

CS249r Fall 2023 Assignment 2: Keyword
Spotting on Arduino Nicla Vision + Data
Preprocessing and Model Optimizations
Assignment Due: Monday, at 11:59pm on Canvas Oct 23, 2023

Assignment Overview

The purpose of this assignment is to develop an end-to-end keyword spotting (KWS) model
using Edge Impulse and deploy it on the Arduino Nicla Vision. You will gain experience with data
preprocessing, model optimizations, and embedded deployment.

This assignment is split into two parts:

● In Part 1:
○ What: You will create an Edge Impulse project, upload the Google Speech

Commands (GSC) dataset, extract audio features, train an initial model, and
deploy it to the Nicla Vision.

○ Why:
■ This is to gain hands-on experience with the Edge Impulse workflow and

understand how data is preprocessed for keyword spotting.
■ This will also expose you to a critical dataset that is widely used in the

tinyML community for keyword spotting.
○ How: You will use the Edge Impulse platform to extract MFCC features from

audio files and train a classification model for keyword spotting. You will then
use the Arduino IDE to deploy your keyword spotting model onto the Nicla Vision.

● In Part 2:
○ What: You will customize your data preprocessing and initial model architecture.

You may also include optimizations like pruning and quantization for efficient
deployment.

○ Why: The goal is to understand the tradeoffs between size, accuracy and latency
while varying model architectures, data preprocessing techniques, and
optimizations.

○ How: You have the choice of modifying the data preprocessing and using Edge
Impulse’s EON tuner to refine your model architecture and input features.
Another option is to edit the underlying TF Keras code in Edge Impulse to
implement custom model optimizations.

https://www.tensorflow.org/datasets/catalog/speech_commands
https://www.tensorflow.org/datasets/catalog/speech_commands

New terminologies: Through this exercise you will come across some new concepts and part of
the exercise is to help you learn these concepts:

● Mel Frequency Cepstral Coefficients (MFCC)
○ Edge Impulse Tutorial
○ Example Colab

● Spectrograms
○ This video is great

● Confusion matrix

Resources: There are many available resources to help you complete this assignment:

● Responding to your voice (Edge Impulse tutorial)
● Tutorial from Jenny Plunkett (Edge Impulse)
● Slides from Brian Plancher (Professor at Barnard, former TF)

a. KWS Pre-Processing
b. KWS Feature-Engineering

Please ask questions (and if you can, answer your fellow classmates' questions) in
#assignment2 in our Slack workspace. We also have office hours at different times in the week
listed in the Course Syllabus.

Deliverables

Part 1: Submit a single zip file containing
i) an .mp4 video of length at most 2 mins showing your Nicla connected to the Arduino IDE and
capable of detecting keywords from the Google Speech Commands Dataset
ii) a screenshot of the confusion matrix after training your model on Edge Impulse, similar to this
one (yours will have different classes):

Part 2: Submit a single zip file containing
i) A one-page writeup of your findings from customizing your data preprocessing/model
architecture or model optimizations. Please include any images of the relevant processing
blocks on Edge Impulse.

For each submission, create a zip file containing the requested documents and upload it to
Canvas. You can collaborate with others on setting up your kit and using the Edge Impulse

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/audio-mfcc
https://musicinformationretrieval.com/mfcc.html#:~:text=Mel%20Frequency%20Cepstral%20Coefficients%20(MFCCs,often%20used%20to%20describe%20timbre.
https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectrogram
https://www.youtube.com/watch?v=_FatxGN3vAM
https://www.indeed.com/career-advice/career-development/confusion-matrix
https://docs.edgeimpulse.com/docs/tutorials/end-to-end-tutorials/responding-to-your-voice
https://harvard.zoom.us/rec/play/DhtLAepCyHHi6G31MS_M-KYQszW3bq2S2lzVEj_d0P2QUNRZkUxZSWStspXEuuvJDvE9R_6idCQXkEcj.21w24lW7GaACLmR2?canPlayFromShare=true&from=share_recording_detail&continueMode=true&componentName=rec-play&originRequestUrl=https%3A%2F%2Fharvard.zoom.us%2Frec%2Fshare%2FbX-xk48ZwRr1sPk_jYwsRQkKxLaAeAQ6WGhZmVhGrDGylS6q_2DIXKxzjFC6PQ1r.5Zib2eHTOmKNu-sC
https://github.com/tinyMLx/courseware/blob/master/edX/slides/4-5-6.pdf
https://github.com/tinyMLx/courseware/blob/master/edX/slides/5-3-10.pdf

platform, but you must independently optimize your keyword spotting model and complete each
of the above deliverables individually.

Instructions for Part 1

Uploading the dataset

1. Create a project in Edge Impulse
2. We have prepared a version of the Google Speech Commands V2 (GSC) dataset that is

split into train/test/validation
a. Please download it here

3. There are ~35 classes in the full dataset. To make model deployment manageable,
use the provided create_datasets.sh script to extract one keyword of your
choosing and label the remaining keywords as “other”.

a. For example, to choose "stop" as the keyword you want to recognize, run:

chmod +x create_datasets.sh
bash create_datasets.sh stop <num_cores>

i. Feel free to adjust <num_cores> to speed up moving files depending
on your system specifications

b. This will split the data contained in data/train and data/test into two folders
- "stop" and "other".

4. Navigate to your Edge Impulse project
5. Click on “Add Existing Data”

6. Since we have already split the data, we can directly upload the respective train and test

directories to edge impulse.

https://www.tensorflow.org/datasets/catalog/speech_commands
https://drive.google.com/file/d/1jB_IHwgUpJM9jOmn4KmivmlejAoAHKj6/view?usp=sharing

a. NOTE: Be sure to check the option “Infer from filename”

b. NOTE: The combined train/test datasets are ~500mb, so this upload may take a

while

Designing your impulse

1. Now that your data is uploaded, you can click on “Create Impulse” on the left-hand side
of the screen

2. Leave the “Time series data” box as default, and add the Audio MFCC processing block,
along with the Classification learning block

3. After clicking “Save Impulse”, the options on the left-hand sidebar will change slightly

(the options could be different for you depending on how you named your blocks)

4. Navigate to MFCC Preprocessing
c. Here you’ll be able to listen to various keywords and see their image

representation after pre-processing

d. Keep all of the parameters default for now. You will be able to revisit this

section in Part 2.
e. Click “Save Parameters”

Training your keyword spotting model
1. Navigate to Keyword Classifier

a. Adjust the number of training cycles (epochs) to 200. Feel free to increase the
number of cycles to further train your model if desired.

b. You will see that Edge Impulse provides a nice graphical interface for specifying

your model architecture. We’ll leave this as default for now, but you will be able
to edit the architecture in Part 2.

c. Click “Start training” to begin training your keyword spotting model. After training
is done, you should see

2. While your model is training, you can install the Arduino IDE. This will be useful for
deploying your keyword spotting model onto the Nicla

3. After the model is trained, you should see a confusion matrix similar to this (yours will
have many more classes and data points)

https://support.arduino.cc/hc/en-us/articles/360019833020-Download-and-install-Arduino-IDE
https://www.indeed.com/career-advice/career-development/confusion-matrix

Configuring the Nicla Vision for Audio Input

● Follow these instructions on Edge Impulse to install the firmware your Nicla Vision needs
to record audio

○ Complete the instructions for the microphone using the ingestion file
nicla_vision_ingestion_mic.ino

○ Ignore the instructions for IMU/proximity sensors for now.

Building the Arduino Library
1. Install the Arduino IDE
2. Click on the “Deployment” tab in Edge Impulse

3. Search for “Arduino library”

4. Feel free to select the quantized or unoptimized version of your model. Note how the

Latency, RAM, and flash change when you go from int8 to float32 and vice-a-versa.
5. Run “compute test accuracy” to determine the difference between the accuracy of the

quantized model and the unoptimized model
6. Finally, click “Build”

https://docs.edgeimpulse.com/docs/development-platforms/officially-supported-mcu-targets/arduino-nicla-vision#2.-update-the-firmware-1
https://support.arduino.cc/hc/en-us/articles/360019833020-Download-and-install-Arduino-IDE

7. After the build is completed, you will be able to download it as a ZIP file:

8. Open up the Arduino IDE
9. Make sure to connect the IDE to your Nicla Vision

a. Ensure that the Board is set to Nicla Vision

b. Specify the serial port of your Nicla

10. To add the library with your keyword spotting model, go to Sketch → Include Library →
Add .ZIP library

11. Once it is loaded, you can see the library in File → Examples → Examples from Custom

Libraries

12. Click on nicla_vision_microphone_continuous to open up the sketch for continuously

running the keyword spotting model

13. Click Sketch → Upload to compile and flash your keyword spotting model to the Nicla

a. This step took >10 minutes the first time I ran it, so don’t worry if it’s a bit

sluggish
14. Once the upload is complete, open up the Serial Monitor to see the output of your model.

Try saying different keywords and see how the predictions change:

Part 1 Deliverables
Submit a .zip file on canvas containing

1. An .mp4 video of length at most 2 mins showing your Nicla connected to the Arduino
IDE and capable of detecting keywords from the Google Speech Commands Dataset

2. A screenshot of the confusion matrix after training your model on Edge Impulse, similar
to this one (yours will have different classes):

Instructions for Part 2

In this part, you will customize your model for efficient embedded deployment. To receive full
credit, you only need to complete either the Data Preprocessing and Model Architecture
modifications or the Model Optimization section. You are welcome to complete both options if
desired.

Option 1

Data Preprocessing
● Revisit the MFCC Preprocessing block in Edge Impulse and tweak the various

parameters such as frame length, frame stride, number of filters, etc.
● Try a different signal processing block such as Spectrograms

Model Architecture
● Use Edge Impulse’s EON Tuner to search for viable architectures for your keyword

spotting workload
○ Configure the EON tuner to target the Arduino Nicla Vision.
○ Launch an architecture search for your keyword spotting workload
○ In the tuner results page, analyze the various candidate models identified:

■ How do accuracy results compare across different model architectures?
■ Can you identify any patterns in model topology (size, shape, type) that

perform better or worse?
○ In your writeup, include screenshots of the tuner results and discuss your

observations, focusing on high-level trends and tradeoffs between different
model architectures.

Option 2

Model Optimization
1. Employ techniques like pruning, quantization, reduced precision, etc. to optimize your

keyword spotting model
a. Tutorials like this one may be helpful

For either option you choose, document the impact on accuracy, latency, and memory usage
that your modifications have on the final model.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/eon-tuner
https://www.tensorflow.org/model_optimization/guide/pruning/pruning_with_keras

Part 2 Deliverables

Submit a zip file to Canvas containing:

● A two-page (max) writeup that documents your modifications and includes:
● For each data preprocessing change:

● Details on what parameter(s) you changed
● Screenshot of the modified Data Processing block
● Confusion matrix, accuracy, latency, memory usage

● For each model architecture change:
● Details on what layer(s) or parameter(s) you changed
● Screenshot of the modified Neural Network block
● Confusion matrix, accuracy, latency, memory usage

● For each model optimization:
● Details on the optimization technique used
● Confusion matrix, accuracy, latency, memory usage

	CS249r Fall 2023 Assignment 2: Keyword Spotting on Arduino Nicla Vision + Data Preprocessing and Model Optimizations
	Assignment Due: Monday, Oct 23, 2023 at 11:59pm on Canvas
	Assignment Overview
	Deliverables
	Part 1: Submit a single zip file containing
	Part 2: Submit a single zip file containing

	Instructions for Part 1
	Uploading the dataset
	Designing your impulse
	Training your keyword spotting model
	Configuring the Nicla Vision for Audio Input
	Building the Arduino Library

	Instructions for Part 2
	Option 1
	Data Preprocessing
	Model Architecture

	Option 2
	Model Optimization

