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Course Logistics



● Assignment 1
○ Why: Vision (Camera) use cases + Dataset generation
○ What: End-to-end ML workflow
○ How: Frameworks (Edge Impulse) + Embedded Hardware (Nicla)

● Assignment 2
○ Why: Audio (Microphone) use cases
○ What: ML Pipeline (Data preprocessing + Model optimizations)
○ How: NAS (Edge Impulse) + Quantization/Pruning (TFLite)

● Assignment 3 - Model development
○ Why: Time series (IMU) use cases
○ What: ML frameworks programming (Tensorflow/TFLite/TFLM)
○ How: Bare metal implementation of end-to-end ML workflow

● Assignment 4 - Responsible AI
○ Why: Sustainability + Responsibility
○ What: Sustainability-aware system design and safe AI
○ How: TinyML Footprint + Adversarial Nibbler

Assignment - Why, What, How



● Due tonight 11:59pm
● Any questions?
● Please check out the #assignment2 slack channel for updates and answers 

to frequently asked questions

Assignment 2



Due: November 6 at 11:59 pm 

Objective: 
● Explore Tensorflow ecosystem (Tensorflow -> 

Tensorflow Lite -> Tensorflow Lite Micro) 
● Model Optimization (quantization/pruning) 

using IMU data from Arduino Nicla Vision 

Extra Credit: Deployment of model on Nicla

Assignment 3: Magic Nicla Wand



● Week of topic
○ Meet with Matthew & VJ 
○ Create a google doc
○ Share with staff
○ Iterate on rough outline with VJ/Matt
○ After 👍from staff, put changes in a 

single forked repo
○ Create one PR with the entire chapter
○ Classmates will peer review using the 

PR

Scribing (again!) 



● Grading (20% of your grade)
○ Part 1:

i. Paper review 10%
● Content creation - 5%
● Content curation - 5%

○ Part 2
i. Paper presentation 10%

● References - 3%
● Figures - 2%
● Clarity - 5%

Scribing



● AI Frameworks
○ Available as a PR
○ Will be merged soon (EOD or 

tomorrow)

Scribing



● This week (Oct 23)
○ Review Model optimizations chapter

● Next week
○ Review On-device learning chapter
○ Review of Benchmarking AI

Scribing (again!) 



● Assignment 2
○ Due: October 23rd (Monday)

● Mid-Project Review
○ Due: October 30th (Monday)

● Assignment 3 
○ Due: November 6th (Monday)

● Assignment 4 Part 1
○ Due: November 20th (Monday)

● Assignment 4 Part 2
○ Due: November 27th (Monday)

● Project Presentations
○ Due: December 4th (Monday)

● Final Report
○ Due: December 11th (Monday)

Assignment Schedule Updates



Mid-Project Presentation (5 slides/3 mins) – Oct 30th

Projects

❌



Put your slides in here
● Add your title slide
● Answer the questions with the template slides
● Stay on time

Project Update Slide Template

https://docs.google.com/presentation/d/1PfXTEoBOUEyMRWsmG7HGVsV6-q8dL9aAcdOBBEvCNAo/edit?resourcekey=0-4cSgae_76FVh2zDwq-xi8A#slide=id.g2922e1c9166_0_408


Lecture



1. Overview and Introduction to Embedded Machine Learning
2. Data Engineering
3. Embedded Machine Learning Frameworks
4. Efficient Model Representation and Compression
5. Performance Metrics and Benchmarking of ML Systems
6. Learning on the Edge
7. Hardware Acceleration for Edge ML: GPUs, TPUs and FPGAs
8. Embedded MLOps
9. Secure and Privacy-Preserving On-Device ML

10. Responsible AI
11. Sustainability at the Edge
12. Generative AI at the Edge

Course Topics



Benchmarking ML Systems











Board MCU / ASIC Clock Memory Sensors Radio

Himax
WE-I Plus EVB

HX6537-A
32-bit EM9D DSP 400 MHz 2MB flash

2MB RAM
Accelerometer, Mic, 

Camera None

Arduino
Nano 33 BLE Sense

32-bit
nRF52840 64 MHz 1MB flash

256kB RAM

Mic, IMU, Temp, 
Humidity, Gesture, 
Pressure, Proximity, 

Brightness, Color
BLE

SparkFun
Edge 2

32-bit
ArtemisV1 48 MHz 1MB flash

384kB RAM
Accelerometer, Mic, 

Camera BLE

Espressif
EYE

32-bit
ESP32-D0WD 240 MHz 4MB flash

520kB RAM Mic, Camera WiFi, BLE
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ML 
Hardware X

ML
Hardware Y



● Machine learning system 
stack is complicated

● Many different models, 
datasets, models, 
frameworks, formats, 
compilers, libraries, 
operating systems, targets

● The cross-product makes 
it challenging to decipher 
system performance

TinyML System Stack is Complicated



Apples-to-apples comparison

ML 
System X

ML
System Y

What task?
What model?

What dataset?
What batch size?

What quantization?
What software 

libraries?
…
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affordable so that all 

can participate
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Wide Array of ML Tasks
Task Category Use Case

Audio

Audio Wake Words
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Wide Array of ML Tasks
Task Category Use Case Model Type

Audio

Audio Wake Words
Context Recognition

Control Words
Keyword Detection

DNN
CNN
RNN
LSTM

Image

Visual Wake Words
Object Detection

Gesture Recognition
Object Counting
Text Recognition

DNN
CNN
SVM

Decision Tree
KNN

Linear

Physiological / 
Behavioral Metrics

Segmentation
Anomaly Detection

Forecasting
Activity Detection

DNN
Decision Tree

SVM
Linear

Industry Telemetry
Sensing
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Wide Array of ML Tasks
Task Category Use Case Model Type Datasets

Audio

Audio Wake Words
Context Recognition

Control Words
Keyword Detection

DNN
CNN
RNN
LSTM

Speech Commands
Audioset

ExtraSensory
Freesound

DCASE

Image

Visual Wake Words
Object Detection

Gesture Recognition
Object Counting
Text Recognition

DNN
CNN
SVM

Decision Tree
KNN

Linear

Visual Wake Words
CIFAR10
MNIST

ImageNet
DVS128 Gesture

Physiological / 
Behavioral Metrics

Segmentation
Anomaly Detection

Forecasting
Activity Detection

DNN
Decision Tree

SVM
Linear

Physionet
HAR
DSA

Opportunity

Industry Telemetry
Sensing

Predictive Maintenance
Motor Control

DNN
Decision Tree

SVM
Linear

Naive Bayes

UCI Air Quality
UCI Gas
UCI EMG

NASA's PCoE
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A Principled Approach to Subsetting
Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?

2. Benchmark selection Which benchmark task to select?

3. Metric definition What is the measure of “performance” in ML systems?

4. Implementation equivalence How do submitters run on different hardware/software systems?

5. Issues with optimizations Quantization, calibration, and/or retraining?

6. Results Do we normalize and/or summarize results?



MLPerf “Tiny” Tasks



MLPerf “Tiny” Tasks

FFT

< 256 values >

Average

< 43 values >

30ms
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Metrics
AccuracyLatency Energy

Small fast dataset

Loop of inferences

No data-dependent 
execution

Evaluate on larger dataset

Top-1 accuracy & AUC

CLOSED: meet threshold
v.

OPEN: part of the metrics

No 
“cherry-picking”

Power Monitor 
setup

Median result



V1.0 Results mlcommons.org/en/inference-tiny-10

https://mlcommons.org/en/inference-tiny-10/


Select Keyword Spotting Results

Submitter SoC Accelerator Accuracy Latency (mS) Energy (uJ)

Syntiant NDP120
Syntiant 
Core 2 90% 1.48 43.8

STMicroelectronics STM32U575ZIT6Q None 90% 44.2 1138.5



FPGA Energy Configuration



Hardware Lottery Problem
Source:
Chu, Grace, et al. "Discovering multi-hardware mobile models via 
architecture search." Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition. 2021.
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Example: Augmented Reality
● Eye tracking
● Hand tracking
● Computer vision
● Superresolution
● ...

Emerging TinyML 
Use Cases
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Spotting
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Processing

● Back-to-back execution
● Execution dependency

Concurrent 
DNNs

Eye 
Tracking

Obstacle 
Detection

● Concurrent execution
● Execution deadline

Video 
Processing

Concurrent & 
Pipelined DNNs

● Challenges from both 
pipelined and concurrent

Obstacle 
Detection

Eye 
Tracking

Foveated 
Rendering
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Agile Design Methodology

Deploy Profile Optimize

Repeat

TFLM

RISC-V
Compiler

Symbiflow

Custom
TFLM OPs

Custom
Instructions

Custom CFU / 
Memory Hierarchy

TFLM
Model Profiling

Cycle
Counters

Resource
Monitors

S
of
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ar

e
G

at
ew

ar
e

H
ar

dw
ar

e

The Need for Agile and Full-Stack 
Frameworks 



The Need for Agile and Full-Stack 
Frameworks 

Full-Stack Open-Source Framework

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e

Profile OptimizeDeploy



The Need for Agile and Full-Stack 
Frameworks 

Full-Stack Open-Source Framework

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e

Profile OptimizeDeploy

VexRISC-V 
CPU

RISC-V Compiler

Tensorflow Lite for 
MicrocontrollersCommon Libraries

F4PGA / Yosys+Nextpnr / Vivado / Radiant

LiteX 
SoC

LiteX Supported
FPGA board



The Need for Agile and Full-Stack 
Frameworks 

Full-Stack Open-Source Framework

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e

Profile OptimizeDeploy

RISC-V Compiler

Tensorflow Lite for 
MicrocontrollersCommon Libraries

F4PGA / Yosys+Nextpnr / Vivado / Radiant

LiteX 
SoC

LiteX Supported
FPGA board

Model Profiling

Renode Emulation
MLPerf Tiny 
Benchmarks

Cycle Counters

Resource Monitoring

VexRISC-V 
CPU



RISC-V Compiler

Tensorflow Lite for 
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny 
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Full-Stack Open-Source Framework

The Need for Agile and Full-Stack 
Frameworks 



Related Works



Accelerating TinyML on FPGAs

MCUs:  KBs of RAM, Fixed/slow processor Specialized Hardware Customization (on FPGAs)



Real World Use Case

Chromebook Sensor Designed with CFU Playground
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Acceleration via Custom Function Unit (CFU)

Custom Function Units (CFU)
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rslt = cfu_op(funct3, funct7, op1, op2);

 Compile-time constants  C / C++ variables / expressions
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CFU Software Interface

RISC-V Compiler

Tensorflow Lite for 
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny 
Benchmarks

Custom TFLM 
Kernels
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Profile OptimizeDeploy

Resource Monitoring
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FPGA board

Custom instruction macros intermix with plain C code:
t1 = *x;
t2 = cfu_op(0, 0, t1, b);
t3 = cfu_op(1, 0, t2, b);
*x = t3;

Compiled and disassembled:
400001a0:  00812783    lw        a5,8(sp)
400001a4:  00d7878b    cfu[0,0]  a5, a5, a3
400001a8:  00d7978b    cfu[0,1]  a5, a5, a3
400001ac:  00f12423    sw        a5,8(sp)

No overhead!



ML Deployment Framework 
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 const int32_t input_offset = params.input_offset;  // r = s(q - Z)

  for (int batch = 0; batch < batches; ++batch) {
    for (int out_y = 0; out_y < output_height; ++out_y) {
      const int in_y_origin = (out_y * stride_height) - pad_height;
      for (int out_x = 0; out_x < output_width; ++out_x) {
        const int in_x_origin = (out_x * stride_width) - pad_width;
        for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
          int32_t acc = 0;
          for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
            const int in_y = in_y_origin + dilation_height_factor * filter_y;
            for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
              const int in_x = in_x_origin + dilation_width_factor * filter_x;

              // Zero padding by omitting the areas outside the image.
              const bool is_point_inside_image =
                  (in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
                  (in_y < input_height);

              if (!is_point_inside_image) {
                continue;
              }

              for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
                int32_t input_val = input_data[Offset(input_shape, batch, in_y,
                                                      in_x, in_channel)];
                int32_t filter_val = filter_data[Offset(
                    filter_shape, out_channel, filter_y, filter_x, in_channel)];

                acc += filter_val * (input_val + input_offset);
              }
            }
          }
          (use acc)
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 const int32_t input_offset = params.input_offset;  // r = s(q - Z)

  // CFU: copy input_offset into the CFU
  cfu_init_offset(input_offset);

  for (int batch = 0; batch < batches; ++batch) {
    for (int out_y = 0; out_y < output_height; ++out_y) {
      const int in_y_origin = (out_y * stride_height) - pad_height;
      for (int out_x = 0; out_x < output_width; ++out_x) {
        const int in_x_origin = (out_x * stride_width) - pad_width;
        for (int out_channel = 0; out_channel < output_depth; ++out_channel) {

          //int32_t acc = 0;
          // CFU: set the CFU internal acc to ZERO
          cfu_clear_acc();

          for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
            const int in_y = in_y_origin + dilation_height_factor * filter_y;
            for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
              const int in_x = in_x_origin + dilation_width_factor * filter_x;

              ...

              for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
                int32_t input_val = input_data[Offset(input_shape, batch, in_y,
                                                      in_x, in_channel)];
                int32_t filter_val = filter_data[Offset(
                    filter_shape, out_channel, filter_y, filter_x, in_channel)];

                // acc += filter_val * (input_val + input_offset);
                // CFU: add-multiply-accumulate in the CFU
                cfu_macc_with_offset(filter_val, input_val);
              }
            }
          }

          // CFU: retrieve final acc value from the CFU
          int32_t acc = cfu_get_acc();
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2x speedup from SW Optimizations



FPGA Acceleration for Image 
Classification

Image Classification on Arty

Total 55x speedup in 5 weeks 



Human Presence Sensor

● In Chromebook:
○ An isolated camera+ML 

subsystem embedded in the 
display bezel

● User features:
○ Keep awake while present
○ Dim on leave
○ Wake on approach
○ Eavesdropper warning
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FOMU FPGA



FPGA Acceleration for Keyword Spotting 



75× speedup on model inference

How it started: How it's going:



FPGA Acceleration for Keyword Spotting 
Keyword Spotting on FOMU

75x speedup in under 4 weeks



Design Space Exploration
(CFU) Accelerator vs (Soft) CPU

CPU/MCU Full-Blown Discrete 
AcceleratorCPU + CFU

General-Purpose 
Compute/Design

Highly-Specialized 
Compute/Design



(Manual) Design Space Exploration
(CFU) Accelerator vs (Soft) CPU

+
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Fewer 
Resources,
Same Latency

Design Space Exploration: CFU vs CPU

Lower Latency,
Same Resources



Design Space Exploration: CFU vs CPU

CPU/MCU

Full-Blown Discrete 

Accelerator

CPU + CFU



Key Takeaways 
1. Full-stack framework that integrates open-source 

tools to facilitate community-driven research.

2. Agile methodology to iteratively design and evaluate 

tightly-coupled, bespoke TinyML accelerators.

3. Unique model-specific resource allocation 

trade-offs between CFU, CPU, and memory.

4. Automated design space exploration of the CPU 

paired with a CFU using Vizier.



Paper Discussions



Why are we reading these papers? 

What are the important things we learn from these papers?

What can we compare and contrast with these papers? 
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