

4%

Accelerate progress in
ML via fair and useful
measurement

Use representative
workloads, reflecting
production use-cases

to improve the
state-of-the-art of ML

Goals

4
MLPerf

v/

Enforce performance
result replicability to
ensure reliable results

4%

Accelerate progress in
ML via fair and useful
measurement

Use representative
workloads, reflecting
production use-cases

Akl

Serve both the
commercial and
research
communities

to improve the
state-of-the-art of ML

Goals

4
MLPerf

v/

Enforce performance
result replicability to
ensure reliable results

4%

Accelerate progress in
ML via fair and useful
measurement

Use representative
workloads, reflecting
production use-cases

Akl

Serve both the
commercial and
research
communities

to improve the
state-of-the-art of ML

%

Keep benchmarking
affordable so that all
can participate

Wide Array of ML Tasks

Audio Wake Words
Context Recognition
Control Words
Keyword Detection

Audio

Visual Wake Words
Object Detection
Image Gesture Recognition
Object Counting
Text Recognition

Segmentation
Physiological / Anomaly Detection
Behavioral Metrics Forecasting
Activity Detection

Sensing
Industry Telemetry Predictive Maintenance
Motor Control

Wide Array of ML Tasks

Audio Wake Words DNN
Audio Context Recognition CNN
Control Words RNN
Keyword Detection LSTM
Visual Wake Words DNN
. . CNN
Object Detection SVM
Image Gesture Recognition .
- . Decision Tree
Object Counting
I, KNN
Text Recognition .
Linear
Segmentation DNN
Physiological / Anomaly Detection Decision Tree
Behavioral Metrics Forecasting SVM
Activity Detection Linear
DNN
Sensing Decision Tree
Industry Telemetry Predictive Maintenance SVM
Motor Control Linear

Naive Bayes

Wide Array of ML Tasks

Audio

Image

Physiological /
Behavioral Metrics

Industry Telemetry

Audio Wake Words
Context Recognition
Control Words
Keyword Detection

Visual Wake Words
Object Detection
Gesture Recognition
Object Counting
Text Recognition

Segmentation
Anomaly Detection
Forecasting
Activity Detection

Sensing
Predictive Maintenance
Motor Control

DNN
CNN
RNN
LSTM

DNN
CNN
SVM
Decision Tree
KNN
Linear

DNN
Decision Tree
SVM
Linear

DNN
Decision Tree
SVM
Linear
Naive Bayes

Speech Commands
Audioset
ExtraSensory
Freesound
DCASE

Visual Wake Words
CIFAR10
MNIST
ImageNet
DVS128 Gesture

Physionet
HAR
DSA

Opportunity

UCI Air Quality
UCI Gas
UCI EMG

NASA's PCoE

A Principled Approach to Subsetting

What is the definition of a benchmark task?

A Principled Approach to Subsetting

What is the definition of a benchmark task?

Which benchmark task to select?

A Principled Approach to Subsetting
| BgQuesios | fence

What is the definition of a benchmark task?
Which benchmark task to select?

What is the measure of “performance” in ML systems?

A Principled Approach to Subsetting

What is the definition of a benchmark task?
Which benchmark task to select?
What is the measure of “performance” in ML systems?

How do submitters run on different hardware/software systems?

A Principled Approach to Subsetting
| BgQuesios | fence

What is the definition of a benchmark task?

Which benchmark task to select?

What is the measure of “performance” in ML systems?

How do submitters run on different hardware/software systems?

Quantization, calibration, and/or retraining?

A Principled Approach to Subsetting
| BgQuesios | fence

What is the definition of a benchmark task?

Which benchmark task to select?

What is the measure of “performance” in ML systems?

How do submitters run on different hardware/software systems?
Quantization, calibration, and/or retraining?

Do we normalize and/or summarize results?

MLPerf “Tiny” Tasks

Keyword Spotting

Audio Sample Data

Warden, Pete. "Speech commands: A dataset for limited-vocabulary Chowdhery, Aakanksha, et al. "Visual wake words dataset.”

speech recognition." arXiv preprint arXiv:1804.03209 (2018).

Visual Wake Words

Microphone array

(b) ‘Not-person’

Anomaly Detection

&

500 mm

90 deg

| \odeg
\ 100mm

D=t =6

270 deg.

500 mm

Side
rail

Purohit, Harsh, et al. "MIMII dataset: Sound dataset for

arXiv preprint arXiv:1906.05721 (2019). ‘malfunctioning industrial machine investigation and
inspection." arXiv preprint arXiv:1909.09347 (2019).

airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck

Tiny Image
Classification

& FRAETN
][L L B
(ol] BN - Bl [

]
-

- | [
(] = EY
yERE
LA &
R
(o [SFAP ©
HAliE
BXEEE
EEE e
o S TN

. [l IR T

Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple

layers of features from tiny images." (2009): 7.

MLPerf “Tiny” Tasks

Tiny Image

Keyword Spotting Visual Wake Words Anomaly Detection

30ms PunlJ
No Loud
- ne 124 ST - EIEHE
10000 g
- == =
n Sl WS b
— ol 3 hl =\
- - EEGEEE
- ()= wr WA ES
500 mm
3 w0 0 w0 w0 dog . ‘ & n “
w EEESESDE
o norse N R S 9 I I
oo Ll P
Average 2 (4 =
) we o Wl BN ED ES SN I
<43 values > iy
(b) ‘Not-person’
Warden, Pete. "Speech commands: A dataset for limited-vocabulary Chowdhery, Aakanksha, et al. "Visual wake words dataset.” Purohit, Harsh, etal. "MIMI| dataset: Sound dataset for Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple
speech recognition." arXiv preprint arXiv:1804.03209 (2018). arXiv preprint arXiv:1906.05721 (2019). malfunctioning industrial machine investigation and layers of features from tiny images." (2009): 7.

inspection." arXiv preprint arXiv:1909.09347 (2019).

Benchmarking

Dataset i Derive “Tiny”
dpéggilgg] selection (public Model selection MOdsg(;meg version: imEEqu?ﬁetcij @ harness szlqy <l b E>;]ampl|f
domain) Quantization plementatio integration evice enchmark run

INT8

Hbk

Problem AD

" Training Model FC-AE
Code
I—»'»h‘—»l Size 270 Kpar
Latency 10.4 ms/inf.

Accuracy .86 AUC

Energy 516 pJ/inf.

Dataset o Derive “Tiny” Benchmarking
dpéggilgg selection (public Model selection Modilotézmmg version: imEEEneeiqc:'fij o harness DZZI\% g n b eniﬁr;f -
domain) Quantization P integration

N

Dataset o Derive “Tiny” Benchmarking
dpéggilgg selection (public Model selection Modﬁlotézmmg version: imEE%eeCﬁ:S o harness Dz‘;l\?iz : n b enE:ﬁarrTaF:'llf -
domain) Quantization P integration

N——

Dataset o Derive “Tiny” Benchmarking
dtg?;gg:] selection (public Model selection MOdsg‘;meg version: imElizﬁweeﬁgtcij o harness Dz‘;l\?iz : n b eniﬁ?a?f -
domain) Quantization P integration

Dataset o Derive “Tiny” Benchmarking
dtg?;gg:] selection (public Model selection MOdsg‘;meg version: imElizﬁweeﬁgtcij o harness Dz‘;l\?iz : n b eniﬁ?a?f -
domain) Quantization P integration

Training
Code

Problem
definition

Dataset
selection (public
domain)

Derive “Tiny”
version:

Benchmarking
harness
integration

Embedded
implementation

Model training
code

Deploy on

Model selection .
device

Quantization

s

Training
Code

Example
benchmark run

Dataset o Derive “Tiny” Benchmarking
Problem : . . Model training . Embedded Deploy on Example
e selection (public Model selection version: . " harness 4
definition code Quantization implementation I integration | device benchmark run

b

Training
Code

Benchmarking

Dataset i Derive “Tiny”
dpéggilgg] selection (public Model selection Modslot(;(aelnlng version: imEEqu?ﬁetcij @ harness szlqy <l b E);]ampllf
domain) Quantization plementatio integration evice enchmark run

INT8

Hbk

Problem AD

" Training Model FC-AE
Code
I—»'»h‘—»l Size 270 Kpar
Latency 10.4 ms/inf.

Accuracy .86 AUC

Energy 516 pJ/inf.

Metrics

USB Hub

Runtime requirements have been met.
Performance results for window 10:

Inferences : 1000

Runtime s 10.524 sec.

Throughput : 95.020 inf./sec.
Runtime requirements have been met.

Metrics

Latency

Small fast dataset
Loop of inferences

No data-dependent
execution

Runtime requirements have been met.
Performance results for window 10:

Inferences : 1000
Runtime : 10.524 sec.
Throughput : 95.020 inf./sec.

Runtime requirements have been met.

DUT

Accuracy

Evaluate on larger dataset
Top-1accuracy & AUC

CLOSED: meet threshold
v,

OPEN: part o;‘ the metrics

Metrics
Latency Accuracy Energy

Small fast dataset) NO. -
! cherry-picking !

Loop of inferences o Evaluate on larger dataset e s |
Power Monitor]

Energy

Top-1accuracy & AUC e O Manager| | ETrSY

No data-dependent

]

ONL
201

AaNo

execution CLOSED: meet threshold

Vv Median result I
. GPIO/TRIG
. %| DUT
Runtime requirements have been met. bUT OPEN' part Of the metrICS UART
Performance results for window 10: °
Inferences : 1000
Runtime : 10.524 sec. .
Throughput : 95.020 inf./sec. '

Runtime requirements have been met.

V1.0 Results

Submitter

Board Name

mlcommons.org/en/inference-tiny-10

Processor(s) &
Number

Accelerator(s) & Number

Greenwaves Technologies |GAPS EVK GAP9 RISC-V Core (1+9) NE16 (1)

Greenwaves Technologies |GAPS EVK GAPS RISC-V Core (149) NE16 (1)

OctoML NRF5340DK nRF5340 Arm® Cortex®-M33

OctoML NUCLEO-L4R5ZI STM32L4R5ZIT6U [Arm® Cortex®-M4

OctoML NUCLEO-L4R5ZI STM32L4R5ZIT6U [Arm® Cortex®-M4

Plumerai B_U585I_IOT02A STM32U585 Arm® Cortex®-M33

Plumerai CY8CPROTO-062-4343w |PSoC 62 MCU Arm® Cortex®-M4

Plumerai DISCO-F746NG STM32F746 Am® Cortex®-M7

Plumerai NUCLEO-L4R5ZI STM32L4R5ZIT6U [Arm® Cortex®-M4

Silicon Labs xG24-DK2601B EFR32MG24 Am® Cortex®-M33 Silicon Labs MVP(1) (78 MHz, 1.8V)

STMicroelectronics NUCLEO-H7A3ZI-Q STM32H7A3ZIT6Q [Arm® Cortex®-M7

STMicroelectronics NUCLEO-L4R5ZI STM32L4R5ZIT6U [Arm® Cortex®-M4

STMicroelectronics NUCLEO-U575Z1-Q STM32U575Z1T6Q |Arm® Cortex®-M33

Syntiant NDP9120-EVL NDP120 MO + HiFi Syntiant Core 2 (98MHz, 1.1V)

Syntiant NDP9120-EVL NDP120 MO + HiFi Syntiant Core 2 (30MHz, 0.9V)
Next Generation Next Generation
Snapdragon Mobile Snapdragon Mobile

Qualcomm Innovation Center | Platform HDK Platform Qualcomm Kryo CPU(1) | Qualcomm Sensing Hub(1)

https://mlcommons.org/en/inference-tiny-10/

Select Keyword Spotting Results

Submitter SoC Accelerator |Accuracy |[Latency (mS) |Energy (uJ)
Syntiant

Syntiant NDP120 Core 2 90% 1.48 43.8

STMicroelectronics |STM32U575ZIT6Q |None 90% 44.2 1138.5

FPGA Energy Configuration

e ————— Powered USB 3.0 Hub

Computer
[T
:
LJ
usB (ol
®=
Qg
v)
10 DUT w E
—r
Manager | Level i
sv >l Shifters
UART RX - D10 | ; — UART TX FMOD A-2
.8 (JA1)
UART TX - D9 » . 7 | UART RX PMOD A-1
& Z (1a2)
TIMESTAMP - D3 [« T - TIMESTAMP
PMOD D-2
Arduino UNO BSS138 (JD2)
Iy
Measured 15 .y (VL)
SupPly (7V) 7.6 GND
no | Joulescope |
" JS110 B
111 Do *NOT* Connect Joulescope GPIO Header GND 111 Do *NOT* Connect
" Joulescope GFIO Header
All GND Pins for all Single or Dual Outpat GND 11

devices (except USB

Hub) Connected Z
together** Low-Noise DC Power Supply

Source:
Chu, Grace, et al. "Discovering multi-hardware mobile models via
architecture search." Proceedings of the IEEE/CVF Conference on

H a rd Wa r‘e Lotte ry P ro b | e m Computer Vision and Pattern Recognition. 2021.

0.78

o
~
o

Top-1 ImageNet Acc
(=] (=}
~ ~
N R

o
~
o

Top-1 ImageNet Acc
(=] (=]
~ ~
N L

o
~
o

g

25 50 75 100
Pixel4 CPU Float latency

2.0 25 3.0 35
Pixel4 EdgeTPU latency

0.78

o
~
(o))

Top-1 ImageNet Acc
=] o
~ ~
N IN

o
~
o

Top-1 ImageNet Acc
o (=)
~ ~
N IN

o
N
o

e
N
©

o
N
o

Top-1 ImageNet Acc
o o
~ ~
N s

o
~
S

10 20 30 25 50 75 100 125
Pixel4 CPU Uint8 latency Pixel4 GPU Adreno 640 latency

Mobilenet V1

Mobilenet V2

Mobilenet V3 Large
Mobilenet V3 Large min
Mobilenet-EdgeTPU
ProxylessNAS-Mobile
Multi-MAX

Multi-AVG

2ERRERK

3 4 5 6

Pixel4 DSP Qualcomm Snapdragon 855 latency

Emerging TinyML
Use Cases

Example: Smart shoes

Kicking
Penalty kicking
Passing
Dribbling

&ﬁkﬁ

@nea

J

JACQUARD

by Google

Emerging TinyML
Use Cases

Example: Augmented Reality

Eye tracking
Hand tracking
Computer vision
Superresolution

Toward Emerging Multi-DNN Models

Pipelined
DNNs

e Back-to-back execution
e Execution dependency

Toward Emerging Multi-DNN Models

Pipelined Concurrent
DNNs DNNs

e Back-to-back execution e Concurrent execution
e Execution dependency e Execution deadline

Toward Emerging Multi-DNN Models

Pipelined Concurrent Concurrent &
DNNs DNNs Pipelined DNNs

Foveated
Rendering

e Back-to-back execution e Concurrent execution e Challenges from both
e Execution dependency e Execution deadline pipelined and concurrent

4
MLPerf

v/

Enforce performance
result replicability to
ensure reliable results

4%

Accelerate progress in
ML via fair and useful
measurement

Use representative
workloads, reflecting
production use-cases

Akl

Serve both the
commercial and
research
communities

to improve the
state-of-the-art of ML

%

Keep benchmarking
affordable so that all
can participate

Landscape of Al benchmarking

Data
Collection

& Curation

Landscape of Al benchmarking

Data
Collection

& Curation

(&b
MLPerf

Training

Landscape of Al benchmarking

Data
Collection

& Curation

(b (4t
MLPerf MLPerf
Training Inference
oL o

MLPerf MLPerf

Mobile Tiny

Landscape of Al benchmarking

Data

Collection
& Curation

-4
MLPerf

Training

K4
MLPerf

Inference

- .
MLPerf MLPerf

Mobile Tiny

Landscape of Al benchmarking

Data
Collection
& Curation

4 W/
MLPerf MLPerf

Training Inference

- .
MLPerf MLPerf

Mobile Tiny

arXiv:2106.07597v4 [cs.LG] 24 Aug 2021

MLPerf Tiny Benchmark

Colby Banbury* Vijay Janapa Reddi* Peter Torelli’ Jeremy Holleman
Csaba Kiraly Pietro Montino* David Kanter** Sebastian Ahmed '’
Urmish Thakker' Antonio Torrini"" Peter Warden’ Jay Cordaro *Giusep
Javier Duarte!” Stephen Gibellini* Videet Parekh Honson Tran" I

Niu Wenxu"™" Xu Xuesong""

Abstract

Ad in ultra-low-pe tiny machine learning (TinyM
promise to unlock an entirely new class of smart applications. Ho'
tinued progress is limited by the lack of a widely accepted and easily ri
benchmark for these systems. To meet this need, we present MLPe
first industry-standard benchmark suite for ultra-low-p tiny machi
systems. The benchmark suite is the collab effort of more th
nizations from industry and academia and reflects the needs of the «
MLPerf Tiny measures the accuracy, latency, and energy of machi
inference to properly evaluate the tradeoffs between systems. Additiona
Tiny implements a modular design that enables benchmark submitters
benefits of their product, regardless of where it falls on the ML deploy
in a fair and reproducible manner. The suite features four benchmark
spotting, visual wake words, image classification, and anomaly detecti

1 Introduction

Machine learning (ML) inference on the edge is an increasingly attractive prospe
for increasing energy efficiency [4], privacy, responsiveness, and autonomy of
far, the field edge ML has predominantly focused on mobile inference, but i1
have been major strides towards expanding the scope of edge ML to ultra
The ﬁeld known as “TinyML” [1], achieves ML inference under a milliWatt,
the i power barrier p; ing widely distributed machine intelligel

, and , TinyML enables greater responsivenes
avoiding the energy cost w1lh wireless ion, which at th
than that of compute [5]. Furthermore the efﬁcrcncy of TinyML enables a cl
powered, alway l.hat can the real-time collectic
data. Deployi ML ions at this scale requires the co-optimizz
the ML deploymem stack to achieve the maximum efficiency. Due to this comp

“Harvard University, 'EEMBC, Syntiant |UNC Charlotte §Gm%le “Digital
**MLCommons '’ Qualcomm #STMicroelectronics 'SambaNova Systems "'Silicon Lak
VLatent Al V'Fermilab ¥"'Peng Cheng Labs

Preprint. Under review.

1911.02549v2 [cs.LG] 9 May 2020

arXiv

MLPerf Inference Ber

Vijay Janapa Reddi,* Christine Cheng,’ David Kai

Guenther Schmuelling,¥ Carole-Jean Wu,| Brian Andersc

Mark Charlebois,t William Chou,!" Ramesh Chukka,’ Cc

Pan Deng,m" Greg Dia.mos,“ Jared Duke,§ Dave Fick,m 1 §
Sachin Idgunji,** Thomas B. Jablin,} Jeff Jiao," Tom St

David Lee, " Jeffery Liao,"" Anton Lokhmotov,™" Franci
Paulius Micikevicius,** Colin Osborne,” Gennady Pekhimenko,"
Dilip Sequeira,** Ashish Sirasao,”™ Fei Sun,”™" Hanlin T

Frank Wei,”" Ephrem Wu,” Lingjie Xu,™"" Koichi

George Yuan,** Aaron Zhong," Peizhao Zhang,

*Harvard University fIntel fReal World Insights Google IMicrosoft
#Stanford University “Myrtle “Landing AI *'Mythic " Advanta

*' Alibaba T-Head ™ Facebook (formerly at MediaTek) " OPPO (forn
hUniversily of Toronto & Vector Institute “Xilinx " Tesla ™4

" Centaur Technology *** Alibaba Cloud " General Motors " Tencent *

Ab. Machine-I

) and software sys- of use cases by
tem demand is burgeonmg. Driven by ML applications, the ware, Estimates
number of different ML inference systems has exploded. Over e
100 organizations are building ML inference chips, and the ;%emallmd.mf(
systems that incorporate existing models span at least three companies 3
orders of magnitude in power consumption and five orders of ~ Each ML s
magnitude in performance; they range from embedded devices trading off later
to data-center solutions. Fueling the hardware are a dozen or regult is many
more software frameworks and libraries. The myriad combina- data sets, frand
tions of ML lm.rdwnre and ML software make assessing ML- ference engit
system
and reproducible manner challengrng There |s a clear need performance ne
for industry-wide standard ML and including but n
criteria. MLPerf Inference answers that call. In llus paper, we tjon, object det
present our ing method for ML inference ;i matic speel
systems. Driven by more than 30 organizations as well as more i i
than 200 ML engineers and practitioners, MLPerf prescribes a ations. Even f
set of rules and best practices to ensure comparability across many ML mod
systems with wildly differing architectures. The lirst call for of scenarios fr¢

submissions garnered more than 600 i al
from 14 izati i -

i multiple camer

over 30 systems that showcase a wide range of capabilities. The ML tasks have

submissions attest to the benchmark’s flexibility and adaptability. ™)
time processing
model’s functic
specific, and th
To quantify the
Machine learning (ML) powers a variety of applications that is architect
from computer vision ([20], [18], [34], [29]) and natural- Both academ
language processing ([50], [16]) to self-driving cars ([55], [6]) ML inference
and autonomous robotics [32]. Although ML-model training ~AIMatrix [3], E
has been a development bottleneck and a considerable ex- industry, as wel
pense [4], inference has become a critical workload. Models and DAWNBer
can serve as many as 200 trillion queries and perform over substantial cont
6 billion translations a day [31]. To address these growing developed with
i demands, software, and system de- signers. As a r
velopers have focused on inference performance for a variety ~machine learnit

Index Te Machine Learning, Infe

I. INTRODUCTION

arXiv:2207.10062v4 [cs.LG] 13 Oct 2023

DataPerf:
Benchmarks for Data-Centric AT Development

Mark Mazumder!, Colby Banbury!, Xiaozhe Yao?, Bojan Karlas?, William Gaviria Rojas®,
Sudnya Diamos®, Greg Diamos*, Lynn He’, Alicia Parrish °, Hannah Rose Kirk'®, Jessica Quaye',
Charvi Rastogi'2, Douwe Kiela!®??, David Jurado’?', David Kanter’, Rafael Mosquera’',
Juan Ciro”?!, Lora Aroyo’, Bilge Acun®, Lingjiao Chen', Mehul Smriti Raje*, Max Bartolo'’%,
Sabri Eyuboglu'?, Amirata Ghorbani'®, Emmett Goodman'®, Oana Inel'?, Tariq Kane*?,
Christine R. Kirkpatrick'!, Tzu-Sheng Kuo'2, Jonas Mueller'3, Tristan Thrush!?,

Joaquin Vanschoren'*, Margaret Warren'%, Adina Williams®, Serena Yeung'?, Newsha Ardalani®,
Praveen Paritosh’, Lilith Bat-Leah”, Ce Zhang?, James Zou!'?, Carole-Jean Wu®, Cody Coleman?,
Andrew Ng*>!0, Peter Mattson®, and Vijay Janapa Reddi'

!Harvard University, 2ETH Zurich, *Coactive.Al, “Landing Al, DeepLearning.Al, "’MLCommons,
$Meta, *Google, '°Stanford Umversrty. !1San Diego Supercomputer Center, UC San Diego,
2Carnegie Mellon University, '*Cleanlab, '*Eindh of Technol
SInstitute for Human and Machine Cognition, '°Kaggle, '7Cohere, 18University of Oxford,
9University of Zurich, 2°University College London, > Factored, *2Contextual Al

Abstract

Machine learning research has long focused on models rather than datasets, and
prominent datasets are used for common ML tasks without regard to lhe breadth,
difficulty, and faithfulness of the underlying
tal importance of data has given rise to inaccuracy, bias, and fraglhty in real-world
applications, and research is hindered by saturation across existing dataset bench-
marks. In response, we present DataPerf, a community-led benchmark suite for
evaluating ML datasets and data- centnc algorllhms We alm to fosv.cr mnovauon
in data-centric AI through We

enable the ML community to iterate on datasets, instead of just archrtectures and
we provide an open, online platform with multiple rounds of challenges to support
this iterative development. The first iteration of Dala.Perf contains five benchma.rks

covering a wide spectrum of dat tric tasks, and ies in vi-
sion, speech, acquisition, debugging, and diffusion promptmg. and we support
hosting new contributed ks from the The hmarks, on-

line evaluation platform, and baseline implementations are open source, and the
MLCommons Association will maintain DataPerf to ensure long-term benefits to
academia and industry.

1 Introduction

Machine learning research has over focused on imp: g models rather than on im-
proving datasets. Large public datasets such as ImageNet [14], Freebase [7], Switchboard [22], and
SQuAD [44] serve as compasses for benchmarking model performance. Consequently, researchers
eagerly adopt the largest existing dataset without fully considering its breadth, difficulty and fidelity
to the underlying problem. Critically, better data quality [2] is increasingly necessary to improve
generalization, avoid bias, and aid safety in data cascades [48]. Without high-quality training data
models can exhibit performance discrepancies leading to reduced accuracy and persistent fairness

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Bench-
marks.

Paper Discussions

The Need for Agile and Full-Stack
Frameworks

General-Purpose Highly-Specialized
Compute/Design Compute/Design
e —

- —
CPU/MCU | Full-Blown Discrete

CPU + CFU Accelerator

The Need for Agile and Full-Stack
Frameworks

General-Purpose Highly-Specialized
Compute/Design Compute/Design
e —

- —
CPU/MCU | Full-Blown Discrete

CPU + CFU Accelerator

The Need for Agile and Full-Stack
Frameworks

General-Purpose Highly-Specialized
Compute/Design Compute/Design
e —

- —
CPU/MCU | Full-Blown Discrete

CPU + CFU Accelerator

The Need for Agile and Full-Stack
Frameworks

General-Purpose Highly-Specialized
Compute/Design Compute/Design
e —

- —
CPU/MCU | Full-Blown Discrete

CPU + CFU Accelerator

The Need for Agile and Full-Stack
Frameworks

Deploy Profile Optimize

[0)
®
= _ Custom
L= e TFLM OPs
S o
w =

§ a RISC-V Cycle Custom

9 Compiler Counters Instructions
o ©
5O
= Svmbiflow Resource Custom CFU /
_g y Monitors Memory Hierarchy
I

Repeat

Agile Design Methodology

The Need for Agile and Full-Stack
Frameworks

Software

Gateware

rdware

Full-Stack Open-Source Framework

The Need for Agile and Full-Stack
Frameworks

Software

Gateware

Hardware

Tensorflow Lite for

Common Libraries .
Microcontrollers

RISC-V Compiler

LiteX VexRISC-V
SoC CPU

FAPGA / Yosys+Nextpnr / Vivado / Radiant

LiteX Supported
FPGA board

Deploy Profile Optimize

Full-Stack Open-Source Framework

The Need for Agile and Full-Stack
Frameworks

Software

Gateware

Hardware

. MLPerf Tiny
Renode Emulation Benchmarks

Tensorflow Lite for

Microcontrollers Lhealal il

Common Libraries

RISC-V Compiler

Cycle Counters

LiteX VexRISC-V
SoC CPU

FAPGA / Yosys+Nextpnr / Vivado / Radiant

LiteX Supported

FPGA board Resource Monitoring

Deploy Profile Optimize

Full-Stack Open-Source Framework

The Need for Agile and Full-Stack
Frameworks

g
G
£
o
N

Gateware

rdware

. Deploy - Profile - Optimize

Full-Stack Open-Source Framework

Related Works

Open Full Full | Tightly Coupled/ Fine-Grained Hardware & Engineer Stock Automated CPU<>Accelerator | TinyML
Source | Stack | SoC | Specialized ISA | Accelerated ML Ops In-The-Loop Compiler Design Space Exploration Focus
CFU Playground l v | v | v l v/ v v/ v/ l v ‘
Chipyard [20] v v v v v v v X X
Centrifuge [21] v v v v v v X X X
Embedded Scalable Platform [22] v v v X X v v X X
Gemmini [23] v v 4 X X X v X X
hls4ml [24] v X v X X v X X v
Deepburning [25] 4 v v X X X X X X
DNN-Weaver [26] v v X 4 X X X X X
DNN-Builder [27] v v X X X X X X X
FINN [28] 4 X X X X X X X X

TABLE III: Comparison of CFU Playground with open-source toolchains supporting custom hardware design for ML workloads.
CFU Playground focuses on open-source development across the full system stack, while providing varying levels of flexibility
for hardware and software (co-)design.

Accelerating TinyML on FPGAs

Specialized Hardware Customization (on FPGAs)

Real World Use Case

Chromebook Sensor Designed with CFU Playground

CFU Playground

Software

Gateware

Hardware

. Deploy - Profile - Optimize

Full-Stack Open-Source Framework

CFU Playground

) . Custom TFLM MLPerf Tiny
® Renode Emulation Kernels Benchmarks
- .
8 Common Libraries Teqson‘low Lite for Model Profiling
Microcontrollers

RISC-V Compiler
®
2
9
©
(O]

FAPGA / Yosys+Nextpnr / Vivado / Radiant
2
© :
LiteX S rted

-E FIPeG A buopaprg N Resource Monitoring
©
I

- Deploy - Profile - Optimize

Full-Stack Open-Source Framework

Custom Function Units (CFU)

funct7 rs2 rsl funct3 rd opcode \

[Register File_] :
[1
! Yy

I
ALU funct,)\ cFu

[
i
\ CPU ICFU /

Acceleration via Custom Function Unit (CFU)

System On-Chip (SoC) Integration

System On-Chip (SoC) Integration

/ ,r"c‘:a‘gt"nr‘\
VexRiscv CPU | Function
{__Unit ___

System On-Chip (SoC) Integration

f Custom
VexRiscv CPU | Function |

< 32-bit Wishbone Bus >

d>__

3 RAM 256MB
USB-UART 2 Driver DDR RAM
o
o
-EBE w LiteX SOC/

~
G

Software

Gateware

Hardware

System On-Chip (SoC) Integration

; Custom TFLM MLPerf Tiny
Renode Emulation Kernels Benchmarks
Tensorflow Lite for

Microcontrollers Model Brofiling

Common Libraries

RISC-V Compiler

FAPGA / Yosys+Nextpnr / Vivado / Radiant

LiteX Supported

FPGA board Resource Monitoring

- Deploy . Profile - Optimize

Software

CFU Software Interface

. Custom TFLM MLPerf Tiny
Renode Emulation Kernels Benchmarks
Common Libraries Ter!sorflow Ltz i Model Profiling
Microcontrollers
[RISC-V Compiler]

Deploy Profile Optimize

Access new instruction as C function call:
rslt = cfu_op(funct3, funct7, opl, op2);

‘ Compile-time constants ’ ‘ C / C++ variables / expressions

Software

CFU Software Interface

. Custom TFLM MLPerf Tiny
Renode Emulation Kernels Benchmarks
Common Libraries UEERniten O ey Model Profiling

Microcontrollers

[RISC-V Compiler]

Custom instruction macros intermix with plain C code
t1l = *x;

t2 = cfu_op(0, 0, t1, b);
t3 = cfu_op(1, 0, t2, b);
*x = 13;

Deploy Profile Optimize

Software

CFU Software Interface

. Custom TFLM MLPerf Tiny
Renode Emulation Kernels Benchmarks

Tensorflow Lite for

Microcontrollers ModellRrefiling

Common Libraries
Custom instruction macros intermix with plain C code
t1 = *x;

t2 = cfu op(0, 0, t1, b);

t3 = cfu_op(1, 9, t2, b);

*x = 13;

Compiled and disassembled:

400001a0: 00812783 1w a5,8(sp)
400001a4: 00d7878b cfu[@,0] a5, a5, a3
400001a8: 00d7978b cfu[@,1] a5, a5, a3

400001lac: 00112423 SW a5,8(sp)

W Deploy Profie Optimize _

[RISC-V Compiler]

Software

ML Deployment Framework

const int32_t input_offset = params.input_offset; // r = s(q - Z)

Renode Emulati Custom TFLM MLPerf Tiny
enoae cmulation
Kernels Benchmarks for (int batch = @; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
. . Tensorflow Lite for " const int in_y_origin = (out_y * stride_height) - pad_height;
Common Libraries [Microcontrollers] Model Profiling for (int out_x = @; out_x < output_width; ++out_x) {
const int in_x_origin = (out_x * stride_width) - pad_width;

for (int out_channel = @; out_channel < output_depth; ++out_channel) {
int32_t acc = 0;
RISC-V Compiler for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
const int in_y = in_y_origin + dilation_height_factor * filter_y;
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;

// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= @) & (in_x < input_width) && (in_y >= @) &&
(in_y < input_height);

if (!is_point_inside_image) {
continue;

¥

for (int in_channel = @; in_channel < input_depth; ++in_channel) {
int32_t input_val = input_data[Offset(input_shape, batch, in_y,
in_x, in_channel)];
int32_t filter_val = filter_data[Offset(
filter_shape, out_channel, filter_y, filter_x, in_channel)];

acc += filter_val * (input_val + input_offset);
}
. o }
Deploy Profile Optimize }

(use acc)

Software

Accelerated Kernels

Renode Emulation [

Custom TFLM
Kernels

]

Common Libraries

Deploy

Tensorflow Lite for
Microcontrollers

RISC-V Compiler

Profile

MLPerf Tiny
Benchmarks

Model Profiling

Optimize

const int32_t input_offset = params.input_offset; // r = s(q - Z)
// CFU: copy input_offset into the CFU
» cfu_init_offset(input_offset);

for (int batch = @; batch < batches; ++batch) {
for (int out_y = @; out_y < output_height; ++out_y) {
const int in_y_origin = (out_y * stride_height) - pad_height;
for (int out_x = @; out_x < output_width; ++out_x) {
const int in_x_origin = (out_x * stride_width) - pad_width;
for (int out_channel = ©; out_channel < output_depth; ++out_channel) {

//int32_t acc = 0;
// CFU: set the CFU internal acc to ZERO

cfu_clear_acc();

for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
const int in_y = in_y_origin + dilation_height_factor * filter_y;
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;

for (int in_channel = ©; in_channel < input_depth; ++in_channel) {
int32_t input_val = input_data[Offset(input_shape, batch, in_y,
in_x, in_channel)];
int32_t filter_val = filter_data[Offset(
filter_shape, out_channel, filter_y, filter_x, in_channel)];

// acc += filter_val * (input_val + input_offset);
// CFU: add-multiply-accumulate in the CFU
. cfu_macc_with_offset(filter_val, input_val);
}

}
}

// CFU: retrieve final acc value from the CFU
. int32_t acc = cfu_get_acc();

Hardware

Hardware In-The-Loop

F4PGA / Yosys+Nextpnr / Vivado / Radiant

LiteX Supported -
FPGA board Resource Monitoring

Deploy Profile Optimize

Diverse Family of FPGA Boards

Hardware

Hardware In-The-Loop

F4PGA / Yosys+Nextpnr / Vivado / Radiant

LiteX Supported -
FPGA board Resource Monitoring

Deploy Profile Optimize

Diverse Family of FPGA Boards

Hardware

Hardware In-The-Loop

F4PGA / Yosys+Nextpnr / Vivado / Radiant

LiteX Supported -
FPGA board Resource Monitoring

Deploy Profile Optimize

Diverse Family of FPGA Boards

FPGA Acceleration for Image
Classification

FPGA Acceleration for Image
Classification

Start with Software Optimizations!

Bias | Shift | Offset
Store | Store | Store

Storage

Post Processor | | |
Calculation Pipeline
Control

(= Y

FPGA Acceleration for Image
Classification

2 N

Bias | Shift | Offset

Storage

Post Processor | | |
Calculation Pipeline
Control

(= y

FPGA Acceleration for Image
Classification

-

~

— | FilterValueFetcher |

ias | Shift | Offset
ore | Store | Store

Storage

Post Processor | | |
Calculation Pipeline

Control

(= Y

FPGA Acceleration for Image
Classification

-

~

— | FilterValueFetcher |

v
InputStore

Control Logic

| Madd4 Pipeline |

i
>

Y Bias | Shift | Offset

Accumulator Store | Store | Store
Storage
Post Processor | | |
Calculation Pipeline
Control

(= Y

FPGA Acceleration for Image
Classification

—»| FilterValueFetcher

v
InputStore

Control Logic

| Madd4 Pipeline |

i
>

Y Bias | Shift | Offset

Accumulator Store | Store | Store
Storage
Post Processor | | |
Calculation Pipeline
ByteToWor:
Control ytghi?terc d

Output FIFO

CFU

FPGA Acceleration for Image
Classification

Image Classification on Arty

B DSP % Block Mem % [Slice LUTs %

80
)
=
kS
b
N 40
5
(0]
°
3 20
[
[0)
o

> A
5T FF S8 S
S O Q¥ v ¥ & ¢ & L g
h I T EIFF FSFS
e p & FFPLS
S & SR

FPGA Acceleration for Image

Classification

Image Classification on Arty

@ Speedup

Block Mem % [Slice LUTs %

B DSP %

100

80

o
Yo}

(e]eos Boj) Jojoe) dnpaadg

(@]
T IO S =

(@] o o
O < N

(%) uonezin 80IN0say

FPGA Acceleration for Image
Classification

Image Classification on Arty

B DSP % Block Mem % [Slice LUTs % @ Speedup

80
47.59

2631 2979 31512

Resource utilization (%)

100

50

10

1

Speedup factor (log scale)

FPGA Acceleration for Image
Classification

Image Classification on Arty

B DSP% Block Mem % [Slice LUTs % @ Speedup

80
47.59

2631 2979 31512

Resource utilization (%)

2x speedup from SW Optimizations

100

50

10

Speedup factor (log scale)

FPGA Acceleration for Image
Classification

Image Classification on Arty

B DSP% Block Mem % [Slice LUTs % @ Speedup

80
47.59

2631 2979 31512

Resource utilization (%)

Total 55x speedup in 5 weeks

100

50

10

Speedup factor (log scale)

Human Presence Sensor

e |nChromebook:
o Anisolated camera+ML
subsystem embedded in the
display bezel

e User features:
o Keep awake while present
o Dimonleave
o Wake on approach
o Eavesdropper warning

FPGA Acceleration for Keyword Spotting

FOMU FPGA

FPGA Acceleration for Keyword Spotting

128

/5% speedup on model inference

H ° b Y | ° °
How it started: How it's going:
Running MLCommons Tiny V©.1 Keyword Spotting Running MLCommons Tiny V©.1 Keyword Spotting

Error reporter OK! Error reporter OK!
Input: 490 bytes, 4 dims: 1 49 10 1 Input: 490 bytes, 4 dims: 1 49 10 1

Tests for kws model Tests for kws model

: Run with "down" input : Run with "down" input

: Run with "go" input : Run with "go" input

: Run with "left" input : Run with "left" input

: Run golden tests (check for expected outputs) : Run golden tests (check for expected outputs)
: eXit to previous menu : eXit to previous menu

FPGA Acceleration for Keyword Spotting

Keyword Spotting on FOMU

B DSP % Block Mem % [Slice LUTs % @ Speedup
100

I I l 4'60I8 L
2963 32.10 L L 50 @
g7 ' -
c 15.35 16.76 @
he ()}
= =)
g 50 7.841 8.30 10 =
= (o]
= 2
4,05 ©
8 3.04 5 £
3 25 S
©
€ s}
Q)
o 1.00 (%

75x speedup in under 4 weeks

Design Space Exploration

(CFU) Accelerator vs (Soft) CPU

General-Purpose

Highly-Specialized
Compute/Design

Compute/Design
< I_\ I >
CPU/MCU

CPU + CFU

Full-Blown Discrete
Accelerator

(Manual) Design Space Exploration

(CFU) Accelerator vs (Soft) CPU

General-Purpose

Highly-Specialized
Compute/Design

Full-Blown Discrete

Compute/Design
e — =
CPU/MCU CPU 1 CFU

Accelerator

Software
Gateware

Hardware

Deploy Profile Optimize

| Custom '
1A TFLMOPs

_ RISC-V Cycle Custom
Compiler Counters Instructions

— Resource Custom CFU /
Syn]b!ﬂow Memor\/ HierarChy

Repeat

(Automated) Design Space Exploration

(CFU) Accelerator vs (Soft) CPU

Software

Gateware

Hardware

. Deploy (] Profile [] Optimize

(Automated) Design Space Exploration

(CFU) Accelerator vs (Soft) CPU CFU Playground

(Automated) Design Space Exploration

(CFU) Accelerator vs (Soft) CPU CFU Playground

(Automated) Design Space Exploration

(CFU) Accelerator vs (Soft) CPU CFU Playground

—

2

Design Space Exploration: CFU vs CPU

Clock Cycles

107 -

| | L} 1 | 1
15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Design Space Exploration: CFU vs CPU

CPU Alone

g CPU + CFU2 (Small)
CPU + CFU1 (Large)

- Y Pareto-Optimal Design

@ |Inefficient Design

10°

Clock Cycles

15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Design Space Exploration: CFU vs CPU

*“ CPU Alone
il * CPU + CFU2 (Small)
X CPU + CFU1 (Large)
- * A Y Pareto-Optimal Design
o @ Inefficient Design

w

10°

»
»
N ‘
N
N
~
~N
\‘
b)
~
\ ~
~
~
\.

Clock Cycles

15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Design Space Exploration: CFU vs CPU

& CPU Alone

i ® CPU + CFU2 (Small)
I CPU + CFU1 (Large)

I Y Pareto-Optimal Design

@ Inefficient Design

10° ™

Clock Cycles

15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Design Space Exploration: CFU vs CPU

% CPU Alone
il CPU + CFU2 (Small)
|| CPU + CFU1 (Large)
\ % Pareto-Optimal Design
1 @ Inefficient Design
\
\
\

: ‘o
1d =,

Clock Cycles

15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Design Space Exploration: CFU vs CPU

CPU Alone
CPU + CFU2 (Small)
CPU + CFU1 (Large)
Y Pareto-Optimal Design
@ |Inefficient Design

10°

Clock Cycles
*
/
&
4
/
ar
/
/
/
//
/
’.00

15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Design Space Exploration: CFU vs CPU

*“ @ % CPU Alone
1 = ¢ CPU + CFU2 (Small)
CPU + CFU1 (Large)

|

‘, Y Pareto-Optimal Design

: \ @ Inefficient Design
\
\
\

10°

Clock Cycles
») *
/
&
4
/
% o\
J J/b
/
/

15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Design Space Exploration: CFU vs CPU

*“ @ % CPU Alone
g * CPU + CFU2 (Small)
CPU + CFU1 (Large)

|
- * %\I ‘, % Pareto-Optimal Design
: ® \ @ Inefficient Design
i R '
” \
. 1 4] \
! N
@ \“ i ~ ‘ \\
Q9 w ~
S\ : "8
o *—R
= 9
g 107 5 Fewer Resources \Gle
o il R
o » N\
NN v

15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Design Space Exploration: CFU vs CPU

**‘ & % CPU Alone
1 = ¢ CPU + CFU2 (Small)
CPU + CFU1 (Large)

!
- * A ', Y Pareto-Optimal Design
' 1 @ Inefficient Design
ll \ .. \
N \
- 1 4 @ \
\ N
0 * % \
- 'Y N
2 : R
= 9
g 107 5 Fewer Resources, amy
— ~
o . Same Latency S
ot N
AN < *

15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Design Space Exploration: CFU vs CPU

CPU Alone
CPU + CFU2 (Small)
CPU + CFU1 (Large)
Y Pareto-Optimal Design
@ |Inefficient Design

10°

Clock Cycles
*
/
&
4
/
Y,
ol 2
/
/
//
/
pr -9

15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Design Space Exploration: CFU vs CPU

*“ @ % CPU Alone
1 = ¢ CPU + CFU2 (Small)
CPU + CFU1 (Large)

|

‘, Y Pareto-Optimal Design

: \ @ Inefficient Design
\
\
\

@
1 =% »
- 1 4 @

\ N
N \“ 5 ~ ‘ \\
g '

\ \'

) e (R ‘
5 10° g \’/
8 3 e Lower Latency, B
(3) il T+

15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Design Space Exploration: CFU vs CPU

*“ @ % CPU Alone
g * CPU + CFU2 (Small)
CPU + CFU1 (Large)

|
- * %\I ‘, % Pareto-Optimal Design
: \ @ Inefficient Design
1 &) i
| N .. \
y | e :
! N
@ \“ i ~ ‘ \\
$ ¢ O
N
3 * » ‘
¥ 10° Ty \/
3 3 o Lower Latency, B2
O - * Same Resources .
o N\

15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Design Space Exploration: CFU vs CPU

*N [] % CPU Alone
. > "’ CPU + CFU2 (Small)
N || CPU + CFU1 (Large)
. I \ Y Pareto-Optimal Design
@ Inefficient Design
C ° ‘\
,0%4 :
" v
2
3]
>
(&)
S 109 .
k) =
(&) -
i VY
Yy,
T T ¥ T T 4 /OLI/O DN E—
15000 17500 20000 22500 25000 2750u CC@/G 0/;9 "0

V9 Cre
FPGA Logic Cells o, o

Key Takeaways

1.

Full-stack framework that integrates open-source

tools to facilitate community-driven research.

Agile methodology to iteratively design and evaluate

tightly-coupled, bespoke TinyML accelerators.

Unique model-specific resource allocation

trade-offs between CFU, CPU, and memory.

Automated design space exploration of the CPU

paired with a CFU using Vizier.

2023 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

CFU Playground: Full-Stack Open-Source
Framework for Tiny Machine Learning (TinyML)
Acceleration on FPGAs

Shvetank Prakash* Tim Callahan! Joseph Bushagour® Colby Banbury*
Alan V. Green! Pete Warden” Tim Anselll Vijay Janapa Reddi*

*Harvard University 1Google $Purdue University "Stanford University

Abstract—Need for the efficient processing of neural networks
has given rise to the development of hardware accelerators.
The increased adoption of specialized hardware has highlighted
the need for more agile design flows for hardware-software
co-design and domain-specific optimizations. In this paper, we
present CFU a full-stack op
that enables rapid and iterative design and evaluation of machine
learning (ML) accelerators for embedded ML systems. Our tool
provides a P d-to-end flow for hard
software co-design on FPGAs and future systems research.
This full-stack framework gives the users access to explore
experimental and bespoke architectures that are customized
and co-optimized for embedded ML. Our rapid, deploy-profile-
optimization feedback loop lets ML hardware and software
developers achieve significant returns out of a relatively small
i in ization. Using CFU s design and
evaluation loop, we show substantial speedups between 55x and
75x. The soft CPU coupled with the accelerator opens up a new,
rich design space between the two components that we explore
in an automated fashion using Vizier, an open-source black-box
optimization service.

L. INTRODUCTION

Tiny machine learning (TinyML) is a fast-growing field at
the intersection of ML algorithms and low-cost embedded
systems. It enables on-device sensor data analytics (vision,
audio, IMU, etc.) at ultra-low-power consumption. Processing
data close to the sensor allows for an expansive new variety
of always-on ML use-cases that preserve bandwidth, latency,
and energy while improvi i and maintaini;
privacy [1]. Given the need for energy efficiency when running
ML on these embedded platforms, custom processor support
and hardware accelerators for such systems could present the
needed solutions. However, the field of ML is still in its
infancy and fast-changing. Thus, it is desirable to avoid a
massive non-recurring engineering (NRE) cost upfront, espe-
cially for low-cost embedded ML systems. Building ASICs is
both costly and time-consuming. Moreover, since embedded
systems are often task-specific, there is an opportunity to avoid
general-purpose ML accelerators and instead explore task and
model-specific ML acceleration methods. This setting presents
the need for an agile design space exploration tool that allows
us to adapt to the changing landscape of ML and hardware.

To enable holistic hardware-software co-design and eval-
uation of domai ific performance optimizations easily,

979-8-3503-9739-0/23/531.00 ©2023 IEEE
DOI 10.1109/ISPASS57527.2023.00024

157

CFU Playground

) IO e
PR T e
e

e Pom—

- Ocsioy Protie Optimize

Area
Fig. 1: CFU Playground allows users to design and evaluate
model-specific ML enhancements to a “soft” CPU core. The
Playground is wrapped around Vizier, an open-source black-
box optimization service, to enable ML-driven design space
exploration.

we present CFU Playground.! It is a full-stack open-source
for iteratively (deploy—sprofile—soptimize) explor-
ing the design space of lightweight accelerators in an ag-
ile manner (Figure 1). The framework is unique in that it
couples together various open-source software (TensorFlow
Lite Micro/TFLM, GCC), open-source RTL generation IP and
toolkits (LiteX, VexRiscv, Migen, Amaranth), and open-source
FPGA tools for synthesis, place, and route (yosys, nextpnr,
F4PGA/SymbiFlow, etc.). By using open source for the entire
stack, we enable the end-user to customize and co-optimize
hardware and software, resulting in a specialized solution
unencumbered by potential licensing restrictions and not tied
to a particular FPGA, board, or vendor. CFU Playground
yields large returns out of a relatively small investment in
customized hardware and is useful for the long tail of low-
volume applications.
Yet another novelty of CFU Playground is in its ability to
design custom function units (CFUs) for distinct ML opera-
tions. CFUs represent a novel design space that balances ac-

!CFU Playground is available at www.github.com/google/CFU-Playground.

Paper Discussions

Why are we reading these papers?

What are the important things we learn from these papers?

What can we compare and contrast with these papers?

Guest Speaker

Hardik Sharma

Hardik is the Director of Hardware
Engineering at Bigstream. His
research interests are domain
specific hardware architectures for
accelerating machine learning. He
led the development of the first
open-source FPGA-based
hardware acceleration stack for
DNNs at Georgia Tech.

Website

Google Scholar

https://hardiksharma.netlify.app/
https://scholar.google.com/citations?user=WxlqsisAAAAJ

