
211BR Problem Set 3

Due Wednesday April 5 at 3:00 PM (hard copy or email submissions accepted).

1. “Flat Bondi” Coordinates

In this problem, we will explore an alternative coordinate system known as “flat Bondi” coor-

dinates, in which the Minkowski line element becomes

ds2 = ηµνdx
µdxν = −dudr + r2dzdz̄. (1)

where −∞ < u, r < ∞ and z ∈ C (note that this is in contrast to the usual Bondi coordinates,

in which z parametrizes the Riemann sphere C ∪ {∞}).

a) Verify that the coordinate transformation from Cartesian to flat Bondi coordinates takes

the form

x0 =
1

2
(u+ r (1 + zz̄)) ,

x1 =
r

2
(z + z̄),

x2 = − ir

2
(z − z̄),

x3 = −1

2
(u− r (1− zz̄)) .

(2)

Write the expressions for each of the retarded Bondi coordinates (urB, rrB, zrB, z̄rB) and

advanced Bondi coordinates (vaB, raB, zaB, z̄aB) in flat Bondi coordinates. Write out the

leading order in r parts of the retarded Bondi coordinates as r → +∞, as well as the leading

order in r part of the advanced Bondi coordinates as r → −∞. Use your answer to argue

what region of flat Bondi coordinates corresponds to each of I+ and I−, and verify that the

antipodal map zrB = − 1
z̄aB

holds in this case.

b) Determine the Killing vector ζ which generates Lorentz transformations in “flat Bondi”

(u, r, z, z̄) coordinates.

Then, using the fact that the global conformal Killing vectors defined on the sphere must

take the form

Y z(z) = a+ bz + cz2, a, b, c ∈ C, (3)

Show that ζ can be parametrized in terms of a global CKV Y A with A ∈ {z, z̄} and find

ζ(Y ).

c) Show that [ζ(Y1), ζ(Y2)] = ζ([Y1, Y2]). This shows that the Lorentz algebra is isomorphic to

SL(2,C), the algebra of global conformal killing vectors on the 2d sphere.

d) Optional (for 5% extra credit): A conformal Killing vector (CKV) on S2 is defined as
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a vector Y A with A,B ∈ {1, 2} satisfying

DAYB +DBYA = γABDCY
C . (4)

Taking γAB to be the usual metric on the round sphere,

ds2S2 = γABdx
AdxB =

4dwdw̄

(1 + ww̄)2
, (5)

show that the conformal Killing vectors that are defined globally on the 2D sphere S2 must

take the form

Y w(w) = a+ bw + cw2, a, b, c ∈ C. (6)

2. Soft Factorization (in Flat Bondi Coordinates)

In this problem, we will learn how to represent massless particles in terms of operators

on the celestial sphere and describe soft factorization of the gravitational S-matrix using a

supertranslation current algebra.

We consider four-dimensional perturbative gravity coupled to massless matter on a Minkowski

background in the coordinates (1), with null momenta parametrized as

pµk = ηkωkq̂
µ(zk, z̄k), q̂µ(zk, z̄k) = (1 + zkz̄k, zk + z̄k,−i(zk − z̄k), 1− zkz̄k), (7)

where ωk ≥ 0, ηk = ±1 for outgoing and incoming particles respectively. Spinning massless

particles are constructed from the polarization vectors

εµk+ =
1√
2
∂zk q̂

µ(zk, z̄k), εµk− =
1√
2
∂z̄k q̂

µ(zk, z̄k), (8)

and the polarization tensor for a positive helicity outgoing graviton is εµνk+ = εµk+ε
ν
k+.

As in Problem Set 2, we can define (note now in flat Bondi coordinates)

Czz(u, z, z̄) ≡ κ lim
r→∞

1

r
houtzz (r, u, z, z̄). (9)

Now, using the coordinates (1) and parametrization (7), define soft graviton currents P±
z by

4GP+
z = ∂z̄Czz|I+

+
− ∂z̄Czz|I+

−
= − κ

8π
lim
ω→0

∂z̄

(
ωaout+ (ω, z, z̄) + ωa†out− (ω, z, z̄)

)
, (10)

where κ =
√
32πG. Similar expressions on I− hold for P−

z .

The leading soft graviton theorem for a scattering process involving n hard massless particles

and one soft graviton of momentum qµ = ωq̂µ(z, z̄) and polarization εµν resembles a 2D Ward
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identity for a conserved current:

⟨out|P+
z S − SP−

z |in⟩ = − lim
ω→0

∂z̄

[
ω

n∑
k=1

ε+µνp
µ
kp

ν
k

pk · q

]
⟨out|S|in⟩ =

n∑
k=1

ηkωk

z − zk
⟨out|S|in⟩. (11)

Supertranslation invariance of the gravitational S-matrix follows from taking the derivative of

(11) with respect to z̄ and then integrating the result against an arbitrary function f(z, z̄):∫
d2z

2π
f(z, z̄)∂z̄⟨out|P+

z S − SP−
z |in⟩ =

∫
d2zf(z, z̄)

n∑
k=1

ηkωkδ
(2)(zk − z)⟨out|S|in⟩

≡ ⟨out|Q+
HS − SQ−

H |in⟩.

(12)

The hard charges Q±
H implement the action of the supertranslation symmetry on matter. For the

full charge Q± = Q±
H+Q±

S , the left-hand side of (12) is identified as −⟨out|Q+
SS−SQ−

S |in⟩. The
soft charges Q±

S act by adding soft gravitons, performing a non-trivial vacuum transformation.

a) Under infinitesimal supertranslations, a hard massless asymptotic state transforms as

δf |pk⟩ = iQ±
H |pk⟩, (13)

where Q±
H acts on states with ηk = ±1, respectively. Massless particles in momentum

eigenstates are associated to unique points on the celestial sphere and resemble local 2D

operators |pk⟩ ↔ Ok(pk), which transform under supertranslations according to (13). Find

the explicit transformation δfOk(pk) in terms of ωk, zk, z̄k.

b) Supertranslation symmetry is spontaneously broken in the standard Minkowski vacuum,

giving rise to a Goldstone boson, denoted C. C is canonically paired with the soft graviton

P+
z and related to a boundary component of the asymptotic metric:

Czz|I+
−
= −∂2

zC. (14)

The Goldstone boson transforms under an infinitesimal supertranslation by an inhomo-

geneous shift: δfC = f . The supertranslation transformation properties of O(pk) can be

isolated with operators Wk(pk), which transform as

δfWk(zk, z̄k) = iηkωkf(zk, z̄k)Wk(zk, z̄k). (15)

Then we can decompose

Ok = WkO′
k, (16)

where the transformation of Wk accounts for the full transformation of Ok(pk) under δf ,

implying that O′
k is invariant under supertranslations. Note that neither Wk nor O′

k alone
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create physical scattering states, which created by the composite operator Ok. Find an

explicit form of Wk in terms of the operator C.

c) An operator product expansion (OPE) is an expansion of a product of operators into a

sum of single operators at a point:

Oi(z1, z̄1)Oj(z2, z̄2) =
∑
k

ckij(z1 − z2, z̄1 − z̄2)Ok(z2, z̄2), (17)

where ckij(z1−z2, z̄1−z̄2) is coefficient function of z1−z2, z̄1−z̄2. In the following we will use

the symbol ∼ to denote “equal up to nonsingular terms in z1−z2 and z̄1−z̄2.” The soft

graviton theorem can be recast as the insertion of a current

Pz ≡ P+
z − P−

z (18)

in a correlation function of operators:

⟨PzO1 · · · On⟩ =
n∑

k=1

ηkωk

z − zk
⟨O1 · · · On⟩. (19)

Use the soft theorem to deduce the singular terms in the OPEs PzWk and PzC.

d) In analogy with the supertranslation current, define a Goldstone current

P̃z = i∂zC. (20)

Using the previous part, find the singular terms in the OPE PzP̃w. Deduce the form of

the singular terms in the OPE P̃zP̃w up to a numerical constant, which we will determine

in the next part. Note that soft gravitons have vanishing energy and do not couple at

leading order in a low-energy expansion, implying that there are no singular terms in the

supertranslation current OPE, i.e. PzPw ∼ 0.

e) In addition to singularities arising from the emission and absorption of soft gravitons,

which are captured by the soft graviton theorem, scattering amplitudes in four-dimensional

theories of gravity contain IR divergences arising from virtual soft gravitons exchanged be-

tween external legs. As Weinberg first explained [1], virtual graviton exchange contributes

a universal soft factor to the S-matrix. It can be shown that this factor takes the form

⟨out|S|in⟩ = exp

−1

ϵ

G

π

n∑
i ̸=j

ηiηjωiωj |zij |2 ln |zij |2
 ̂⟨out|S|in⟩, (21)

in d = 4+2ϵ dimensional regularization, where ̂⟨out|S|in⟩ is IR finite. Recast this statement

in terms of correlation functions of the operators introduced in the preceding parts, and
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use it to find the numerical coefficients of the singular terms in the OPE P̃zP̃w.

f) Now, we will recompute the gravitational memory effect using the current algebra. We

will show that the correlation function of soft gravitons and Goldstone modes determines

the gravitational memory formula.

Using crossing symmetry ⟨out|P+
z S|in⟩ = −⟨out|SP−

z |in⟩, we have

1

2

⟨PzO1 · · · On⟩
⟨O1 · · · On⟩

=
⟨out|P+

z S|in⟩
⟨out|S|in⟩

. (22)

The right-hand side can be interpreted as the expectation value of the change in the

asymptotic metric ∆hµν induced by the scattering of n hard particles. Show that the left-

hand side can be written in terms of correlation functions involving Pz and a Goldstone

operator. Use the form of these correlation functions to obtain the Braginsky-Thorne

formula [2] for gravitational memory due to the scattering of massive bodies:

lim
r→∞

rεµν+ ∆hµν(r, z, z̄) = −
√

G

2π

n∑
j=1

ε+µνp
µ
j p

ν
j

pj · q̂(z, z̄)
. (23)

Note that gravitational memory is IR safe observable: it involves a ratio of scattering

amplitudes that precisely cancels the IR divergences due to virtual gravitons.
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