211BR PROBLEM SET 5

Due Wednesday May 3 at 3:00 PM (hard copy or email submissions accepted).

Celestial Three-Point Amplitudes

Consider an *n*-particle momentum space amplitude $\mathcal{A}_n(q_1,\ldots,q_{n_1},p_1,\ldots,p_{n_2})$, with n_1 massless particles and $n_2=n-n_1$ massive particles. It can be translated to a celestial amplitude, $\widetilde{\mathcal{A}}_n(\{\Delta_k,z_k,\bar{z}_k\})$, with $k=1,\ldots,n$ by Mellin transforming the massless energies ω_i , and integrating the massive momenta against the bulk-to-boundary propagator $G_{\Delta_i}(\hat{p}_i;z_i,\bar{z}_i)$ as follows:

$$\widetilde{\mathcal{A}}_n\left(\Delta_k, z_k, \bar{z}_k\right) = \prod_{i=1}^{n_1} \left(\int_0^\infty d\omega_i \omega_i^{\Delta_i - 1} \right) \prod_{j=1}^{n_2} \left(\int_0^\infty \frac{dy_j}{y_j^3} \int d^2w_j \ G_{\Delta_j}(y_j, w_j, \bar{w}_j; z_j, \bar{z}_j) \right) \mathcal{A}_n, \quad (1)$$

where we have used the following parameterizations for massless and massive momenta

$$q_{i}^{\mu} = \epsilon_{i}\omega_{i}\hat{q}_{i}^{\mu} = \epsilon_{i}\omega_{i}(1 + z_{i}\bar{z}_{i}, z_{i} + \bar{z}_{i}, -i(z_{i} - \bar{z}_{i}), 1 - z_{i}\bar{z}_{i}),$$

$$p_{j}^{\mu} = \epsilon_{j}m_{j}\hat{p}_{j}^{\mu} = \frac{\epsilon_{j}m_{j}}{2y_{j}}\left(1 + y_{j}^{2} + w_{j}\bar{w}_{j}, w_{j} + \bar{w}_{j}, -i(w_{j} - \bar{w}_{j}), 1 - y_{j}^{2} - w_{j}\bar{w}_{j}\right) = \frac{\epsilon_{j}m_{j}}{2y_{i}}\left(n^{\mu}y_{j}^{2} + \hat{q}_{j}^{\mu}\right),$$

$$(2)$$

where the signs $\epsilon_k = \pm 1$ distinguish incoming/outgoing momenta and $n^{\mu} = \partial_z \partial_{\bar{z}} q^{\mu}(z, \bar{z})$. We use the definition of the bulk-to-boundary propagator

$$G_{\Delta}(y, w, \bar{w}; z, \bar{z}) \equiv \left(\frac{y}{y^2 + |z - w|^2}\right)^{\Delta}.$$
 (3)

In this problem, we will study the celestial amplitude corresponding to a tree-level three-point interaction between two massless scalars and one massive scalar.

a) The momentum-space amplitude for a tree-level three-point interaction between two massless scalars and one massive scalar takes the form

$$A_3(q_1, q_2, p_3) = g\delta^{(4)}(q_1 + q_2 + p_3) \tag{4}$$

where g is the coupling constant for the interaction, the massless particles have momentum $q_i = \epsilon_i \omega_i \hat{q}_i$, and the massive particle has momentum $p_3 = \epsilon_3 m \hat{p}$. Using (1), explicitly calculate the corresponding celestial amplitude, $\widetilde{\mathcal{A}}_3$ ($\{\Delta_k, z_k, \bar{z}_k\}_{k=1,2,3}$) and verify that it takes the form of a three-point correlation function in 2D CFT. That is, show that

$$\widetilde{\mathcal{A}}_{3}\left(\Delta_{k}, z_{k}, \bar{z}_{k}\right) = \frac{C\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)}{\left|z_{1} - z_{2}\right|^{\Delta_{1} + \Delta_{2} - \Delta_{3}} \left|z_{1} - z_{3}\right|^{\Delta_{1} + \Delta_{3} - \Delta_{2}} \left|z_{2} - z_{3}\right|^{\Delta_{2} + \Delta_{3} - \Delta_{1}}},\tag{5}$$

and give the expression for $C(\Delta_1, \Delta_2, \Delta_3)$.

Hint: Use $SL(2,\mathbb{C})$ transformations to take the three points (z_1,z_2,z_3) to $(0,1,\infty)$.

b) In this problem, we will show that the celestial amplitude from part a) can be fully fixed by 4D Poincaré invariance. Translation invariance of momentum space amplitudes implies that

$$\sum_{k=1}^{n} P_{\mu,k} \mathcal{A}_n = 0. \tag{6}$$

where in momentum space, the translation generators for massless particles with momenta $q_{\mu,k}$ act as

$$P_{\mu,k}\mathcal{A}_n\left(q_1,\ldots,q_n\right) = \epsilon_k \omega_k \hat{q}_{\mu,k} \mathcal{A}_n\left(q_1,\ldots,q_n\right). \tag{7}$$

 Show that for massless particles, the translation generators act on celestial amplitudes as weight-shifting operators

$$P_{\mu,k} \ \widetilde{\mathcal{A}}_n = \epsilon_k \hat{q}_{\mu,k} \left(z_k, \bar{z}_k \right) e^{\partial_{\Delta_k}} \widetilde{\mathcal{A}}_n, \tag{8}$$

ii) By a similar (but more tedious) process as in part i), one finds that for massive particles with momentum $p_k^{\mu} = \frac{\epsilon_k m_k}{2y_k} \left(n^{\mu} y_k^2 + \hat{q}_k^{\mu} \right)$, the action of translation generators on celestial amplitudes takes the form

$$P_{\mu,k} = \frac{\epsilon_k m_k}{2} \left[\left((\partial_{z_k} \partial_{\bar{z}_k} \hat{q}_{\mu,k}) + \frac{(\partial_{\bar{z}_k} \hat{q}_{\mu,k}) \partial_{z_k} + (\partial_{z_k} \hat{q}_{\mu,k}) \partial_{\bar{z}_k}}{\Delta_k - 1} + \frac{\hat{q}_{\mu,k} \partial_{z_k} \partial_{\bar{z}_k}}{(\Delta_k - 1)^2} \right) e^{-\partial_{\Delta_k}} + \frac{\Delta_k \hat{q}_{\mu,k}}{\Delta_k - 1} e^{\partial_{\Delta_k}} \right].$$
(9)

For the three-point amplitude discussed in part a), (6) takes the form

$$(P_{\mu,1} + P_{\mu,2} + P_{\mu,3}) \widetilde{\mathcal{A}}_3 (\Delta_k, z_k, \bar{z}_k) = 0$$
(10)

where $P_{\mu,1}$, $P_{\mu,2}$ are as in (8) and $P_{\mu,3}$ is as in (9). 4D Lorentz invariance (equivalently, 2D global conformal invariance) fixes that the celestial amplitude must take the form (5). Starting from (5), show that the momentum conservation constraint (10) yields a set of recursion relations for $C(\Delta_1, \Delta_2, \Delta_3)$. Verify that your answer for problem a) satisfies these relations.

iii) Optional (for 5% extra credit): Prove that (9) holds. The definition of the bulk-to-boundary propagator (3) may be helpful.