
CS249r Fall 2023 Assignment 1: Setup Arduino Nicla Vision + Data 
Engineering for a Person Detection Transfer Learning Model 
 
Part 1 Due:  Monday  at 11:59pm on Canvas Oct 2, 2023
Part 2 Due: Monday  at 11:59pm on Canvas Oct 9, 2023
 
Assignment Overview 
The purpose of this assignment is to get familiar with the Arduino Nicla Vision and the general 
workflow for designing and deploying a TinyML application. For this assignment, you can use 
open source data, web scraped data, synthetic data, or manually generated data. Our goal here 
is to get you to explore the effect of data quality on the performance of a model, as well as the 
quantity of data and other factors.  
 
You need to collect 100 samples for the “person” class which is our target class and an 
additional 100 samples for the “background/no-person” class. This will constitute the negative 
class in a binary classification setting.  
 
This assignment is split into two parts: 

● In Part 1: 
○ What: You will set up the Arduino Nicla Vision and submit an image of yourself 

taken with the Nicla. Your image will be included in the testing dataset for Part 2. 
○ Why: This is to test your board and make sure it is working and get you familiar 

with some open source toolchains for working with embedded systems. 
○ How: You will use the Edge Impulse pipeline to bootstrap your system. 

 
● In Part 2: 

○ What:You will gather training data for a person detection model.  
○ Why: The goal of Part 2 is to explore good data engineering techniques for 

training a TinyML model. We will provide you with information about the model 
but will hide the testing data which will be used to assess the quality of your 
training data. The testing data contains 500 images, including photos submitted 
by students taking this course. 

○ How: You will use Edge Impulse or OpenMV tools to get your training data. 
 
Please ask questions (and if you can, answer your fellow classmates' questions) in the 
#assignment1 channel of the course’s Slack workspace. We also have office hours at different 
times in the week listed in the Course Syllabus.  
 
 
 

https://docs.google.com/document/d/1wu5g_e8LFYtwF8zjAKtYGBhxvMNW5IjVUefBYLkzwJw/edit?usp=sharing


Deliverables 
 
Part 1: Submit a single zip file containing 
i) an .mp4 video of length at most 2 mins showing your Nicla connected to Edge Impulse and 
capable of sampling images of your face 
ii) a 96x96 image of yourself for the assignment testing data 
 
Part 2:  Submit a single zip file containing 
i) a training dataset made up of a total of 200 images that belong to a “person” and 
“non-person” category. This dataset will be used to train MobileNetV2 96x96 0.1 transfer 
learning model in Edge Impulse.  
ii) a PDF write up of your dataset design decisions.   
 
For each submission, create a zip file containing the requested documents and upload it to 
canvas. You can collaborate with others on setting up your kit and using the Edge Impulse 
platform, but you will need to collect your own dataset and complete each of the above 
deliverables individually.  
 
 

Instructions for Part 1  
1. Connect your Arduino Nicla Vision to your laptop using the micro-USB to USB-A cable 

that came with your kit.  

 
 



2. Install all the dependencies required to set up your Arduino Nicla Vision device on your 
machine.  
After installing the dependencies listed on the website linked above, you should be able 
to connect your Arduino Nicla to the Edge Impulse portal via command line.  

3. Follow the steps below to take your picture:  
a. Create a project in Edge Impulse. 
b. In your terminal, run “edge-impulse-daemon”. When prompted, provide your login 

details and select the project which you want to connect the device to from the 
dropdown menu (if you have multiple projects in Edge Impulse) 

 
 

4. Name the device so that you can reference it in the Edge Impulse portal: 

 
 
 

5. Once your device is named and connected to the project, you can start collecting data! 
Click on Data Acquisition from the left-hand navigation panel on the Edge Impulse 
website to view the real-time camera live stream in your web browser. In the “Collect 
Data” section, select your device (it will be listed as the name that you gave it in Step 4) 
and choose “Camera (96x96)” as the sensor:  

https://docs.edgeimpulse.com/docs/development-platforms/officially-supported-mcu-targets/arduino-nicla-vision


 
6. Download your picture from the Edge Impulse platform for submission. 

 
Part 1 Deliverables 
Submit a .zip file on Canvas containing  

1. A video recording of your Nicla connected to Edge Impulse and streaming from the 
camera. 

2. A 96x96 RGB image of yourself to be used in the testing dataset. 
 

 



Instructions for Part 2 
If you are comfortable using the Edge Impulse interface, you do not have to complete this step. 
However, the data collection process can be simplified by using the OpenMV IDE: 

1. Download the OpenMV IDE.  
NOTE: Macbook Users might have to download this Github release to avoid the GUI from 
crashing when attempting to connect the Nicla to the OpenMV IDE.  
 

2. Connect the Arduino Nicla to OpenMV IDE.  
 

3. Once your Nicla is connected, navigate to File > Examples > HelloWorld > helloworld.py 
and click on the green button at the bottom left to Run the program. You should be able 
to see a real-time camera live stream in the Frame Buffer on the right.  

 
 

4. Use the code on the Nicla website or the Edge Impulse website to take pictures which 
will be stored locally. You can then upload these pictures into the Edge Impulse platform 
for training.   

https://openmv.io/pages/download
https://github.com/openmv/openmv-ide/releases/download/v4.0.7/openmv-ide-mac-4.0.7.dmg
https://docs.arduino.cc/tutorials/nicla-vision/getting-started#2-connecting-to-the-openmv-ide
https://docs.arduino.cc/tutorials/nicla-vision/getting-started#2-connecting-to-the-openmv-ide
https://docs.edgeimpulse.com/docs/tutorials/end-to-end-tutorials/image-classification/image-classification-openmv


 
 

Training and Assessing your Model Performance on Edge Impulse 
In this section, you will create a training dataset for the MobileNetV2 96x96 0.1 transfer learning 
model. To help with the process of creating the Machine Learning model, we will be using 
EdgeImpulse Studio. This contains a suite of tools used to create the model and generate a C++ 
library that can be used for inference and image classification.  
 
 

 



Step 1: Edge Impulse Project Setup 
1. Once you have created an account, log in and create a new project. This will open the 

project setup dialogue where you can set the project name.  
2. The project will open in the dashboard view with a menu in the left-hand margin for 

setting up the workflow. Scroll down and edit the Project Info on the bottom right as 
follows: 

a. Labeling Method: One label per data item 
b. Target Device: Arduino Nicla Vision 

 
 
 
 

 



Step 2: Data Acquisition 
1. Navigate to the project that you created for this assignment in EdgeImpulse. 
2. Click the Data Acquisition activity from the left-hand navigation panel. 
3. Click Choose Files and select the images from the relevant folder on your laptop. 
4. Give the images a label (“person” or “non-person”, depending on which class of images 

you’re uploading) and begin the upload. 
5. Repeat the process for each of your data classes. 
6. You should now have all your data loaded into EdgeImpulse ready for processing. You 

can either upload your training dataset and your testing dataset separately or ask for 
EdgeImpulse to automatically split the data that you upload into 2 parts. 

 
  

 
 
 

 



Step 3: Impulse Design 
This step sets up all the parameters for building the ML model. EdgeImpulse guides you through 
this phase and indicates how accurate your model is likely to be after training.  
 
The first step to designing an impulse is to Create Impulse.  

● Click the Create Impulse activity in the menu bar. 
● Add an image-processing block (Image) and set the image size to 96x96. 
● Add a Transfer Learning block. 
● There should be two Output Features (person, not_person) automatically populated if 

your training data was labeled correctly. 
● Click Save Impulse. 

 
 

 
 
 
 
The next stage, Image, sets the model parameters and generates a feature set from the training 
data images.  

● Click the Image Item from the menu bar. 
● Set the Color Depth to RGB. 
● Click Save parameters. 
● Then, select Generate Features. This will trigger a remote job in the EdgeImpulse Cloud to 

generate the model features. 
 



At this stage, you can use the Feature Explorer to gauge whether the features are sufficiently 
distinct to give good results. The goal is to look for distinct clusters of features with as little 
overlap as possible. 
 

 
 
The final stage is Transfer Learning.  

● Click Transfer Learning from the menu bar. 
● Select MobileNetV2 96x96 0.35 model and set your parameters. The default parameters 

work well for our use case but you are welcome to experiment with them (number of 
training cycles, learning rate, number of neurons) and change them as you deem 
appropriate. Please note any changes to these parameters in your writeup.  

● Click Start Training. The training can take several minutes depending on the amount of 
data and the complexity of the features. 

 
When the training process is completed, Edge Impulse will provide statistics about how 
effective the model is and will show clusters of the training results in the Data Explorer view. 
You can hover over each point in the cluster and click on the point to see which image generated 
what result. 



 

 
 
 
 
Step 4: Assessing model performance 
The final step in the model creation process is to test the model with a labeled test data set to 
see how well it performs. In this assignment, we will assess each student's model with a hidden 
test dataset. The goal of this assignment is for you to creatively engineer a training dataset for 
the MobileNetV2 96x96 0.35 model to perform person detection in an image. That is, the model 
should be able to accurately classify whether an image contains a person or not. The test data 
will contain 96x96 images collected with an Arduino Nicla but with creative modifications (this 
assignment is supposed to encourage you to think about all the ways that an image can be 
slightly altered but still maintain the important information that a person is present or not).  
Additionally, we want you to think about the quality and diversity of the data that you collect. 
(Hint: It may not be a good idea for your training dataset to only contain images of your face 🙂) 
 
You can create your own testing dataset to assess your model’s performance, but we will use 
the training dataset that you submit to train the MobileNetV2 96x96 0.35 model and test it with 
our hidden dataset.  
 
To assess the model’s performance on your test dataset:   

● If you asked for an automatic split of your dataset into training and testing, skip to the 
next step.  



○ Otherwise, upload your testing dataset by navigating back to the Data Acquisition 
using the left-hand navigation panel. There, you can upload data for your testing 
dataset.  

● Select Model Testing from the left-hand navigation panel. 
● Click Classify All. 

 
Another remote job will start and run your test data against the trained model, showing you the 
results upon completion.  

 



Part 2 Deliverables 
Submit a .zip folder on Canvas containing: 

1. Two folders containing your training data separated into:  
○ Person - This folder will contain all images which should be classified as having a 

person present.  
○ Not_Person - This folder will contain all images which should be classified as not 

having a person present.  
2. A 2-page .pdf write up of your dataset design decisions. Record the accuracy of your 

validation set in your writeup, along with how many files were in your validation set. Also, 
in your write-up, summarize the key steps you took to build and evaluate your custom 
dataset. Discuss the iterations that you went through to improve the model’s ability to 
detect the presence of a person. For example, you can touch upon some of the items 
below: 

○ How did you curate the dataset? Did you supplement the images that you 
captured on the Nicla Vision with images from other sources?  

○ How many images per class did you collect? Did increasing or decreasing the 
number of images per class help to increase the accuracy of your model? 

○ What do you think about the quality of the dataset you collected? Did you use 
augmentation, any kind of filtering, or corruption of your training dataset to test 
robustness? 

○ Did you find any corner cases in your dataset that cause an issue with accuracy? 
What did you do to mitigate it? Did fixing those help in your final accuracy? 

○ Did you find any way to fool the model (false-positives)? What do you think was 
the cause? What improvements do you think can be made to fix this issue? 

○ Was the live view tool in OpenMV or EdgeImpulse useful in framing yourself for 
inferencing? Did it help you combat lighting issues? 

 
The training data submitted for Part 2 of this assignment will be used to train a MobileNetV2 
96x96 0.35 model and will be assessed with our hidden test dataset. 


