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Course Logistics




Assignment - Why, What, How

e Assignment 1
o  Why: Vision (Camera) use cases + Dataset generation
o  What: End-to-end ML workflow
o  How: Frameworks (Edge Impulse) + Embedded Hardware (Nicla)
e Assignment 2
o Why: Audio (Microphone) use cases
o  What: ML Pipeline (Data preprocessing + Model optimizations)
o How: NAS (Edge Impulse) + Quantization/Pruning (TFLite)
e Assignment 3 - Model development
o Why: Time series (IMU) use cases
o  What: ML frameworks programming (Tensorflow/TFLite/TFLM)
o How: Bare metal implementation of end-to-end ML workflow
e Assignment 4 - Responsible Al
o  Why: Sustainability + Responsibility
o  What: Sustainability-aware system design and safe Al
o How: TinyML Footprint + Adversarial Nibbler



Assignment 2

e Due tonight 11:59pm

e Any questions?
e Please check out the #assignment2 slack channel for updates and answers

to frequently asked questions



Assignment 3: Magic Nicla Wand

Due: November 6 at 11:59 pm

Objective:
e Explore Tensorflow ecosystem (Tensorflow ->
Tensorflow Lite -> Tensorflow Lite Micro)
e Model Optimization (quantization/pruning)
using IMU data from Arduino Nicla Vision

Extra Credit: Deployment of model on Nicla



Scribing (again!)

e Week of topic

O

O

Meet with Matthew & VJ

Create a google doc

Share with staff

Iterate on rough outline with VJ/Matt
After ¢k from staff, put changes in a
single forked repo

Create one PR with the entire chapter
Classmates will peer review using the
PR
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for TinyML

ABSTRACT

Machine Learning Systems for TinyML offers comprehensive guidance on
deploying machine learning on embedded devices. As edge computing and
the Internet of Things proliferate, this textbook provides professionals and
students the expertise to implement performant Al on resource-constrained
hardware. A unique aspect of this book elucidates the entire machine
learning workflow, from data engineering through training, optimization,
acceleration, and production deployment. Key topics covered include deep
learning and classical ML algorithms for embedded systems, efficient neural
network architectures, hardware-aware training techniques, model
compression, benchmarking for tinyML, and on-device learning. Additional
chapters highlight cutting-edge advances like on-device data generation
and crucial considerations around reliability, privacy, security, and
responsible Al. With its rigorous approach spanning theory and practice
across diverse tinyML application domains like smart homes, wearables,
and industrial loT, the book enables readers to develop specialized
knowledge. Using concrete use cases and hands-on examples, readers will
learn to apply machine learning to transform embedded and loT systems.
Overall, this indispensable guide provides a research-based foundation for
leveraging machine learning in embedded systems.

Preface

‘Welcome to “Machine Learning Systems for
TinyML" This book is your gateway to the
fast-paced world of artificial intelligence
within embedded systems. It as an extension
of the foundational course, tinyML from
CS249r at Harvard University.

Our aim? To make this book a collaborative

effort that brings together insights from

students, professionals, and the broader community. We want to create a
one-stop guide that dives deep into the nuts and bolts of embedded Al and
its many uses.

“If you want to go fast, go alone. If you want to go far, go together.” -
African Proverb

This isn't just a static textbook; it's a living, breathing document. We're
making it open-source and continually updated to meet the ever-changing
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Scribing

Grading (20% of your grade

o Part1:
i. Paperreview 10%
« Content creation- 5%
« Content curation - 5%
o Part2
i. Paper presentation 10%
o References-3%
o Figures-2%
o Clarity - 5%
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students, professionals, and the broader community. We want to create a
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Scribing

e Al Frameworks
o Available as a PR
o  Will be merged soon (EOD or
tomorrow)
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Assignment Schedule Updates

Mid-Project Review

o  Due: October 30th (Monday)
Assignment 3

o Due: November 6th (Monday)
Assignment 4 Part 1

o  Due: November 20th (Monday)
Assignment 4 Part 2

o  Due: November 27th (Monday)
Project Presentations

o Due: December 4th (Monday)
Final Report

o Due: December 11th (Monday)

‘@EQE%M@B’

7S Generate

Feedback
Content X

Professor

Draft 0.5v

—\

B T Peer Review 8 2 Comments 7

Feedback X

‘ Resolve Comments ga+Ed

Draft 1.0v

£ Staff

Publish

& https://harvard-edge.github.io/cs249r_book/




Projects

Mid-Project Presentation (5 slides/3 mins) — Oct 30th

Required

e Edge Impulse (paper),
o Hidden Technical Debt in Machine Learning

0ct |\ ops s || e Mid-Project Review
Edge Impulse Optional
e Data Cascades in High-Stakes Al (paper),
* Pytorch RPC (paper)
A C
l Paper Reading Table Leads
MLOps Hidden Technical Debt

Table 1 Vijay Edupuganti

Table 2 Annie Landefeld

Table 3 Andrew Bass

Table 4 Aghyad Deeb

Table 5

[Jared Ni




Project Update Slide Template

Put your slides in here
e Add your title slide
e Answer the questions with the template slides
e Stayontime


https://docs.google.com/presentation/d/1PfXTEoBOUEyMRWsmG7HGVsV6-q8dL9aAcdOBBEvCNAo/edit?resourcekey=0-4cSgae_76FVh2zDwq-xi8A#slide=id.g2922e1c9166_0_408

Lecture




Course Topics

w2

Overview and Introduction to Embedded Machine Learning
Data Engineering

Embedded Machine Learning Frameworks

Efficient Model Representation and Compression

© N o

11.
12.

Learning on the Edge

Hardware Acceleration for Edge ML: GPUs, TPUs and FPGAs
Embedded MLOps

Secure and Privacy-Preserving On-Device ML

Responsible Al

Sustainability at the Edge

Generative Al at the Edge



Benchmarking ML Systems
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Al Chip Landscape
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Himax Accelerometer, Mic, N
WE-I Plus EVB Camera one
Mic, IMU, Temp,
Arduino Humidity, Gesture, BLE
Nano 33 BLE Sense Pressure, Proximity,
Brightness, Color

SparkFun Accelerometer, Mic, BLE
Edge 2 Camera
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Broadest Range of ML-optimized Processing Solutions

Cortex-A, Mali and
Ethos-N

TOP/s

Cortex-M55




Different Systems Applicable to Ethos-U

arm arm CORTEX-M based system
CORTEX- A/NEOVERSE based system

TrustZone for Armv8-M

Application Low Power Domain
Domain or Secure Enclave Ethos-U65 microNPU

High Performance
Configurable

Cortex-M Ethos-Ué65 MAC engine
Cortex-A/ Cortex-M

Neoverse ‘ processor Elementwise engine

(CPU) I Local memory
Address Filter

Weight decode

Interconnect 1 Control unit DMA

System FLASH System SRAM

System FLASH System SRAM
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CPU GPU FPGA Flexible Dataflow Fixed Dataflow
Accelerator Accelerator*

< Flexibility
Efficiency >

* When the dataflow is optimal for a workload; Efficiency can drop under workload change
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TinyML System Stack is Complicated

Machine learning system
stack is complicated sensers i S a

ML Applicaions PasonOclecion  KewondSpoting Anomaly Defctn
Many different models, ML Datasets Visual Wake Words Goagle Speech ToyAOMOS
datasets, models, s MobieNet Moo R —
frameworks, formats, Training errtion oot
compilers, libraries, Sraph Formats e o
operating systems, targets e Tonsatiow i o o o
The cross-product makes opimes torenes S - e o
it challenging to decipher Speratng Sysems eEo os Rk zest Vo
system performance Hardware Targets Moy bse ey Accolerators




Apples-to-apples comparison

What task?
What model?
What dataset?
What batch size?
What quantization?
What software
libraries?
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bench-mark

/'ben(t)SHmark/

See definitions in:

All

noun

o i

verb

Technology Surveying

a standard or point of reference against which things may be compared or assessed.
"a benchmark case”

Similar:  standard I basis gauge criterion specification v

. asurveyor's mark cut in a wall, pillar, or building and used as a reference point in measuring

altitudes.

evaluate or check (something) by comparison with a standard.
"we are benchmarking our performance against external criteria”

Definitions from Oxford Languages Feedback




Benchmarking

Use to
* Compare solutions




Benchmarking

Use to

e Inform selection




Benchmarking

Use to

* Measure and track progress




Benchmarking

Use to

e Raise the bar, advance the
field




Benchmarking

Requires

* Methodology that is both fair
and rigorous



Benchmarking

Requires

«  Community support and
consensus



Benchmarking

Provides

e Standardization of use cases
and workloads




Benchmarking

Provides

 Comparability across
heterogeneous HW/SW systems




Benchmarking

Provides

 Complex characterization of
system compromises




Benchmarking

Provides

* Verifiable and Reproducible
results



Benchmarking

Use to

* Compare solutions

* Inform selection

* Measure and track progress

e Raise the bar, advance the
field

Requires
* Methodology that is both fair
and rigorous

«  Community support and
consensus

Provides

e Standardization of use cases
and workloads

 Comparability across
heterogeneous HW/SW systems

 Complex characterization of
system compromises

* Verifiable and Reproducible
results
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Goals

4
MLPerf

v/

Enforce performance
result replicability to
ensure reliable results

4%

Accelerate progress in
ML via fair and useful
measurement

Use representative
workloads, reflecting
production use-cases

Akl

Serve both the
commercial and
research
communities

to improve the
state-of-the-art of ML

%

Keep benchmarking
affordable so that all
can participate



Wide Array of ML Tasks

Audio Wake Words
Context Recognition
Control Words
Keyword Detection

Audio

Visual Wake Words
Object Detection
Image Gesture Recognition
Object Counting
Text Recognition

Segmentation
Physiological / Anomaly Detection
Behavioral Metrics Forecasting
Activity Detection

Sensing
Industry Telemetry Predictive Maintenance
Motor Control



Wide Array of ML Tasks

Audio Wake Words DNN
Audio Context Recognition CNN
Control Words RNN
Keyword Detection LSTM
Visual Wake Words DNN
. . CNN
Object Detection SVM
Image Gesture Recognition .
- . Decision Tree
Object Counting
I, KNN
Text Recognition .
Linear
Segmentation DNN
Physiological / Anomaly Detection Decision Tree
Behavioral Metrics Forecasting SVM
Activity Detection Linear
DNN
Sensing Decision Tree
Industry Telemetry Predictive Maintenance SVM
Motor Control Linear

Naive Bayes



Wide Array of ML Tasks

Audio

Image

Physiological /
Behavioral Metrics

Industry Telemetry

Audio Wake Words
Context Recognition
Control Words
Keyword Detection

Visual Wake Words
Object Detection
Gesture Recognition
Object Counting
Text Recognition

Segmentation
Anomaly Detection
Forecasting
Activity Detection

Sensing
Predictive Maintenance
Motor Control

DNN
CNN
RNN
LSTM

DNN
CNN
SVM
Decision Tree
KNN
Linear

DNN
Decision Tree
SVM
Linear

DNN
Decision Tree
SVM
Linear
Naive Bayes

Speech Commands
Audioset
ExtraSensory
Freesound
DCASE

Visual Wake Words
CIFAR10
MNIST
ImageNet
DVS128 Gesture

Physionet
HAR
DSA

Opportunity

UCI Air Quality
UCI Gas
UCI EMG

NASA's PCoE



A Principled Approach to Subsetting

What is the definition of a benchmark task?
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Which benchmark task to select?
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What is the definition of a benchmark task?

Which benchmark task to select?

What is the measure of “performance” in ML systems?

How do submitters run on different hardware/software systems?

Quantization, calibration, and/or retraining?



A Principled Approach to Subsetting
| BgQuesios | fence

What is the definition of a benchmark task?

Which benchmark task to select?

What is the measure of “performance” in ML systems?

How do submitters run on different hardware/software systems?
Quantization, calibration, and/or retraining?

Do we normalize and/or summarize results?



MLPerf “Tiny” Tasks

Keyword Spotting

Audio Sample Data

Warden, Pete. "Speech commands: A dataset for limited-vocabulary Chowdhery, Aakanksha, et al. "Visual wake words dataset.”

speech recognition." arXiv preprint arXiv:1804.03209 (2018).

Visual Wake Words

Microphone array

(b) ‘Not-person’

Anomaly Detection

&

500 mm

90 deg

| \odeg
\ 100mm

D=t =6

270 deg.

500 mm

Side
rail

Purohit, Harsh, et al. "MIMII dataset: Sound dataset for

arXiv preprint arXiv:1906.05721 (2019). ‘malfunctioning industrial machine investigation and
inspection." arXiv preprint arXiv:1909.09347 (2019).

airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck

Tiny Image
Classification
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Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple

layers of features from tiny images." (2009): 7.




MLPerf “Tiny” Tasks

Tiny Image

Keyword Spotting Visual Wake Words Anomaly Detection

30ms PunlJ
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(b) ‘Not-person’
Warden, Pete. "Speech commands: A dataset for limited-vocabulary Chowdhery, Aakanksha, et al. "Visual wake words dataset.” Purohit, Harsh, etal. "MIMI| dataset: Sound dataset for Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple
speech recognition." arXiv preprint arXiv:1804.03209 (2018). arXiv preprint arXiv:1906.05721 (2019). malfunctioning industrial machine investigation and layers of features from tiny images." (2009): 7.

inspection." arXiv preprint arXiv:1909.09347 (2019).




Benchmarking

Dataset i Derive “Tiny”
dpéggilgg] selection (public Model selection MOdsg(;meg version: imEEqu?ﬁetcij @ harness szlqy <l b E>;]ampl|f
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Metrics

USB Hub

Runtime requirements have been met.
Performance results for window 10:

# Inferences : 1000

Runtime s 10.524 sec.

Throughput  : 95.020 inf./sec.
Runtime requirements have been met.




Metrics

Latency

Small fast dataset
Loop of inferences

No data-dependent
execution

Runtime requirements have been met.
Performance results for window 10:

# Inferences : 1000
Runtime : 10.524 sec.
Throughput : 95.020 inf./sec.

Runtime requirements have been met.

DUT

Accuracy

Evaluate on larger dataset
Top-1accuracy & AUC

CLOSED: meet threshold
v,

OPEN: part o;‘ the metrics



Metrics
Latency Accuracy Energy

Small fast dataset ) NO. -
! cherry-picking !

Loop of inferences o Evaluate on larger dataset e s |
Power Monitor ]

Energy

Top-1accuracy & AUC e O Manager| | ETrSY

No data-dependent

]
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201

AaNo

execution CLOSED: meet threshold

Vv Median result I
. GPIO/TRIG
. %| DUT
Runtime requirements have been met. bUT OPEN' part Of the metrICS UART
Performance results for window 10: °
# Inferences : 1000
Runtime : 10.524 sec. .
Throughput : 95.020 inf./sec. '

Runtime requirements have been met.




V1.0 Results

Submitter

Board Name

mlcommons.org/en/inference-tiny-10

Processor(s) &
Number

Accelerator(s) & Number

Greenwaves Technologies |GAPS EVK GAP9 RISC-V Core (1+9) NE16 (1)

Greenwaves Technologies |GAPS EVK GAPS RISC-V Core (149) NE16 (1)

OctoML NRF5340DK nRF5340 Arm® Cortex®-M33

OctoML NUCLEO-L4R5ZI STM32L4R5ZIT6U [Arm® Cortex®-M4

OctoML NUCLEO-L4R5ZI STM32L4R5ZIT6U [Arm® Cortex®-M4

Plumerai B_U585I_IOT02A STM32U585 Arm® Cortex®-M33

Plumerai CY8CPROTO-062-4343w |PSoC 62 MCU Arm® Cortex®-M4

Plumerai DISCO-F746NG STM32F746 Am® Cortex®-M7

Plumerai NUCLEO-L4R5ZI STM32L4R5ZIT6U [Arm® Cortex®-M4

Silicon Labs xG24-DK2601B EFR32MG24 Am® Cortex®-M33 Silicon Labs MVP(1) (78 MHz, 1.8V)

STMicroelectronics NUCLEO-H7A3ZI-Q STM32H7A3ZIT6Q [Arm® Cortex®-M7

STMicroelectronics NUCLEO-L4R5ZI STM32L4R5ZIT6U [Arm® Cortex®-M4

STMicroelectronics NUCLEO-U575Z1-Q STM32U575Z1T6Q |Arm® Cortex®-M33

Syntiant NDP9120-EVL NDP120 MO + HiFi Syntiant Core 2 (98MHz, 1.1V)

Syntiant NDP9120-EVL NDP120 MO + HiFi Syntiant Core 2 (30MHz, 0.9V)
Next Generation Next Generation
Snapdragon Mobile Snapdragon Mobile

Qualcomm Innovation Center | Platform HDK Platform Qualcomm Kryo CPU(1) | Qualcomm Sensing Hub(1)


https://mlcommons.org/en/inference-tiny-10/

Select Keyword Spotting Results

Submitter SoC Accelerator |Accuracy |[Latency (mS) |Energy (uJ)
Syntiant

Syntiant NDP120 Core 2 90% 1.48 43.8

STMicroelectronics |STM32U575ZIT6Q |None 90% 44.2 1138.5




FPGA Energy Configuration
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Arduino UNO BSS138 (JD2)
Iy
Measured 15 .y (VL)
SupPly (7V) 7.6 GND
no | Joulescope |
" JS110 B
111 Do *NOT* Connect Joulescope GPIO Header GND 111 Do *NOT* Connect
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Source:
Chu, Grace, et al. "Discovering multi-hardware mobile models via
architecture search." Proceedings of the IEEE/CVF Conference on

H a rd Wa r‘e Lotte ry P ro b | e m Computer Vision and Pattern Recognition. 2021.

0.78

o
~
o

Top-1 ImageNet Acc
(=] (=}
~ ~
N R

o
~
o

Top-1 ImageNet Acc
(=] (=]
~ ~
N L

o
~
o

g

25 50 75 100
Pixel4 CPU Float latency

2.0 25 3.0 35
Pixel4 EdgeTPU latency

0.78

o
~
(o))

Top-1 ImageNet Acc
=] o
~ ~
N IN

o
~
o

Top-1 ImageNet Acc
o (=)
~ ~
N IN

o
N
o

e
N
©

o
N
o

Top-1 ImageNet Acc
o o
~ ~
N s

o
~
S

10 20 30 25 50 75 100 125
Pixel4 CPU Uint8 latency Pixel4 GPU Adreno 640 latency

Mobilenet V1

Mobilenet V2

Mobilenet V3 Large
Mobilenet V3 Large min
Mobilenet-EdgeTPU
ProxylessNAS-Mobile
Multi-MAX

Multi-AVG

2ERRERK

3 4 5 6

Pixel4 DSP Qualcomm Snapdragon 855 latency



Emerging TinyML
Use Cases

Example: Smart shoes

Kicking
Penalty kicking
Passing
Dribbling
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Emerging TinyML
Use Cases

Example: Augmented Reality

Eye tracking
Hand tracking
Computer vision
Superresolution




Toward Emerging Multi-DNN Models

Pipelined
DNNs

e Back-to-back execution
e Execution dependency



Toward Emerging Multi-DNN Models

Pipelined Concurrent
DNNs DNNs

e Back-to-back execution e Concurrent execution
e Execution dependency e Execution deadline



Toward Emerging Multi-DNN Models

Pipelined Concurrent Concurrent &
DNNs DNNs Pipelined DNNs

Foveated
Rendering

e Back-to-back execution e Concurrent execution e Challenges from both
e Execution dependency e Execution deadline pipelined and concurrent
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Enforce performance
result replicability to
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Accelerate progress in
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measurement
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workloads, reflecting
production use-cases

Akl

Serve both the
commercial and
research
communities

to improve the
state-of-the-art of ML

%

Keep benchmarking
affordable so that all
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Abstract

Ad in ultra-low-pe tiny machine learning (TinyM
promise to unlock an entirely new class of smart applications. Ho'
tinued progress is limited by the lack of a widely accepted and easily ri
benchmark for these systems. To meet this need, we present MLPe
first industry-standard benchmark suite for ultra-low-p tiny machi
systems. The benchmark suite is the collab effort of more th
nizations from industry and academia and reflects the needs of the «
MLPerf Tiny measures the accuracy, latency, and energy of machi
inference to properly evaluate the tradeoffs between systems. Additiona
Tiny implements a modular design that enables benchmark submitters
benefits of their product, regardless of where it falls on the ML deploy
in a fair and reproducible manner. The suite features four benchmark
spotting, visual wake words, image classification, and anomaly detecti

1 Introduction

Machine learning (ML) inference on the edge is an increasingly attractive prospe
for increasing energy efficiency [4], privacy, responsiveness, and autonomy of
far, the field edge ML has predominantly focused on mobile inference, but i1
have been major strides towards expanding the scope of edge ML to ultra
The ﬁeld known as “TinyML” [1], achieves ML inference under a milliWatt,
the i power barrier p; ing widely distributed machine intelligel

, and , TinyML enables greater responsivenes
avoiding the energy cost w1lh wireless ion, which at th
than that of compute [5]. Furthermore the efﬁcrcncy of TinyML enables a cl
powered, alway l.hat can the real-time collectic
data. Deployi ML ions at this scale requires the co-optimizz
the ML deploymem stack to achieve the maximum efficiency. Due to this comp
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Ab. Machine-I

) and software sys-  of use cases by
tem demand is burgeonmg. Driven by ML applications, the ware, Estimates
number of different ML inference systems has exploded. Over e
100 organizations are building ML inference chips, and the ;%emallmd.mf(
systems that incorporate existing models span at least three companies 3
orders of magnitude in power consumption and five orders of ~ Each ML s
magnitude in performance; they range from embedded devices trading off later
to data-center solutions. Fueling the hardware are a dozen or regult is many
more software frameworks and libraries. The myriad combina- data sets, frand
tions of ML lm.rdwnre and ML software make assessing ML- ference engit
system
and reproducible manner challengrng There |s a clear need performance ne
for industry-wide standard ML and including but n
criteria. MLPerf Inference answers that call. In llus paper, we  tjon, object det
present our ing method for ML inference ;i matic speel
systems. Driven by more than 30 organizations as well as more i i
than 200 ML engineers and practitioners, MLPerf prescribes a  ations. Even f
set of rules and best practices to ensure comparability across many ML mod
systems with wildly differing architectures. The lirst call for  of scenarios fr¢

submissions garnered more than 600 i al
from 14 izati i -

i multiple camer

over 30 systems that showcase a wide range of capabilities. The ML tasks have

submissions attest to the benchmark’s flexibility and adaptability. ™ )
time processing
model’s functic
specific, and th
To quantify the
Machine learning (ML) powers a variety of applications that is architect
from computer vision ([20], [18], [34], [29]) and natural- Both academ
language processing ([50], [16]) to self-driving cars ([55], [6]) ML inference
and autonomous robotics [32]. Although ML-model training ~AIMatrix [3], E
has been a development bottleneck and a considerable ex- industry, as wel
pense [4], inference has become a critical workload. Models and DAWNBer
can serve as many as 200 trillion queries and perform over substantial cont
6 billion translations a day [31]. To address these growing developed with
i demands, software, and system de- signers. As a r
velopers have focused on inference performance for a variety ~machine learnit

Index Te Machine Learning, Infe

I. INTRODUCTION
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Abstract

Machine learning research has long focused on models rather than datasets, and
prominent datasets are used for common ML tasks without regard to lhe breadth,
difficulty, and faithfulness of the underlying
tal importance of data has given rise to inaccuracy, bias, and fraglhty in real-world
applications, and research is hindered by saturation across existing dataset bench-
marks. In response, we present DataPerf, a community-led benchmark suite for
evaluating ML datasets and data- centnc algorllhms We alm to fosv.cr mnovauon
in data-centric AI through We

enable the ML community to iterate on datasets, instead of just archrtectures and
we provide an open, online platform with multiple rounds of challenges to support
this iterative development. The first iteration of Dala.Perf contains five benchma.rks

covering a wide spectrum of dat tric tasks, and ies in vi-
sion, speech, acquisition, debugging, and diffusion promptmg. and we support
hosting new contributed ks from the The hmarks, on-

line evaluation platform, and baseline implementations are open source, and the
MLCommons Association will maintain DataPerf to ensure long-term benefits to
academia and industry.

1 Introduction

Machine learning research has over focused on imp: g models rather than on im-
proving datasets. Large public datasets such as ImageNet [14], Freebase [7], Switchboard [22], and
SQuAD [44] serve as compasses for benchmarking model performance. Consequently, researchers
eagerly adopt the largest existing dataset without fully considering its breadth, difficulty and fidelity
to the underlying problem. Critically, better data quality [2] is increasingly necessary to improve
generalization, avoid bias, and aid safety in data cascades [48]. Without high-quality training data
models can exhibit performance discrepancies leading to reduced accuracy and persistent fairness

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Bench-
marks.
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Related Works

Open Full Full | Tightly Coupled/ Fine-Grained Hardware & Engineer Stock Automated CPU<>Accelerator | TinyML
Source | Stack | SoC | Specialized ISA | Accelerated ML Ops In-The-Loop Compiler Design Space Exploration Focus
CFU Playground l v | v | v l v/ v v/ v/ l v ‘
Chipyard [20] v v v v v v v X X
Centrifuge [21] v v v v v v X X X
Embedded Scalable Platform [22] v v v X X v v X X
Gemmini [23] v v 4 X X X v X X
hls4ml [24] v X v X X v X X v
Deepburning [25] 4 v v X X X X X X
DNN-Weaver [26] v v X 4 X X X X X
DNN-Builder [27] v v X X X X X X X
FINN [28] 4 X X X X X X X X

TABLE III: Comparison of CFU Playground with open-source toolchains supporting custom hardware design for ML workloads.
CFU Playground focuses on open-source development across the full system stack, while providing varying levels of flexibility
for hardware and software (co-)design.
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Real World Use Case

Chromebook Sensor Designed with CFU Playground
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Custom Function Units (CFU)
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Software

CFU Software Interface

. Custom TFLM MLPerf Tiny
Renode Emulation Kernels Benchmarks
Common Libraries Ter!sorflow Ltz i Model Profiling
Microcontrollers
[ RISC-V Compiler ]

Deploy Profile Optimize

Access new instruction as C function call:
rslt = cfu_op(funct3, funct7, opl, op2);

‘ Compile-time constants ’ ‘ C / C++ variables / expressions
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CFU Software Interface

. Custom TFLM MLPerf Tiny
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Microcontrollers

[ RISC-V Compiler ]

Custom instruction macros intermix with plain C code
t1l = *x;

t2 = cfu_op(0, 0, t1, b);
t3 = cfu_op(1, 0, t2, b);
*x = 13;

Deploy Profile Optimize



Software

CFU Software Interface

. Custom TFLM MLPerf Tiny
Renode Emulation Kernels Benchmarks

Tensorflow Lite for

Microcontrollers ModellRrefiling

Common Libraries
Custom instruction macros intermix with plain C code
t1 = *x;

t2 = cfu op(0, 0, t1, b);

t3 = cfu_op(1, 9, t2, b);

*x = 13;

Compiled and disassembled:

400001a0: 00812783 1w a5,8(sp)
400001a4: 00d7878b cfu[@,0] a5, a5, a3
400001a8: 00d7978b cfu[@,1] a5, a5, a3

400001lac: 00112423 SW a5,8(sp)

W Deploy Profie Optimize _

[ RISC-V Compiler ]




Software

ML Deployment Framework

const int32_t input_offset = params.input_offset; // r = s(q - Z)

Renode Emulati Custom TFLM MLPerf Tiny
enoae cmulation
Kernels Benchmarks for (int batch = @; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
. . Tensorflow Lite for " const int in_y_origin = (out_y * stride_height) - pad_height;
Common Libraries [ Microcontrollers ] Model Profiling for (int out_x = @; out_x < output_width; ++out_x) {
const int in_x_origin = (out_x * stride_width) - pad_width;

for (int out_channel = @; out_channel < output_depth; ++out_channel) {
int32_t acc = 0;
RISC-V Compiler for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
const int in_y = in_y_origin + dilation_height_factor * filter_y;
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;

// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= @) & (in_x < input_width) && (in_y >= @) &&
(in_y < input_height);

if (!is_point_inside_image) {
continue;

¥

for (int in_channel = @; in_channel < input_depth; ++in_channel) {
int32_t input_val = input_data[Offset(input_shape, batch, in_y,
in_x, in_channel)];
int32_t filter_val = filter_data[Offset(
filter_shape, out_channel, filter_y, filter_x, in_channel)];

acc += filter_val * (input_val + input_offset);
}
. o }
Deploy Profile Optimize }

(use acc)
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const int32_t input_offset = params.input_offset; // r = s(q - Z)
// CFU: copy input_offset into the CFU
» cfu_init_offset(input_offset);

for (int batch = @; batch < batches; ++batch) {
for (int out_y = @; out_y < output_height; ++out_y) {
const int in_y_origin = (out_y * stride_height) - pad_height;
for (int out_x = @; out_x < output_width; ++out_x) {
const int in_x_origin = (out_x * stride_width) - pad_width;
for (int out_channel = ©; out_channel < output_depth; ++out_channel) {

//int32_t acc = 0;
// CFU: set the CFU internal acc to ZERO

cfu_clear_acc();

for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
const int in_y = in_y_origin + dilation_height_factor * filter_y;
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;

for (int in_channel = ©; in_channel < input_depth; ++in_channel) {
int32_t input_val = input_data[Offset(input_shape, batch, in_y,
in_x, in_channel)];
int32_t filter_val = filter_data[Offset(
filter_shape, out_channel, filter_y, filter_x, in_channel)];

// acc += filter_val * (input_val + input_offset);
// CFU: add-multiply-accumulate in the CFU
. cfu_macc_with_offset(filter_val, input_val);
}

}
}

// CFU: retrieve final acc value from the CFU
. int32_t acc = cfu_get_acc();
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Image Classification on Arty
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Image Classification on Arty
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Human Presence Sensor

e |nChromebook:
o Anisolated camera+ML
subsystem embedded in the
display bezel

e User features:
o Keep awake while present
o Dimonleave
o Wake on approach
o Eavesdropper warning
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/5% speedup on model inference

H ° b Y | ° °
How it started: How it's going:
Running MLCommons Tiny V©.1 Keyword Spotting Running MLCommons Tiny V©.1 Keyword Spotting

Error reporter OK! Error reporter OK!
Input: 490 bytes, 4 dims: 1 49 10 1 Input: 490 bytes, 4 dims: 1 49 10 1

Tests for kws model Tests for kws model

: Run with "down" input : Run with "down" input

: Run with "go" input : Run with "go" input

: Run with "left" input : Run with "left" input

: Run golden tests (check for expected outputs) : Run golden tests (check for expected outputs)
: eXit to previous menu : eXit to previous menu
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Keyword Spotting on FOMU
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Key Takeaways

1.

Full-stack framework that integrates open-source

tools to facilitate community-driven research.

Agile methodology to iteratively design and evaluate

tightly-coupled, bespoke TinyML accelerators.

Unique model-specific resource allocation

trade-offs between CFU, CPU, and memory.

Automated design space exploration of the CPU

paired with a CFU using Vizier.

2023 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

CFU Playground: Full-Stack Open-Source
Framework for Tiny Machine Learning (TinyML)
Acceleration on FPGAs

Shvetank Prakash* Tim Callahan! Joseph Bushagour® Colby Banbury*
Alan V. Green! Pete Warden” Tim Anselll Vijay Janapa Reddi*

*Harvard University 1Google $Purdue University "Stanford University

Abstract—Need for the efficient processing of neural networks
has given rise to the development of hardware accelerators.
The increased adoption of specialized hardware has highlighted
the need for more agile design flows for hardware-software
co-design and domain-specific optimizations. In this paper, we
present CFU a full-stack op
that enables rapid and iterative design and evaluation of machine
learning (ML) accelerators for embedded ML systems. Our tool
provides a P d-to-end flow for hard
software co-design on FPGAs and future systems research.
This full-stack framework gives the users access to explore
experimental and bespoke architectures that are customized
and co-optimized for embedded ML. Our rapid, deploy-profile-
optimization feedback loop lets ML hardware and software
developers achieve significant returns out of a relatively small
i in ization. Using CFU s design and
evaluation loop, we show substantial speedups between 55x and
75x. The soft CPU coupled with the accelerator opens up a new,
rich design space between the two components that we explore
in an automated fashion using Vizier, an open-source black-box
optimization service.

L. INTRODUCTION

Tiny machine learning (TinyML) is a fast-growing field at
the intersection of ML algorithms and low-cost embedded
systems. It enables on-device sensor data analytics (vision,
audio, IMU, etc.) at ultra-low-power consumption. Processing
data close to the sensor allows for an expansive new variety
of always-on ML use-cases that preserve bandwidth, latency,
and energy while improvi i and maintaini;
privacy [1]. Given the need for energy efficiency when running
ML on these embedded platforms, custom processor support
and hardware accelerators for such systems could present the
needed solutions. However, the field of ML is still in its
infancy and fast-changing. Thus, it is desirable to avoid a
massive non-recurring engineering (NRE) cost upfront, espe-
cially for low-cost embedded ML systems. Building ASICs is
both costly and time-consuming. Moreover, since embedded
systems are often task-specific, there is an opportunity to avoid
general-purpose ML accelerators and instead explore task and
model-specific ML acceleration methods. This setting presents
the need for an agile design space exploration tool that allows
us to adapt to the changing landscape of ML and hardware.

To enable holistic hardware-software co-design and eval-
uation of domai ific performance optimizations easily,

979-8-3503-9739-0/23/531.00 ©2023 IEEE
DOI 10.1109/ISPASS57527.2023.00024
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Fig. 1: CFU Playground allows users to design and evaluate
model-specific ML enhancements to a “soft” CPU core. The
Playground is wrapped around Vizier, an open-source black-
box optimization service, to enable ML-driven design space
exploration.

we present CFU Playground.! It is a full-stack open-source
for iteratively (deploy—sprofile—soptimize) explor-
ing the design space of lightweight accelerators in an ag-
ile manner (Figure 1). The framework is unique in that it
couples together various open-source software (TensorFlow
Lite Micro/TFLM, GCC), open-source RTL generation IP and
toolkits (LiteX, VexRiscv, Migen, Amaranth), and open-source
FPGA tools for synthesis, place, and route (yosys, nextpnr,
F4PGA/SymbiFlow, etc.). By using open source for the entire
stack, we enable the end-user to customize and co-optimize
hardware and software, resulting in a specialized solution
unencumbered by potential licensing restrictions and not tied
to a particular FPGA, board, or vendor. CFU Playground
yields large returns out of a relatively small investment in
customized hardware and is useful for the long tail of low-
volume applications.
Yet another novelty of CFU Playground is in its ability to
design custom function units (CFUs) for distinct ML opera-
tions. CFUs represent a novel design space that balances ac-

!CFU Playground is available at www.github.com/google/CFU-Playground.
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