211BR PROBLEM SET 2

Due Wednesday March 22 at 3:00 PM (hard copy or email submissions accepted).

Soft Graviton Theorems

Denote the tree-level scattering amplitude involving n massless scalar states by

$$\mathcal{A}_n = \langle \text{out} | \mathcal{S} | \text{in} \rangle, \tag{1}$$

We use a convention in which incoming states are described as CPT conjugate outgoing states with negative p^0 so that momentum conservation implies $\sum_{k=1}^{n} p_k^{\mu} = 0$.

Let $\mathcal{A}_{n+1}^{\pm}(q)$ be an amplitude involving a graviton of momentum q^{μ} , energy $\omega = q^0$, and polarization $\varepsilon_{\mu\nu}^{\pm}(q)$ as well as n other massless asymptotic scalar states

$$\mathcal{A}_{n+1}^{\pm}(q) = \langle \text{out} | a_{\pm}(q) \mathcal{S} | \text{in} \rangle. \tag{2}$$

The soft $\omega \to 0$ limit of this amplitude is governed by the leading [1] and sub-leading [2, 3, 4, 5] soft-graviton theorems

$$\mathcal{A}_{n+1}^{\pm}(q) \to \left[S_0^{\pm} + S_1^{\pm} + \mathcal{O}(\omega) \right] \mathcal{A}_n , \qquad (3)$$

where $S_0^{\pm} \sim \omega^{-1}$, $S_0^{\pm} \sim \omega^0$, \mathcal{A}_n is the original amplitude without the soft graviton and

$$S_0^{\pm} = \frac{\kappa}{2} \sum_{k=1}^n \frac{p_k^{\mu} p_k^{\nu} \varepsilon_{\mu\nu}^{\pm}(q)}{p_k \cdot q} , \qquad S_1^{\pm} = -\frac{i\kappa}{2} \sum_{k=1}^n \frac{\varepsilon_{\mu\nu}^{\pm}(q) p_k^{\mu} q_{\lambda}}{p_k \cdot q} \mathcal{L}_k^{\lambda\nu} , \qquad \kappa = \sqrt{32\pi G} . \tag{4}$$

Here, where we are restricting to the scattering of hard scalars, $\mathcal{L}_{k\mu\nu}$ is the angular momentum operator acting on the kth outgoing state,

$$\mathcal{L}_{k\mu\nu} = -i \left[p_{k\mu} \frac{\partial}{\partial p_k^{\nu}} - p_{k\nu} \frac{\partial}{\partial p_k^{\mu}} \right]. \tag{5}$$

1. Leading Soft Graviton Theorem

In this problem, you will show that the leading soft graviton theorem for a single outgoing graviton is equivalent to the Ward identity for a supertranslation current.

a) Near \mathcal{I}^+ , consider the free field mode expansion for $h_{\mu\nu}^{\text{out}}$:

$$h_{\mu\nu}^{\text{out}}(x) = \sum_{\alpha = \pm} \int \frac{d^3q}{(2\pi)^3} \frac{1}{2\omega_q} \left[\varepsilon_{\mu\nu}^{\alpha*}(\vec{q}) a_{\alpha}^{\text{out}}(\vec{q}) e^{iq\cdot x} + \varepsilon_{\mu\nu}^{\alpha}(\vec{q}) a_{\alpha}^{\text{out}}(\vec{q})^{\dagger} e^{-iq\cdot x} \right], \tag{6}$$

where $\varepsilon_{\pm}^{\mu\nu}(q) = \varepsilon_{\pm}^{\mu}(q)\varepsilon_{\pm}^{\nu}(q)$, and consider the definitions in retarded Bondi coordinates

$$C_{zz}(u,z,\bar{z}) \equiv \kappa \lim_{r \to \infty} \frac{1}{r} h_{zz}^{\text{out}}(r,u,z,\bar{z}),$$

$$N_{zz}^{\omega}(z,\bar{z}) \equiv \int_{-\infty}^{\infty} du e^{i\omega u} \partial_{u} C_{zz}(u,z,\bar{z}),$$

$$N_{zz}^{0}(z,\bar{z}) \equiv \lim_{\omega \to 0^{+}} \frac{1}{2} \left(N_{zz}^{\omega} + N_{zz}^{-\omega} \right),$$

$$(7)$$

and graviton polarization definitions

$$\varepsilon_{+}^{\mu}(q) = \frac{1}{\sqrt{2}}(\bar{z}, 1, -i, -\bar{z}), \quad \varepsilon_{-}^{\mu}(q) = \frac{1}{\sqrt{2}}(z, 1, i, -z).$$
 (8)

Using the above, show that the zero-energy mode of the Bondi news tensor at large r (i.e. on \mathcal{I}^+) is

$$N_{zz}^{0}(z,\bar{z}) = -\frac{\kappa}{8\pi} \hat{\varepsilon}_{zz} \lim_{\omega \to 0^{+}} \left[\omega a_{+}^{\text{out}} \left(\omega \hat{x} \right) + \omega a_{-}^{\text{out}} \left(\omega \hat{x} \right)^{\dagger} \right]$$
(9)

where $\hat{\varepsilon}_{zz} = r^{-2}\partial_z x^{\mu}\partial_z x^{\nu}\varepsilon_{\mu\nu}^{-}(\hat{x})$ and \hat{x} is the unit three-vector:

$$\hat{x} \equiv \left(\frac{z+\bar{z}}{1+z\bar{z}}, \frac{-i(z-\bar{z})}{1+z\bar{z}}, \frac{(1-z\bar{z})}{1+z\bar{z}}\right). \tag{10}$$

Hint: use the saddle point approximation in the calculation of C_{zz} at large r.

b) Using the parametrization of massless momenta $q^{\mu}(z,\bar{z}), p_k^{\mu}(z_k,\bar{z}_k)$ as

$$q^{\mu} = \omega \left(1, \frac{z + \bar{z}}{1 + z\bar{z}}, \frac{-i(z - \bar{z})}{1 + z\bar{z}}, \frac{1 - z\bar{z}}{1 + z\bar{z}} \right) ,$$

$$p_{k}^{\mu} = \omega_{k} \left(1, \frac{z_{k} + \bar{z}_{k}}{1 + z_{k}\bar{z}_{k}}, \frac{-i(z_{k} - \bar{z}_{k})}{1 + z_{k}\bar{z}_{k}}, \frac{1 - z_{k}\bar{z}_{k}}{1 + z_{k}\bar{z}_{k}} \right) , \quad k = 1, \dots, n$$
(11)

and the graviton polarizations (8), rewrite the leading soft graviton theorem with soft factor S_0^+ in terms of (z, \bar{z}) , $(z_k^{\text{out}}, \bar{z}_k^{\text{out}})$, and obtain an expression for $\langle \text{out} | N_{zz}^0 \mathcal{S} | \text{in} \rangle$ as a factor multiplying $\langle \text{out} | \mathcal{S} | \text{in} \rangle$.

c) Show that upon defining

$$P_z^+ \equiv \frac{1}{2G} \gamma^{z\bar{z}} \partial_{\bar{z}} N_{zz}^0. \tag{12}$$

the expression of the leading soft theorem from the previous part resembles the Ward identity for a current in a 2D conformal field theory.

2. Subleading Soft Graviton Theorem

Next, you will study the action of subleading soft gravitons on massless external scalar particles.

a) Using the definitions (7), show that

$$N_{zz}^{(1)} \equiv -\frac{i}{2} \lim_{\omega \to 0^{+}} \partial_{\omega} \left[N_{zz}^{\omega} - N_{zz}^{-\omega} \right]$$

$$= \frac{i\kappa}{8\pi} \hat{\varepsilon}_{zz} \lim_{\omega \to 0^{+}} \left(1 + \omega \partial_{\omega} \right) \left[a_{+}^{\text{out}} (\omega \hat{x}) - a_{-}^{\text{out}} (\omega \hat{x})^{\dagger} \right] ,$$
(13)

and similarly for $N_{z\bar{z}}^{(1)}$. Note that $N_{zz}^{(1)}$ involves one less factor of ω than $N_{zz}^{(0)}$, but has the leading soft pole projected out by the factor of $1 + \omega \partial_{\omega}$. Hence it has nonzero finite scattering amplitudes.

- b) Using the definitions (4) and (5), rewrite the subleading soft factor S_1^- in terms of (z, z) and (z_k, \bar{z}_k) and obtain an expression for $\langle \text{out} | N_{\bar{z}\bar{z}}^{(1)} \mathcal{S} | \text{in} \rangle$ as an action on $\langle \text{out} | \mathcal{S} | \text{in} \rangle$.
- c) Show that upon defining

$$T_{zz} \equiv \frac{i}{8\pi G} \int d^2w \frac{1}{z - w} D_w^2 D^{\bar{w}} N_{\bar{w}\bar{w}}^{(1)}, \tag{14}$$

the expression from the previous part takes the form of a stress tensor Ward identity for a 2D conformal field theory on a curved background, explicitly

$$\langle \text{out}|T_{zz}\mathcal{S}|\text{in}\rangle = \sum_{k=1}^{n} \left[\frac{h_k}{(z - z_k)^2} + \frac{\Gamma_{z_k z_k}^{z_k}}{z - z_k} h_k + \frac{\partial_{z_k}}{z - z_k} \right] \langle \text{out}|\mathcal{S}|\text{in}\rangle, \tag{15}$$

where Γ^z_{zz} is the connection for the sphere metric $\gamma_{z\bar{z}} = \frac{2}{(1+z\bar{z})^2}$ and $h_k \equiv -\frac{\omega_k \partial_{\omega_k}}{2}$.

References

- [1] S. Weinberg, "Infrared photons and gravitons," Phys. Rev. 140 (1965) B516–B524.
- [2] D. J. Gross and R. Jackiw, "Low-Energy Theorem for Graviton Scattering," Phys. Rev. 166 (1968) 1287–1292.
- [3] R. Jackiw, "Low-Energy Theorems for Massless Bosons: Photons and Gravitons," *Phys. Rev.* **168** (1968) 1623–1633.
- [4] C. D. White, "Factorization Properties of Soft Graviton Amplitudes," JHEP 05 (2011) 060, arXiv:1103.2981 [hep-th].
- [5] F. Cachazo and A. Strominger, "Evidence for a New Soft Graviton Theorem," arXiv:1404.4091 [hep-th].