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Abstract

This is a redacted transcript of a course given by the author at Harvard in spring
semester 2016. It contains a pedagogical overview of recent developments connecting
the subjects of soft theorems, the memory effect and asymptotic symmetries in four-
dimensional QED, nonabelian gauge theory and gravity with applications to black
holes. The lectures may be viewed online at https://goo.gl/3DJdOr. Please send
typos or corrections to strominger@physics.harvard.edu.
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1 Introduction

1.1 The Infrared Triangle

These lectures concern a triangular equivalence relation that governs the infrared (IR)
dynamics of all physical theories with massless particles. Each of the three corners of the
triangle, illustrated in figure 1, represents an old and central subject in physics on which
hundreds or even thousands (in the case of soft theorems) of papers have been written.
Over the past few years we have learned that these three seemingly unrelated subjects are
actually the same subject, arrived at from very different starting points and expressed in
very different notations.

Soft
Theorem

Ward
Identity Asymptotic

Symmetry

Vacuum
Transition

Memory
Effect

Fourier
Transform

1

Figure 1: The infrared triangle.

The first corner is the topic of soft theorems. These originated in quantum electrodynam-
ics (QED) in 1937 with the work of Bloch and Nordsieck [1], were significantly developed in
1958 by Low and others [2–6], and were generalized to gravity in 1965 by Weinberg [7]. Soft
theorems characterize universal properties of Feynman diagrams and scattering amplitudes
when a massless external particle becomes soft (i.e., its energy is taken to zero). These
theorems tell us that a surprisingly large — in fact, infinite — number of soft particles are
produced in any physical process, but in a highly controlled manner that is central to the
consistency of quantum field theory.

The second corner is the subject of asymptotic symmetries. This is the study of the
nontrivial exact symmetries or conserved charges of any system with an asymptotic region
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or boundary. One of the earliest examples appears in the pioneering work of Bondi, van
der Burg, Metzner, and Sachs (BMS) [8, 9], who sought to recover the Poincaré group of
special relativity as the symmetry group of asymptotically flat spacetimes in general relativity
(GR). Instead, in a spectacular failure of their original program, they discovered the infinite-
dimensional BMS group whose deep implications are still being unravelled today. In contrast,
analogous asymptotic symmetries in QED and nonabelian gauge theory were discovered only
recently [10–14] and are a subject of ongoing research [15–22].

The third corner of the triangle is the memory effect, investigated in the context of
gravitational physics in 1974 by Zel’dovich and Polnarev [23], and significantly developed
by Christodoulou and others [24–33]. This is a subtle DC effect, in which the passage
of gravitational waves produces a permanent shift in the relative positions of a pair of
inertial detectors. Detection of the memory effect has been proposed at LIGO [34] or via a
pulsar timing array [35,36]. It is an exciting experimental prospect for the coming decades.
Again, the gauge theory analog appeared only recently [37–40]. This memory corner of the
triangle provides an important physical realization of the more abstractly formulated results
of the other two corners, giving direct observational consequences of the infinite number of
symmetries and conservation laws.

Figure 1 also depicts the mathematical equivalence relations connecting the three corners.
Perhaps the simplest is the connection between the soft theorem and the memory effect [41].
The former is a statement about momentum space poles in scattering amplitudes, while the
latter concerns a DC shift in asymptotic data between late and early times. These are the
same thing, because the Fourier transform of a pole in frequency space is a step function
in time. The step function in turn can be understood as a domain wall connecting two
inequivalent vacua that are related by an asymptotic symmetry [41]. Hence the memory effect
both physically manifests and directly measures the action of the asymptotic symmetries.
The triangle in figure 1 is closed by noting that every symmetry has a Ward identity that
equates scattering amplitudes of symmetry-related states.1 These Ward identities turn out to
be nothing but the soft theorems — which relate amplitudes with and without soft particles
— in disguise [10,11,42,43].

It is a testimony to the unity of physics that these three seemingly disparate avenues
of investigation led to the same mathematical structures. We will see in section 5 that
Weinberg’s 1965 soft graviton theorem reproduced the 1962 results of BMS, but in the wildly
different language and notation of Feynman diagrams as opposed to asymptotic structures at
null infinity. We will further see in section 6 that the 1987 Braginsky-Thorne formula for the
gravitational memory effect is a Fourier transform of the Weinberg soft graviton theorem.
Of course, Weinberg was scattering elementary particles, while Braginsky and Thorne were
scattering black holes, but this distinction is irrelevant in the deep infrared!

The bigger picture emerging from the triangle is that deep IR physics is extremely rich,
perhaps richer than previously appreciated. Every time we breathe, an infinite number of
soft photons and gravitons are produced. Quantum field theory analyses tend to treat this
as a technical problem to be overcome by resorting to carefully constructed inclusive cross
sections. IR regulators are often used that explicitly break the symmetries, and it is difficult

1Alternately, these identities can be derived as the vanishing of all matrix elements of the associated
charge conservation laws.
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to see them emerge as the regulator is removed.2 GR analyses tend to treat the BMS
discovery that the deep IR limit of GR is not special relativity as a problem to be avoided
by the ad hoc imposition of extra boundary conditions at infinity. In fact, BMS discovered
the classical version of infinite graviton production, an equivalent indication of the richness
of the deep IR. Here we will see that, far from being technicalities, these IR phenomena are
associated with fundamental symmetries of nature whose fascinating consequences we are
just beginning to unravel.

1.2 New Developments

New developments in this area go beyond demonstrating the equivalence of previously
known phenomena. The three-dimensional perspective afforded by the triangle has led to
better conceptual understanding of each old corner, discovery of new corners, and new re-
search programs searching for and exploring new triangles. We now mention a few of the
many new results that have emerged in the past few years.

Until recently, one corner of the triangle — asymptotic symmetries — was essentially
unknown for any example in four-dimensional Minkowski space. The best understood case
was the BMS action in gravity. BMS showed that infinite-dimensional subgroups BMS± of
the diffeomorphism group act nontrivially at future and past null infinity I±, transforming
one set of Cauchy data to a physically inequivalent one. The full group BMS+ × BMS−, how-
ever, is clearly not a symmetry of gravitational scattering. For example, it includes elements
that boost the past but not the future. It was widely held (in part due to misconceptions
about asymptotic falloffs cleared up only recently by Christodoulou and Klainerman [47])
that there is no nontrivial infinite-dimensional symmetry of gravitational scattering; see [48]
for further discussion. However, the equivalence to the soft graviton theorem was used in [42]
to show that, in a generic physical setting, a certain ‘antipodal’ subgroup of BMS+ × BMS−

is an exact asymptotic symmetry of gravitational scattering. This discovery is detailed in
section 5.2.

The triangular perspective further led to the conclusion that the vacuum in GR (as well as
in gauge theory) is not unique, as it transforms nontrivially under the antipodal symmetries.3

In particular, distinct vacua are found to have different angular momenta [51]. Ignoring the
vacuum degeneracy leads to the false conclusion that angular momentum is not conserved
(see figure 9)! This degeneracy resolves the so-called problem of angular momentum in GR.
The electromagnetic analog is discussed in section 2.11, and the gravity version in section 5.

Another new development from the triangle involves a conjectured extension of the BMS
group involving superrotations, a Virasoro-like symmetry that acts on the sphere at I [52–55].
Because of certain singularities in the generators, standard asymptotic symmetry analyses
could not establish whether these are bona fide symmetries. However, the result was estab-
lished [56,57] using Feynman diagrams and proving the equivalent soft theorem, as discussed
in section 5.3.

2BMS3 has been recovered as the large radius limit of gravity in AdS3 [44–46], but efforts [45] to recover
BMS4 in the large radius limit of AdS4 have so far not succeeded.

3This result was partially anticipated in prescient work of Ashtekar [49]; see also Balachandran and
Vaidya [50].
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In abelian and nonabelian gauge theories, various soft theorems have long been known.
New symmetries in gauge theory, precise analogs of the antipodal subgroup of BMS in gravity,
have been discovered using the triangular equivalence, as discussed in sections 2 and 4.

Given one corner of a triangle, others can be systematically determined. Insights from
gravity can be applied to gauge theory and vice versa. One or more triangles potentially
exists for every type of massless particle. Let us now discuss a few of these triangular
variations.

1.3 Echoing Triangles

The IR triangle in figure 1 has many copies, which echo throughout much of physics, as
illustrated in figure 2. Here are some examples.
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Figure 2: The infrared triangle echoes throughout disparate areas of physics.
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1.3.1 QED, Yang-Mills Theory, Gravity, Massless Particles, ...

The simplest cases of the triangle involve massless particles associated with local gauge
symmetries, such as the photon, which will be our first example. However, whenever there
is a massless particle, one can consider the soft limit of the scattering amplitude. A full
triangle, including symmetry and memory, is often found to emerge, even when no underlying
local gauge symmetry exists. A simple example of this discussed here is the soft photino
theorem [58], which lies at the corner of a triangle including an infinite number of asymptotic
fermionic symmetries. Potentially, a triangle exists for every type of massless particle, many
of which have yet to be studied from this perspective.

1.3.2 Leading, Subleading, Sub-Subleading, ...

Soft theorems are statements about the behavior of an amplitude at zero or low energy.
In an expansion in powers of the soft energy, universal behavior may appear in the leading
as well as the subleading or even sub-subleading orders. Indeed, Low [2, 4, 59] already dis-
cussed a subleading soft theorem in QED. Recent research derived the symmetry based on
Low’s subleading theorem [60–62]. The associated memory effect remains to be analyzed. In
gravity, a new subleading soft theorem was proven at tree-level [56,63–65] and was shown to
imply [57, 66–68] superrotation symmetry [52–55], a recently conjectured asymptotic sym-
metry. The third corner of the triangle, the spin memory effect, was derived in [69]. A
proposal for measuring it using the Einstein Telescope appears in Nichols [70]. A gravi-
tational sub-subleading soft theorem has also been proven [56, 71–77], and the associated
symmetry has been discussed in [78]. A complete classification of all possible soft theorems
at various orders of the soft expansion has not appeared, although some discussion of it ex-
ists [79,80]. New soft theorems at various orders have recently been discovered in nonabelian
gauge theories [20,77,81,82], supersymmetric theories [83–85], nonlinear sigma models [86],
string theories [76,87–93], and in other contexts [94–98].

1.3.3 Double Soft Theorems, ...

Interesting universal structures are known for limits when two or more external particles
are taken to be soft. For example, for soft moduli in N = 8 supergravity, the structure
constants of the hidden E7(7) symmetry algebra appear [99]. In recent years, double-soft
limits have been further examined in gravity [100, 101], gauge theories [100, 102–105], su-
persymmetric theories [83, 100, 103, 106], nonlinear sigma models [86, 104, 107], and string
theory [93, 103, 108]. This behavior is presumably at the corner of yet another unexplored
triangle and is perhaps related to structure constants or central charges of an asymptotic
symmetry group.

1.3.4 Classical, Quantum, ...

There is a purely classical triangle involving tree-level soft theorems and classical sym-
metries. This regime is where these lectures begin. In the simplest cases, the soft theorem
is uncorrected, and the quantum triangle is similar to the classical one. In general, however,
an interesting story involving anomalies may appear [109–117].
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1.3.5 Minkowski, D < 4, D > 4, Cosmology, ...

In these lectures, we consider only the physical case of four-dimensional Minkowski space.
However, the triangle also appears in both higher dimensions [95,118,119] and in cosmology,
where there are also soft theorems [120–122] and asymptotic symmetries [123]. The sub-
subleading soft graviton theorem has been explored in arbitrary dimensions [72,73]. The case
of three-dimensional gravity, where there is generally better control, is especially interesting
[44,124–135]. However, since three-dimensional gravitons do not propagate, this case has no
soft theorem. This feature gives the problem a rather different flavor, and I do not review it
in these lectures.

1.3.6 Supersymmetry, N = 1, 2, ...

For many reasons it is also of interest to consider supersymmetric theories. The local
N = 1 case has been worked out [136,137], as has the global one in [58]. New features should
appear with soft scalars and R-symmetries for N = 4 Yang-Mills and N = 8 supergravity.
Soft theorems in various supersymmetric theories have been worked out [84, 109, 116] and
sometimes give rise to recursion relations [138]. At present, even the asymptotic symmetry
group for these interesting higher-N cases is unknown.

Every one of the combined possibilities mentioned here can potentially result in a new
triangle. So far, each story has its own unique and surprising features, which need to be
worked out case by case. Most have yet to be explored. This subject is still in its infancy,
which makes it a lot of fun to talk about!

1.4 Motivation and Applications

Why is this interesting? What are the motivations and applications? While the devel-
opment of this subject heavily borrows some insights from modern string theory, it directly
pertains to the real world. It has interwoven motivations and applications, which we now
discuss.

1.4.1 Connecting Disparate Subjects

Given a concrete mathematical relation between two different subjects, results in one can
be translated into what are often new results in the other. New methods of calculation, new
physical phenomena and insights, and new avenues of investigation are often suggested. The
current context is no exception. Soft theorems, memory effects, and asymptotic symmetries
are three different ways of characterizing the behavior of the universe around us at very
long distance scales. This equivalence has led to the realization that physics in the deep
infrared is much richer, more subtle, and certainly much less understood than we previously
believed. Notably, looking at IR structure from all three corners of the triangle has led to
the realization that the vacuum in all gauge and gravitational theories is best described as
infinitely degenerate. Prior to the past several years, there was no case in which all three
corners were understood. Now that we know about these triangles, once we find one corner
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of one triangle, we can work out the other two. As a result, numerous surprising discoveries
have been made, some of which are covered in these lectures.

1.4.2 Flat Space Holography

A central motivation for these IR investigations is to understand the holographic struc-
ture of quantum gravity in four-dimensional asymptotically flat spacetimes, which is a good
approximation to the real world. This is how I came into the subject. A very beautiful
story has unfolded over the past twenty years concerning the holographic structure of quan-
tum gravity in anti-de Sitter space. The story begins [139] with the identification of the
symmetries in anti-de Sitter space with those of its proposed holographic dual. Following
this successful example, the very first question we should ask in attempting a holographic
formulation of flat space quantum gravity is: “What are the symmetries?” Up until three
years ago, the answer to this question was unknown. At the very least we now know [42]
that the symmetry group is infinite dimensional and includes a certain subgroup of, but not
all of, the BMS group on past and future null infinity. In addition, good evidence [57,67,117]
indicates a conjectured Virasoro (or superrotation) symmetry [52–55] that acts on the sphere
at null infinity, referred to as the celestial sphere CS2. The Lorentz group SL(2,C) acts as
the global conformal group on this sphere, and the Virasoro action enhances the global to
the local conformal group. This suggests that the holographic dual of four-dimensional flat-
space quantum gravity might be realized as an exotic two-dimensional conformal field theory
(CFT) on CS2 [12, 140–144].

1.4.3 The Gauge Theory S-Matrix

The study of soft particles and infrared divergences in QED, Yang-Mills theory, and col-
lider physics is a large and central enterprise in quantum field theory. Notable recent progress
includes the development of soft collinear effective theory (SCET) [145], in which infinite-
dimensional symmetries likely related to those discussed here make an appearance [146].
SCET has important practical applications for understanding jet structure and interpreting
LHC and other collider events. From a more formal point of view, it is disturbing that
generically no IR finite S-matrix4 exists in gauge theories, even if suitable inclusive cross
sections are finite [151]. While this does not pose an obstacle for collider predictions, it is a
big elephant in the room for mathematical quantum field theory. Surely the central object
of study in these theories must somehow be mathematically well defined! Our hope is that
the discovery of new symmetries in the deep IR will enable us to formulate the soft part
of the S-matrix in a more satisfactory way. Moreover, the symmetries might be exploited
to develop more efficient computational methods, perhaps via a connection with the SCET
program.

4In massive abelian gauge theories, the Faddeev-Kulish construction [147] yields some IR finite amplitudes.
An analogous construction for nonabelian gauge theory was given in [148,149] and references therein. It was
recently revisited for gravity [150] and for QED [22]. However, Faddeev-Kulish states are not complete: for
example, they exclude an incoming positron-electron pair with no incoming radiation. See section 2.15 for
further discussion.
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1.4.4 Miracles in N = 4 Yang-Mills

Scattering amplitudes in N = 4 Yang-Mills have been a very active subject for more than
10 years e.g., [99, 152–159]. Extensive computations have revealed miraculous cancellations
that reduce very complicated expressions to simple ones. When many cancellations occur it
is natural to suspect that they are required by an underlying symmetry. It is possible that
the new IR symmetries provide an explanation of those miracles or, even better, a derivation
of some of the incredibly beautiful formulas for scattering amplitudes in N = 4 Yang-Mills
theory.

1.4.5 Black Holes

Although I did not start this IR project with black holes in mind, as usual, all roads lead
to black holes [41,48,160]. The IR structure has important implications for the information
paradox [161]. This paradox is intertwined with the deep IR because an infinite number
of soft gravitons and soft photons are produced in the process of black hole formation and
evaporation. These soft particles carry information with a very low energy cost. They must
be carefully tracked to follow the flow of information. Tracking is hard to do without a
definition of the S-matrix! Moreover, their production is highly constrained by an infinite
number of exact quantum conservation laws that correlate them with energetic hard particles
and also with the quantum state of the black hole itself [162]. Thus black holes must carry
an infinite number of conserved charges, described as “soft hair” in a recent collaboration
with Hawking and Perry [48, 160]. The information paradox cannot be clearly stated [163],
let alone solved, without accounting for soft particles. The implications of soft hair recently
have been discussed [128,163–180], for example.

These lectures both review the old material on soft theorems, asymptotic symmetries
and memory as well as the new connections among them. Unsolved problems are pointed
out along the way. Some exciting developments in the past year whose proper perspective
has not yet been clarified are omitted. These lectures are not meant to be an exhaustive
review; see other sources in the References [45, 50, 51, 94, 181–191] for interesting related
developments.

2 QED

Since this is a book about the interconnections among many different subjects, we might
start at many different places — gauge theory or gravity, soft theorems, symmetries or
memories — and weave our way through the connections. Here I choose the simplest possible
starting point: classical, nineteenth-century electromagnetism. Beginning from this point,
we will trace out these interconnections for any theory with an abelian gauge symmetry —
including, of course, QED.

We begin in section 2.1 by recalling the Liénard-Wiechert solutions for a collection of
charges and noting that these solutions are discontinuous at the boundary of Minkowski
space. Characterizing this discontinuity requires a careful description of the boundary, which
is provided in section 2.2. In section 2.3, we show that the Liénard-Wiechert field obeys a
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boundary matching condition equating its values at the far past of I+ (I+
− ) with those at an-

tipodal points of the far future of I− (I−+ ). Section 2.4 describes the electromagnetic Cauchy
data at I±. Using only the matching condition, an infinity of conservation laws is derived in
section 2.5. Section 2.6 presents the covariant canonical formulations of the physical phase
spaces at I±. In section 2.7, I show for massless fields, that the conserved charges generate
(via the Dirac bracket) nontrivial large gauge transformations associated with antipodally
matched angle-dependent gauge parameters that do not die off at I±. A Ward identity of this
symmetry is derived in section 2.8 and shown to be equivalent to the soft photon theorem.
For completeness, the standard diagrammatic derivation of the soft theorems for both pho-
tons and gravitons is reviewed in section 2.9. In section 2.10, I adapt the BMS-type analysis
of asymptotic symmetries employed from studies of gravity to electromagnetism and show
that it reproduces the antipodally matched large gauge symmetries. In section 2.11, it is
noted that the large gauge symmetry is spontaneously broken, resulting in an infinite vacuum
degeneracy with soft photons as the Goldstone bosons. The generalization to massive fields,
and hence QED, is in section 2.12. This extension employs a hyperbolic slicing of Minkowski
space and heavily borrows results from investigations of the anti-de Sitter/conformal field
theory correspondence (AdS/CFT). In 2.13, a magnetically corrected soft photon theorem is
presented and conjectured to be nonperturbatively exact. I derive a second infinity of con-
served charges and symmetries arising from large magnetic gauge transformations. Section
2.14 shows that for N = 1 supersymmetry, the soft photino theorem leads to an infinity of
fermionic conservation laws and symmetries. These are surprising, as they are unrelated to
any previously discussed local symmetry. In section 2.15, IR divergences are discussed and
shown to disappear for some and possibly all fully charge-conserving amplitudes.

2.1 Liénard-Wiechert Solution

Maxwell’s theory of electromagnetism is described by the action

S = − 1

4e2

∫
d4x
√−gFµνF µν + SM , (2.1.1)

where µ, ν = 0, 1, 2, 3 and SM denotes a general matter action. In form notation, the field
strength F is related to the gauge field A by

F = dA . (2.1.2)

The equation of motion is

d ∗ F = e2 ∗ j =⇒ ∇µFµν = e2jν , (2.1.3)

where ∗ is the Hodge dual, and the charge current is

jν = −δSM
δAν

. (2.1.4)

The electric charge inside a two-sphere (S2) at infinity is defined by

QE =
1

e2

∫

S
2
∗F =

∫

Σ

∗j ∈ Z . (2.1.5)

9



The second equality is obtained using integration by parts and the constraint component
of the equation of motion. It says that if we take Σ to be any slice with the S2 boundary,
the electric charge is just the normal component of the charge current integrated over that
slice. For convenience, we adopt here a convention in which QE is an integer in the quantum
theory. For example, the electron has charge QE = 1 (not e). The magnetic charge 1

2π

∫
F

is also integral, and it has an associated conservation law [192]. We return to the interesting
story of magnetic charges in section 2.13, but for now, assume they are absent.

The theory (2.1.1) is invariant under the infinitesimal gauge transformations

δεA = dε , δεΦk = iεQkΦk , (2.1.6)

where ε ∼ ε + 2π, and Φk is a matter field with charge Qk. Since Qk ∈ Z, the finite
transformation

Φk → eiQkεΦk (2.1.7)

is invariant under ε→ ε+ 2π.
Now let us solve the equation of motion. Consider a source j corresponding to n particles,

each moving with constant four-velocity Uµ
k = γk

(
1, ~βk

)
, where U2

k = −1 and γ2
k = 1

1−β2
k

.

Then we have

jµ(x) =
n∑

k=1

Qk

∫
dτ Ukµδ

4(xν − Uν
k τ) . (2.1.8)

Each particle is a point source with a worldline parametrized by τ , so that xµk(τ) = Uµ
k τ .

Equation (2.1.3) determines the electromagnetic field due to this source. Liénard and
Wiechert solved this problem in 1898. The solution for the radial component of the electric
field is

Frt(~x, t) =
e2

4π

n∑

k=1

Qkγk

(
r − tx̂ · ~βk

)

∣∣γ2
k

(
t− rx̂ · ~βk

)2

− t2 + r2
∣∣3/2

, (2.1.9)

where
r2 = ~x · ~x , ~x = rx̂ . (2.1.10)

This formula is valid for either the advanced or the retarded potential. It has the peculiar
property that it is not single valued and has a discontinuity at r = ∞. Although this fact
was presumably well known to many since the nineteenth century, this basic point surprised
me when I became aware of it only recently. It is crucial for all that follows, so we will go
through how this happens in pedantic detail. To fully explain it, we must first digress and
review the structure of infinity in Minkowski space.

2.2 Minkowski Space Penrose Diagram

To talk about infinity, it is useful to introduce Penrose diagrams. The Penrose diagram
for four-dimensional Minkowski space is shown in figure 3. In this figure all of Minkowski
space is pulled into a finite region by a conformal transformation that diverges at the bound-
aries. Distances are not faithfully represented, but the causal structure is unaffected by the
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Figure 3: Penrose diagram of Minkowski space. Red lines represent surfaces of constant
t, while blue lines represent surfaces of constant r. The thick gray line is the worldline
of a massive particle moving at constant velocity, and the thick wavy gray line is a
light ray. Every two-sphere of constant (r > 0, t) is represented by two points, one on
the left and one on the right, which are exchanged by the antipodal map. Past and
future null infinities are labelled by I±, and their four S2 boundary components by
I±± . The points i± are past and future timelike infinity, while the point i0 is spatial
infinity.

conformal transformation and is clearly indicated by the rule that light rays always propa-
gate at 45 degrees. Every left-right pair of points at the same (r, t) in figure 3 corresponds to
an S2 (except r = 0, which is a point), and the pair is interchanged by the antipodal map on
S2. Sometimes the picture is drawn differently, as in figure 4. Every point on this diagram
represents an S2 except for r = 0, which is the origin. If you have a sequence of two-spheres
that are getting smaller and smaller and you add a point in the middle, you get R3. For our
purposes (which include a study of the antipodal map), figure 3 will be more useful.

We want to study the electric field of n charges moving at constant velocity. The charges
have worldlines that look like the thick gray line in figure 3. They cannot escape to r =∞,
because light rays move at 45 degrees on Penrose diagrams; every light ray will eventually
catch up to a particle moving with constant velocity (less than c) and cross it to larger
radius. As a result, massive charges always end up at the uppermost point, “called future
timelike infinity” and denoted i+ in figure 3. Similarly, the worldlines of (massive) charges
start at past timelike infinity (i−). Likewise, we call the place where light rays go to “future
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Figure 4: Alternative Penrose diagram of Minkowski space in which every point except
for r = 0 is an S2.

null infinity” (I+) and the place where light rays come from “past null infinity” (I−). We
will be especially concerned about behavior near spatial infinity, denoted i0. This behavior
turns out to be very subtle. As we will see, almost anything, even Maxwell electromagnetism
with one point particle, is singular at this point. I+ is the product of S2 with a null line. It
will be important to distinguish between the past of I+, which we call I+

− , and the future of
I−, which we call I−+ . Both these points are near, but distinct from, the point i0. Figures 3
and 4 also illustrate I−− , which is an S2 near but distinct from the point i−. Likewise, near
the point i+, we have the S2 denoted I+

+ .
Now let us discuss the problem of scattering in Minkowski space, a central topic of this

book. Whether in electrodynamics or gravity, classical or quantum, one starts by specifying
initial data at I−. If there are stable massive particles, initial data at past timelike infinity
i− are also needed, but we suppress that for now and return to it in section 2.12. In the
far past, fields and particles disperse, and so the theory is weakly interacting. Incoming
particles or wavepackets evolve towards each other, interact in some very complicated way,
and ultimately come out on I+. The classical version of the scattering problem is to find a
classical map from the phase space defined on I− to the phase space defined on I+. The
quantum version of the scattering problem is to find the S-matrix that evolves incoming
states defined on I− to outgoing states defined on I+.

Clearly in this setting, what goes on near i0 is important, because we have to know how
to match on final data on I+ given initial data on I−. Specifically, we need to understand
what the matching conditions are that relate the fields at I−+ to the fields at I+

− . One might
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think that the fields should simply be taken to be equal, but this turns out to be completely
wrong. In fact, such a matching condition is not even Lorentz invariant! We will soon see it
is also not obeyed by the Liénard-Wiechert solution.

To describe I−, it is useful to introduce advanced time:

v = t+ r . (2.2.1)

To describe I+, we introduce retarded time:

u = t− r . (2.2.2)

I− is a three-dimensional surface, so four coordinates are not needed. We could try to use
the usual (t, r, x̂), x̂ being a unit vector labeling a point on the sphere, but this choice is
awkward, because t and r are both infinite on I. However, if we follow null rays backward
(in time), t + r is finite, and if we follow them forward, t − r is finite. So I+ is naturally
parametrized by (u, x̂), and I− is naturally parametrized by (v, x̂).

2.3 Antipodal Matching Condition

A peculiar property of the Liénard-Wiechert solution is that if we start at a point in the
bulk, take the limit first to I+ and then to i0, we get a different answer than if we take the
limit to I− and then to i0. In fact, the Liénard-Wiechert solution takes different values at
fixed angles (or x̂) on I+

− and I−+ , but obeys an antipodal matching condition.
To see this, first rewrite (2.1.9) in retarded coordinates u = t− r:

Frt = Fru =
e2

4π

n∑

k=1

Qkγk

(
r − (u+ r)x̂ · ~βk

)

∣∣γ2
k

(
u+ r − rx̂ · ~βk

)2

− (u+ r)2 + r2
∣∣3/2

. (2.3.1)

To reach I+, hold u fixed and take the limit r →∞:

Frt
∣∣
I+ =

e2

4πr2

n∑

k=1

Qk

γ2
k(1− x̂ · ~βk)2

. (2.3.2)

To reach I+
− , we must further take u → −∞, but since the expression is u-independent,

(2.3.2) is the final answer. Note, if we take the velocity ~βk = 0, we recover the usual
Coulomb field for a static charged particle.

The leading 1

r
2 component of the electric field due to moving charges is not a constant:

it depends on the angle of the sphere at infinity. In standard electrodynamics texts, such
as Jackson [193], one often studies the multipole expansion of static configurations. The 1

r
2

component is then constant and proportional to the total electric charge, while the 1

r
3 term

comes from the static electric dipole moment with angular momentum ` = 1. In contrast, for
the case of a single charge moving at constant velocity, no electric dipole is in the picture,
but there is a dipole moment in the 1

r
2 term, in the sense that the ` = 1 mode of the

distribution over the sphere is nonzero. This ` = 1 mode dipole moment of the 1

r
2 term is
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not to be confused with what is usually called the the electric dipole moment in classical
electrodynamics!

To find the electric field at I−, we work in advanced coordinates v = t+ r:

Frt = Frv =
e2

4π

n∑

k=1

Qkγk

(
r − (v − r)x̂ · ~βk

)

∣∣γ2
k

(
v − r − rx̂ · ~βk

)2

− (v − r)2 + r2
∣∣3/2

. (2.3.3)

To reach I−, we hold v fixed and take the limit r →∞:

Frt
∣∣
I− =

e2

4πr2

n∑

k=1

Qk

γ2
k(1 + x̂ · ~βk)2

. (2.3.4)

Once again, since the expression is v-independent, this is also the value of Frt at I−+ . Com-
paring equation (2.3.2) and equation (2.3.4), we find that the values of the fields do not
match. Even for the case of one moving charge in Minkowski space, the radial component
of the electric field is not continuous at spatial infinity. Its value depends on how one ap-
proaches spatial infinity, and it is discontinuous there. The field takes a definite value if one
specifies a way of approaching i0. Going down from I+, or up from I−, one gets a definite
answer, but they are not equal as long as ~βk 6= 0.

Since the solution is Lorentz covariant and can be obtained by boosting a static charge,
the discontinuity is dictated by Lorentz invariance. Indeed, Lorentz transformations them-
selves are not smooth at spatial infinity, because the vector fields that generate them are
singular at i0. A boost toward the north pole in the future is a boost away from the north
pole in the past. The point i0 is the dividing point of these two different behaviors.

Although the fields Frt
∣∣
I−+

and Frt
∣∣
I+
−

are not equal, they have an important antipo-

dal relation: taking x̂ to −x̂ takes Frt
∣∣
I+
−

to Frt
∣∣
I−+

. Comparison of equation (2.3.2) and

equation (2.3.4) reveals the matching condition,

lim
r→∞

r2Fru(x̂)
∣∣
I+
−

= lim
r→∞

r2Frv(−x̂)
∣∣
I−+

, (2.3.5)

where we have used the relation Fru = Frv = Frt. That is, the leading term in the radial
electric field for a collection of n particles at any point on I+

− will be equal to the value of
the field at the antipodal point on I−+ .

So far we have been considering a relatively simple nonstatic situation, in which nothing
is interacting. However, it is not hard to check (see exercise 1) that equation (2.3.5) holds
in basically all reasonable circumstances. If we add electromagnetic waves on top of the
n-particle solution (2.1.9), the field strengths at I+ and I− would no longer be constant.
Electromagnetic waves are radiative as opposed to Coulombic modes of the electromagnetic
field. If we want them to have finite energy, they must die off in the infinite future and the
infinite past. For finite energy configurations, adding radiative modes will give more compli-
cated expressions (for example the field strength on I+ will depend on u) but will not affect
this basic behavior of the Coulombic, deep IR part of the electric field near spatial infinity,
which is what we have been studying. It is also the case that letting the charges interact or
scatter off one another preserves (2.3.5). If one uses the retarded Liénard-Wiechert potential,

14



one obtains equation (2.1.9) in a neighborhood of i0 with ~βk the outgoing velocities, while

the advanced Liénard-Wiechert gives (2.1.9) in a neighborhood of i0 with ~βk the incoming
velocities. These solutions are different, but both obey antipodal matching. In section 2.9,
we will also see that in quantum theory, Feynman diagrammatics implicitly assume equation
(2.3.5) in the standard weak field expansion. That might have been guessed from the fact
that the matching condition is Lorentz and CPT invariant.

Another way of thinking about the matching condition, using the conformal invariance
of electromagnetism, is to map or “conformally compactify” Minkowski space to the cylinder
using a conformal rescaling of the metric (figure 5). This mapping is especially simple in

i+ I+

i0

i� I�

1

Figure 5: The blue diamond represents Minkowski space conformally compactified onto
the S3×R Einstein static universe. The red arrows indicate how the generators of null
infinity pass through spatial infinity.

electromagnetism, which is invariant under such rescalings, but it is also very useful in
gravity, where it formed the basis of Penrose’s analysis of null infinity [194, 195]. The cross
sections of the cylinder are S3, and Minkowski space is represented by the blue diamond.
Null infinity I is the lightcone of spatial infinity i0. The future lightcone wraps around the
cylinder and meets itself at i+, while the past lightcone meets itself at i−. The Minkowski
diamond is wrapped on the cylinder and touches itself at i0. The null generators of I start
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at past null infinity I− and pass through spatial infinity i0 to future null infinity I+. The
matching condition (2.3.5) then states that the fields are continuous along the generators of
I, including when they cross i0, even though it is generically a singular point. It is singular,
because, for example, even just one charge in the interior needs an image charge at i0, which
will cause the electric field to diverge there. One certainly cannot demand that the fields be
smooth at spatial infinity. In the presence of multiple moving charges, the singularity can
become very complicated and in general requires arbitrarily many parameters to describe.
However, we are still able to consistently require, without violating Lorentz invariance (which
is a conformal symmetry of the compactified geometry), that the fields are continuous along
the null generators passing through i0 as prescribed by equation (2.3.5).

2.4 Asymptotic Expansions

Before going any further, it is convenient to introduce specific advanced and retarded
coordinates, illustrated in figure 6, and to be more precise about our large-r expansions
around I±.

I+

I−

+∞

−∞
0

∞
u

z, z̄

r

I+

I−

+∞
0

∞

−∞

v

r

z, z̄

Figure 6: In the left diagram, I+ is parametrized by retarded time u and spherical
coordinates (z, z̄) in retarded Bondi coordinates, while in the right diagram, I− is
parametrized by advanced time v and spherical coordinates (z, z̄) in advanced Bondi
coordinates. The advanced and retarded (z, z̄) coordinates are chosen so that they are
related by an antipodal map on spheres of constant (u, r).

In retarded coordinates (r, u, z, z̄), the Minkowski line element is

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ . (2.4.1)
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These coordinates will be used in the neighborhood of I+. Here, u = t − r is the retarded
time coordinate introduced in equation (2.2.2), r is the radial coordinate, and z is a complex
coordinate on the unit sphere with metric

γzz̄ =
2

(1 + zz̄)2 . (2.4.2)

If we keep (u, z, z̄) fixed and take the limit r →∞, we move out along a null line to I+. One
can see that this is a null line, because along this path, du = dz = dz̄ = 0, which implies
ds2 = 0. The standard metric on Minkowski space,

ds2 = −dt2 + (d~x)2 , (2.4.3)

is related to the metric in equation (2.4.1) by the coordinate transformations

(~x)2 = r2 , t = u+ r , x1 + ix2 =
2rz

1 + zz̄
, x3 = r

1− zz̄
1 + zz̄

. (2.4.4)

The inverse transformation is

r2 = (~x)2 , u = t− r , z =
x1 + ix2

x3 + r
. (2.4.5)

Here, z runs over the entire complex plane; z = 0 is the north pole, z = ∞ is the south
pole, zz̄ = 1 is the equator, and z → −1/z̄ is the antipodal map. This is a convenient
coordinate system to work in near I+ because, as we will see, everything falls off near I+,
so we can expand fields in powers of 1

r
. However, we cannot easily use these coordinates

near I−, because u = −∞ there. To work in a neighborhood of I−, we introduce advanced
coordinates. The advanced line element is

ds2 = −dv2 + 2dvdr + 2r2γzz̄dzdz̄ . (2.4.6)

This metric can be obtained from the standard Cartesian metric on Minkowski space by
means of the coordinate transformations

(~x)2 = r2 , t = v − r , x1 + ix2 = − 2rz

1 + zz̄
, x3 = −r1− zz̄

1 + zz̄
. (2.4.7)

Crucial minus signs introduced into the last two terms of (2.4.7) imply that the z in the
advanced coordinates denotes the antipodal point on the sphere to the z in the retarded co-
ordinates (the sign reverses under z → −1/z̄). If we take a light ray which crosses Minkowski
space, then the value of z at which it starts in advanced coordinates will be the same as the
value of z at which it ends in retarded coordinates. Moreover, z is constant along the null
generators of I− as they pass through i0 to I+. This perhaps odd-seeming choice of notation
simplifies subsequent formulas.

Now we wish to expand around I+. Given any field—say, the z-component of the vector
potential—we can write an expansion for it as a sum

Az(u, r, z, z̄) =
∞∑

n=0

A(n)
z (u, z, z̄)

rn
, (2.4.8)
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where the coefficients depend only on the coordinates (u, z, z̄) parametrizing I+. In exercise

2, it is shown that A(0)
z is the local Cauchy data. The superscript (n) will be used to denote

the order in the expansion (the power of 1/r) about r = ∞. In general, we are going to
be expanding many fields about both I+ and I−. Using our new notation, we can finally
rewrite the matching condition (2.3.5) as

F (2)
ru (z, z̄)

∣∣∣
I+
−

= F (2)
rv (z, z̄)

∣∣∣
I−+

, (2.4.9)

where F (2)
ru is the 1

r
2 term in the expansion of the ru component of the field strength around

I+. Evaluating it at I+
− is equivalent to taking u = −∞:

F (2)
ru (z, z̄)

∣∣∣
I+
−

= F (2)
ru (−∞, z, z̄) . (2.4.10)

The simplicity of expression (2.4.9) motivated our definition of the z values on I+ as antipo-
dally related to those on I−.

2.5 An Infinity of Conserved Charges

In this section we will show that the matching condition (2.4.9) immediately implies,
without further ado, the existence of an infinite number of conserved charges in all electro-
magnetic theories in Minkowski space.

Consider any function ε on Minkowski space obeying the boundary condition

ε(z, z̄)|I+
−

= ε(z, z̄)|I−+ . (2.5.1)

Note that ε(z, z̄) is not smooth near spatial infinity, but instead is antipodally identified.
Now we define future and past charges:

Q+
ε =

1

e2

∫

I+
−

ε ∗ F, Q−ε =
1

e2

∫

I−+
ε ∗ F . (2.5.2)

It then immediately follows from (2.4.9) that any theory involving electromagnetism has an
infinite number of conservation laws, one for every function ε:

Q+
ε = Q−ε . (2.5.3)

For example, we could take ε|I−+ = Y`m to be a spherical harmonic, in which case we have

one conservation law for every value of the angular momentum (`,m). One way of stating
this conservation law is that all the incoming multipole moments of the electromagnetic field
are equal to the antipodal outgoing multipole moments. All of these moments are nonzero
in a generic time-dependent situation. In this basis, the antipodal map acts as (−)`. The
` = 0 mode is of course total charge conservation, which equates the net incoming to the
net outgoing charge. Here we discover an infinite family of higher harmonics of this familiar
global conservation law.
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The conservation laws look even more interesting and nontrivial when we use the Gauss
law to write the surface integral expression for the electric field as a volume integral expression
of the incoming and outgoing fields. At this point, we make the simplifying assumption that
all stable charged particles are massless, deferring the more intricate discussion of the (more
realistic) massive case to section 2.12. We then find

Q+
ε =

1

e2

∫

I+
dε ∧ ∗F +

∫

I+
ε ∗ j +

��
�
��

��*
0

1

e2

∫

I+
+

ε ∗ F , (2.5.4)

where we recall j is the charged matter current. This last term arises because I+ has two
boundaries: we began in (2.5.2) with an integral over I+

− and used integration by parts to
get a volume integral over I+ plus a surface integral over I+

+ . However, we can set this last
surface integral to zero under our assumption that there are no massive charged particles,
which implies that the electric field will vanish at I+

+ . Likewise, for I−,

Q−ε =
1

e2

∫

I−
dε ∧ ∗F +

∫

I−
ε ∗ j +

��
��

�
��*

0
1

e2

∫

I−−
ε ∗ F . (2.5.5)

Charge conservation, equation (2.5.3), is true for any ε obeying equation (2.5.1). However,
we restrict to the special case in which

∂uε = ∂vε = 0 . (2.5.6)

Our formulas are all true for the more general case, but consideration of those cases turns
out not to yield anything new. A particular case of equation (2.5.1) is ε = constant, in which
case the first term on the RHS of the Q±ε equation vanishes. Equation (2.5.3) reduces to, for
m (n) incoming (outgoing) particles with charges Qin

k (Qout
k )

m∑

k=1

Qin
k =

n∑

k=1

Qout
k . (2.5.7)

This is just the familiar statement that the sum of all the incoming charges must be equal
to the sum of all the outgoing charges.

Now suppose ε is not constant. Then we get an infinite number of conserved charges that
are on exactly the same footing as the usual conservation law (2.5.7) but with both terms
in (2.5.5) and (2.5.4) contributing. The second term is still a sum over electric charges but
is now weighted by an arbitrary function of the angle. The first is an additional mysterious
term linear in the electromagnetic field F . We will call this a soft photon term, because, as
we show later, when promoted to an operator it creates and annihilates zero-energy photons;
for now it is just a classical integral of F . Unlike the constant ε case, whose associated
charge involves only incoming matter fields, these more general conservation laws mix the
charged matter and the electromagnetic field. We have an exact statement that relates
various integrals, weighted by ε, of the incoming initial data to the outgoing final data.
The conservation law says that, for any ε, the number obtained from the incoming integral
exactly equals the number obtained from the outgoing integral.
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Thus far, we have written the charges in form notation in (2.5.4) and (2.5.5). For many
computations, explicit coordinate representations are useful. In retarded coordinates (2.4.1),

Q+
ε =

1

e2

∫

I+
−

ε ∗ F =
1

e2

∫

I+
−

d2zγzz̄εF
(2)
ru . (2.5.8)

Note there is an r2 in the Hodge dual, which cancels the 1/r2 that comes with the F (2)
ru term,

resulting in an integral which is finite for r → ∞. This is equal, by virtue of the boundary
condition (2.5.1), to

Q−ε =
1

e2

∫

I−+
d2zγzz̄εF

(2)
rv . (2.5.9)

To integrate these formulas by parts, we need to use the constraint equations on the null
surfaces I±. The constraint equation near I+ has an expansion in powers of 1/r, with
leading term

∂uF
(2)
ru +DzF (0)

uz +Dz̄F
(0)
uz̄ + e2j(2)

u = 0 . (2.5.10)

Dz is the covariant derivative with respect to the unit round S2 metric γzz̄, and we also
define Dz = γzz̄Dz̄. Choosing ∂uε|I+ = 0, integrating the boundary expression for Q+

ε by
parts, and using the constraint equation gives two terms,

Q+
ε = − 1

e2

∫

I+
dud2z

(
∂zεF

(0)
uz̄ + ∂z̄εF

(0)
uz

)

︸ ︷︷ ︸
Q

+
S

+

∫

I+
dud2zεγzz̄j

(2)
u

︸ ︷︷ ︸
Q

+
H

, (2.5.11)

where we have defined a “soft” charge Q+
S , which is linear in the electromagnetic field, and a

“hard” charge Q+
H , which is typically linear in the charge current but quadratic or higher in

the charged matter fields. We have already seen the equation in form notation in (2.5.4). The
term “soft” refers to objects with zero energy, while “hard” denotes energetic excitations.
Q+
H is referred to as the hard charge, because j is the matter current for energy-carrying

matter fields. If ε is constant, then Q+
S vanishes, and Q+

ε collapses to the total charge flux
through future null infinity. If ε is not constant, then the hard term is still there, but it has
an unfamiliar form, because the charges that pierce null infinity are weighted by an arbitrary
function that depends on the angle at which they exit the spacetime. However, we still have
an overall conserved quantity, provided we compensate by including the soft term. The soft
charge involves a term of the form

∫ ∞

−∞
du F (0)

uz ≡ Nz , (2.5.12)

convoluted with ∂z̄ε and integrated over the sphere. Equation (2.5.12) is the ω → 0 limit of
∫ ∞

−∞
du F (0)

uz e
iωu , (2.5.13)

which is a Fourier component with nonzero energy and frequency ω of the electromagnetic
field. Moreover, it is a component of the electromagnetic field that is transverse to I+ , as
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the z index is transverse to a light ray passing through I+. Promoted to a quantum operator,
(2.5.13) creates and annihilates outgoing photons of energy ω. However, the expression we
are interested in appearing in (2.5.11) has no ω; rather it is an ω → 0 limit. This term
creates and annihilates soft particles with zero energy, which is why we call it the soft term.
Equation (2.5.11) indicates that these soft photons have polarization ∂z̄ε.

The soft photon mode Nz is simply related to gauge transformations at I+
± . To see this,

consider the curl

∂z̄Nz − ∂zNz̄ =

∫ ∞

−∞
du
[
∂z̄F

(0)
uz − ∂zF (0)

uz̄

]

= −
∫ ∞

−∞
du ∂uF

(0)
zz̄ = −F (0)

zz̄

∣∣∣
I+

+

I+
−
,

(2.5.14)

where we have used the Bianchi identity in the second line. At this point we assume that
there are no asymptotic states with magnetic charges (i.e., no magnetic monopoles), and no
long-range magnetic fields, so that Fzz̄

∣∣
I+
±

= 0. Then the curl (2.5.14) vanishes, and we can

define a real scalar N by
Nz ≡ e2∂zN . (2.5.15)

Imposing the gauge condition A(0)
u = 0, it follows that

e2∂zN =

∫ ∞

−∞
duF (0)

uz = A(0)
z

∣∣
I+

+
− A(0)

z

∣∣
I+
−
. (2.5.16)

The soft photon mode (2.5.12) is the difference between the z-component of the gauge field
at the future of I+ and the past of I+. If we want to have finite energy, the gauge field
better be pure gauge at both the beginning and the end of I+, and the relative shift better
also be pure gauge. Indeed, we have just seen that the shift is a gauge transformation with
parameter e2N . The charge has a simple expression in terms of the soft photon mode:

Q+
ε = 2

∫
d2zN∂z∂z̄ε+

∫

I+
dud2zεγzz̄j

(2)
u . (2.5.17)

2.6 Canonical Electrodynamics at I
We have found an infinity of conserved charges in abelian gauge theories. One expects an

associated infinity of symmetries. In a canonical Hamiltonian formalism, these symmetries
are easily identified as the Dirac bracket action of the charges on the phase space. (To go
the other way, from symmetries to charges, one uses Noether’s theorem.) In this subsection
we develop this formalism, and in the next we determine the symmetry.

In a Hamiltonian formulation, one has a phase space Γ with coordinates xI = {qi, pj},
where i, j = 1, . . . , N/2, and N is the (even) dimension of the phase space. For example, the
theory of a particle in three dimensions has a six-dimensional phase space with i, j = 1, 2, 3.
In field theory, the index I becomes continuous, and the phase space is infinite-dimensional.
The symplectic two-form Ω,

Ω =
1

2
ΩIJdx

I ∧ dxJ , (2.6.1)
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is needed to define the Hamiltonian dynamics. ΩIJ is antisymmetric and must be invertible.
Once the symplectic form is known, quantum commutators are constructed as

[A,B] = iΩIJ∂IA∂JB . (2.6.2)

These are related to classical Poisson brackets by a factor of i. Much in these lectures is
relevant at the purely classical level, but we will always use quantum commutators to avoid
writing two sets of formulas that differ only by a factor of i.

2.6.1 Symplectic Form

The classical phase space in electromagnetism can be defined as the allowed initial data
on any Cauchy surface Σ. For a Cauchy surface Σ in Minkowski space, the symplectic form
for free electrodynamics can be written as (see exercise 2 and [49,196–198])

ΩΣ = − 1

e2

∫

Σ

δ(∗F ) ∧ δA . (2.6.3)

Here, δA is an on-shell variation of the gauge field A and also a 1-form on the infinite-
dimensional phase space Γ on which ∧ denotes the wedge product. δ(∗F )∧ δA is a closed 3-
form in spacetime, and its integral ΩΣ is a 2-form on Γ. Equation (2.6.3) gives the same value
for any pair of 3-surfaces Σ with the same boundary. In particular, Σ can be chosen either
to be a spacelike slice or pushed out to a null surface at I±. For ΩΣ to be invertible, it must
have no zero modes. This requires that δA be restricted by gauge conditions, constraints, and
boundary conditions. Specifying all of these can be quite subtle (and may entail boundary
corrections to (2.6.3)). Writing out the indices,

ΩΣ =
1

e2

∫

Σ

dΣµδFµν ∧ δAν , (2.6.4)

where dΣµ is the induced measure times the unit normal vector to Σ.
Now we take Σ = I+. This choice is very nice, because at I+ everything spreads out,

becomes very weakly interacting, and essentially reduces to free field theory. The symplectic
form becomes, very simply,

ΩI+ =
1

e2

∫
dud2z

(
δF (0)

uz ∧ δA(0)
z̄ + δF

(0)
uz̄ ∧ δA(0)

z

)
. (2.6.5)

This expression typically remains exact even in interacting theories (as long as the IR theory
is free), because interactions are weak near I+.

Now we come to a tricky point, which was incorrectly treated in some of the literature
until recently. We need to be very careful about what is happening at the boundaries of I+

and I−. We begin by separating out the constant (u-independent) part of A(0)
z [11, 12],

A(0)
z (u, z, z̄) = Âz(u, z, z̄) + ∂zφ(z, z̄) , (2.6.6)

where

∂zφ ≡
1

2

[
A(0)
z

∣∣
I+

+
+ A(0)

z

∣∣
I+
−

]
. (2.6.7)
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The constant piece ∂zφ is pure gauge, because we are demanding that the magnetic field
vanish at the boundaries I+

± .5 This boundary condition is crucial in the following: without
it, the charges below would fail by a factor of 2 to generate the proper symmetries. Now we
can substitute (2.6.6) into the expression for the symplectic form and find

ΩI+ =
2

e2

∫
dud2z ∂uδÂz ∧ δÂz̄ − 2

∫
d2z ∂zδφ ∧ ∂z̄δN , (2.6.8)

where N was defined in (2.5.15). We see that the radiative components of A(0)
z are paired

with each other in the symplectic form,6 and the soft photon mode is paired with the field
φ, which is the sum of the boundary values.

Note that the very existence of a Hamiltonian formulation requires that we keep the mode
φ, which is absent in a standard Fourier decomposition. Without it, there is no symplectic
partner for the soft photon zero-mode N .

2.6.2 Commutators

The next thing to discuss is the commutators. As we see from equation (2.6.2), to derive
the commutators one must invert the symplectic form. Since it is a sum of terms, one of
which only involves Â and the other which only involves the boundary fields N and φ, we
can invert them separately. Consider the first one. It implies the commutator

[
∂uÂz (u, z, z̄) , Âw̄

(
u′, w, w̄

)]
= −ie

2

2
δ
(
u− u′

)
δ2 (z − w) . (2.6.9)

Integrating with respect to u, we find

[
Âz (u, z, z̄) , Âw̄

(
u′, w, w̄

)]
= −ie

2

4
Θ
(
u− u′

)
δ2 (z − w) , (2.6.10)

where

Θ(u) =
1

πi

∫
dω

ω
eiωu , (2.6.11)

with Θ(u < 0) = −1 and Θ(u > 0) = 1, and a potential integration constant in (2.6.10) is
fixed by antisymmetry. Equation (2.6.10) is a standard lightcone commutator. We can also
compute the commutator between the boundary fields φ and N , which does not depend on
u:

[φ(z, z̄), N(w, w̄)] = − i

4π
log |z − w|2 + f(z, z̄) + g(w, w̄) . (2.6.12)

At various points, one must be careful about the integration functions f and g, but we are
going to ignore them for the present as the computations below require only

[∂zφ(z, z̄), ∂w̄N(w, w̄)] = − i

4π
∂z∂w̄ log |z − w|2 =

i

2
δ2(z − w) , (2.6.13)

which follows from

∂z̄
1

z − w = 2πδ2(z − w) . (2.6.14)

5The symplectic form in the presence of magnetic charges and fields has so far not been constructed.
6Since Âz has no constant term, the sum of its boundary values vanishes, and N therefore does not appear

in the first term.
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2.7 Large Gauge Symmetry

Now we can easily compute the commutator action of Q+
ε . Q+

ε has a term involving the
matter field and a linear term involving ∂zN and ∂z̄N (i.e., the soft photon terms). The soft

terms do not commute with A(0)
z . We find
[
Q+
ε , A

(0)
z (u, z, z̄)

]
= i∂zε(z, z̄) , (2.7.1)

while a similar calculation on I− yields
[
Q−ε , A

(0)
z (v, z, z̄)

]
= i∂zε(z, z̄) . (2.7.2)

Some other useful commutators are
[
Q+
ε , N(z, z̄)

]
= 0 ,

[
Q+
ε , Âz(u, z, z̄)

]
= 0 ,

[
Q+
ε , φ(z, z̄)

]
= iε(z, z̄) . (2.7.3)

This leads to a remarkable conclusion in the free Maxwell theory: the infinite number of
symmetries generated by the conserved charges Q+

ε in a canonical formalism are just gauge
transformations with parameter ε! Of course, we have long known that for constant ε, the
total charge Q+

ε=1 generates constant gauge transformations on all the fields. Here, we see
that even when ε is an arbitrary function, Q+

ε transforms Az by a non-trivial, “large” gauge
transformation that does not die off at infinity. Rather, the gauge parameter goes to an
angle-dependent, but u-independent, function at I+. At I−, Q−ε generates a transformation
for which the gauge parameter approaches the antipodally transformed function. These are
pretty weird gauge transformations! The fact that the condition Az = 0 is not invariant under
these symmetries implies that they are spontaneously broken and the vacuum is infinitely
degenerate, but more on that story in Section 2.11.

Now suppose our theory includes charged matter. The electromagnetic field commutators
above are unchanged as long as the coupling approaches a constant in the infrared. We
showed that the commutator of the soft charge with the gauge field itself is a large gauge
transformation. With matter added, we must check that Q+

ε properly generates the gauge
transformations on the matter fields. This is the role of the hard term. The charged matter
current ju is the conserved Noether current associated with the global U(1) matter symmetry.
By the Noether construction, ju canonically generates this symmetry on I+:7

[
j(2)
u (u′, w, w̄),Φk(u, z, z̄)

]
= −QkΦk(u, z, z̄)γzz̄δ2(z − w)δ(u− u′) , (2.7.4)

where Φk is a matter field of charge Qk. This commutator implies
[∫

I+
ε ∗ j,Φk(u, z, z̄)

]
= −Qkε(z, z̄)Φk(u, z, z̄) = iδεΦk(u, z, z̄) (2.7.5)

and [
Q+
ε ,Φk(u, z, z̄)

]
= iδεΦk(u, z, z̄) . (2.7.6)

7Here as elsewhere in this section, we make the assumption that the charged fields are massless, so
that the charge flux all goes through I+. It remains true in the massive case that Q+

ε generates gauge
transformations, but there are very interesting new twists; see section 2.12.
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Hence, we conclude that the sum of the hard and soft term properly generates local angle-
dependent gauge transformations on I+.

Historically, the story ran the other way around. First it was discovered [11], through
an asymptotic analysis, that QED had an infinite number of nontrivially acting gauge sym-
metries generated by the antipodally matched functions ε. Then the generators were con-
structed via the Noether method and identified as conserved charges. However, the asymp-
totic symmetry analysis — which we will see some of in Section 2.10 — requires assumptions
about asymptotic falloffs near I. Such assumptions are unnecessary in the treatment here
starting from the conserved charges. As we have seen, their existence follows directly from
nineteenth-century electromagnetism.

To summarize, so far we have found that there are an infinite number of conserved charges
in electromagnetism. We have further showed that these charges canonically generate an
infinite number of large gauge symmetries that act nontrivially on the physical phase space.

2.8 Ward Identity

In this subsection we derive Ward identities, which relate quantum scattering amplitudes.
These identities express the dynamical consequences of the fact that the conserved charges
commute with the Hamiltonian, or equivalently, with the S-matrix, since S ∼ exp(iHT ) for
T →∞.

2.8.1 Symmetries of the S-matrix

Quantum scattering amplitudes can be written in the form

〈out|S|in〉 . (2.8.1)

Charge conservation is then

〈out|
(
Q+
ε S − SQ−ε

)
|in〉 = 0 . (2.8.2)

By the matching condition, Q+
ε is equal to Q−ε , but we use Q+

ε when acting on out-states
and Q−ε when acting on in-states, because they are expressed in variables appropriate for
acting on the out- and in-states, respectively. Exponentiating the charge to generate a finite
symmetry, (2.8.2) becomes the statement: given an in-state X that evolves to an out-state
Y , a large-gauge-transformed in-state X evolves to a large-gauge-transformed out-state Y .

The action of Q−ε on the in-state is

Q−ε |in〉 = −2

∫
d2z∂z̄ε∂zN

−(z, z̄)|in〉+
m∑

k=1

Qin
k ε(z

in
k , z̄

in
k )|in〉 , (2.8.3)

where N−(z, z̄) denotes the incoming soft photon field on I−. We have assumed that the
in-state can be described by m hard particles that are coming in at points on the asymptotic
sphere denoted by zin

k . The first term is the action of the soft charge, and the second term
is the action of the hard charge. Similarly, the action of Q+

ε on the out-state takes the form

〈out|Q+
ε = 2

∫
d2z∂z∂z̄ε〈out|N(z, z̄) +

n∑

k=1

Qout
k ε(zout

k , z̄out
k )〈out| . (2.8.4)
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Finally, we can write the Ward identity as

2

∫
d2z∂z∂z̄ε〈out|

(
N(z, z̄)S − SN−(z, z̄)

)
|in〉

=

[
m∑

k=1

Qin
k ε(z

in
k , z̄

in
k )−

n∑

k=1

Qout
k ε(zout

k , z̄out
k )

]
〈out|S|in〉 .

(2.8.5)

Equation (2.8.5) is an infinite number of Ward identities, one for every function ε on
the sphere. They relate any S-matrix element between any pair of incoming and outgoing
states multiplied by the soft factor in square brackets, to the same S-matrix element with
the insertion of certain soft photon modes. This is a very general relation. It would be
incredibly surprising if, after 90 years of studying QED, we discovered an infinite number
of new relationships between scattering processes. We have not done that. Rather, we have
rediscovered some relations that have been known for a long time but were derived using very
different methods, namely, Feynman diagrams and mode expansions, and go under the name
of “soft theorems.” What we will do next is show that these identities, which we derived
from charge conservation, are precisely the same thing as the well-known soft theorems in
abelian gauge theories.

Before proceeding with this demonstration, as a little teaser for section 4, it is interesting
to consider the special case in which ε is taken to be

ε(w, w̄) =
1

z − w . (2.8.6)

Using the fact that

∂z̄
1

z − w = 2πδ2(z − w) (2.8.7)

to easily perform the integral on the LHS of equation (2.8.5), we can rewrite the Ward
identity as

4π〈out|
(
∂zNS − S∂zN−

)
|in〉 =

[
m∑

k=1

Qin
k

z − zin
k

−
n∑

k=1

Qout
k

z − zout
k

]
〈out|S|in〉 . (2.8.8)

In two-dimensional CFT with a current algebra, when one inserts a U(1) Kac-Moody current
into a correlation function of operators of charge Qk, one gets exactly this kind of Ward
identity. More generally, it was recently shown [199] that the entire soft factor of the S-
matrix is computed by a current algebra with level determined by the cusp anomalous
dimension. We will see in section 4, in the more general nonabelian setting, that this is in
fact not a coincidence and that the large gauge symmetry is equivalent to a U(1) Kac-Moody
symmetry on the sphere at null infinity.

2.8.2 Mode Expansions

To show that the Ward identity (2.8.5) is in fact a soft theorem, we have to transcribe
notation. Until this section, the presentation has been rather different than what is found
in most quantum field theory textbooks. We have characterized particles by the points at
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which they came in at null infinity, used advanced and retarded coordinates, and derived
conservation laws from antipodal matching conditions.

In traditional quantum field theory, one works in a basis of plane waves. To compare
notations we must rewrite (2.8.5) in terms of a plane wave basis, using a conventional mode
expansion for Az. It is not manifestly obvious that the commutation relations (2.6.10) and
(2.6.12) are equivalent to the conventional ones. One way to see that they must nevertheless
be the same is to note that both follow from the slice-independent covariant symplectic form
(2.6.3). We evaluated it by pushing the slice up to I+, as opposed to the conventional use of
the t = 0 slice and a plane wave basis. Such bases employ the standard Cartesian coordinates
for Minkowski space

ds2 = −dt2 + d~x · d~x . (2.8.9)

Near I+, Aν has the on-shell outgoing plane wave mode expansion

Aν(x) = e
∑

α=±

∫
d3q

(2π)3

1

2ω

[
ε∗αν (~q)aout

α (~q)eiq·x + εαν (~q)aout
α (~q)†e−iq·x

]
, (2.8.10)

where q2 = 0, the two polarization vectors satisfy a normalization condition εναε
∗
βν = δαβ,

and
[
aout
α (~q ), aout

β (~q ′)†
]

= δαβ(2π)3(2ωq)δ
3
(
~q − ~q ′

)
. (2.8.11)

This is the standard textbook formula for commutators of modes of the free electromagnetic
field.

The next step is to rewrite asymptotic quantities on I+ in terms of the familiar creation
and annihilation operators appearing in (2.8.10). Near I+ it is convenient to use retarded
coordinates, in which the metric takes the form

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ . (2.8.12)

The transformation to retarded from Cartesian coordinates was given in (2.4.5). A null vector
qµ, satisfying qµqµ = 0, is labelled by a point on the sphere, up to its overall magnitude.
Hence, there is a natural map from null vectors qµ to points (z, z̄) on the sphere toward
which the null vector is directed. We can write this as

qµ =
ω

1 + zz̄
(1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) = (ω, q1, q2, q3) . (2.8.13)

As an example of this, let us suppose that z is taken to be the north pole at z = 0. Then we
find qµ = ω(1, 0, 0, 1) (i.e., a null vector pointing along the x3-axis). We may further choose
the polarization vectors orthogonal to qµ as

ε+µ(~q ) =
1√
2

(z̄, 1,−i,−z̄) , ε−µ(~q ) =
1√
2

(z, 1, i,−z) , qµε
±µ(~q ) = 0 , εµαε

∗
βµ = δαβ .

(2.8.14)
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Now let us consider the I+ field A(0)
z (u, z, z̄). By definition,

A(0)
z (u, z, z̄) = lim

r→∞
Az(u, r, z, z̄) . (2.8.15)

Using the above formulas, we can take all the qµs in the mode expansion and rewrite them
in terms of points on the asymptotic sphere. Since Az(u, r, z, z̄) has an expansion in terms of

creation and annihilation operators, A(0)
z (u, z, z̄) must also have such an expansion. In par-

ticular, we expect A(0)
z (u, z, z̄) to create and annihilate photons that land at the point (z, z̄),

since it is an operator that is localized at that point on the asymptotic sphere. Moreover,
rotating about the point (z, z̄), A(0)

z gets one phase, while A
(0)
z̄ gets the opposite phase. Hence

we expect A(0)
z to create one photon helicity and annihilate the other, while Az̄ does the op-

posite. These expectations are realized when one evaluates (2.8.15) in a large-r saddle-point
approximation (see exercise 3):

A(0)
z (u, z, z̄) = − i

8π2

√
2e

1 + zz̄

∫ ∞

0

dω
[
aout

+ (ωx̂)e−iωu − aout
− (ωx̂)†eiωu

]
, x̂ = x̂(z, z̄) .

(2.8.16)

The “out” creation and annihilation operators involve the three-momentum ωx̂; x̂ is a unit
vector that points to (z, z̄) on the sphere, with the relationship between x̂1, x̂2, and x̂3 and

the point (z, z̄) as in equation (2.8.13). So A(0)
z (u, z, z̄) annihilates a positive helicity photon

that is headed to the point x̂(z, z̄) and creates a negative helicity photon that is headed to
the same point. It can create and annihilate photons of all different frequencies. Equation
(2.8.16) is the basic relationship between the out fields in the 1/r expansion at I+ and the
standard outgoing creation and annihilation operators in the plane wave expansion usually
employed in quantum field theory.

The Ward identity involves ∂zN , so we need to determine its mode expansion. To be
precise about the zero-momentum limit, define

∂zN =
1

2e2 lim
ω→0

+

∫ ∞

−∞
du
(
eiωu + e−iωu

)
F (0)
uz . (2.8.17)

This definition ensures that ∂z∂z̄N is Hermitian. Had our definition only involved either eiωu

or e−iωu, this would not be the case. Using (2.8.16), we find

∂zN = − 1

8πe

√
2

1 + zz̄
lim
ω→0

+

[
ωaout

+ (ωx̂) + ωaout
− (ωx̂)†

]
. (2.8.18)

One might wonder why we care about this operator, since we are taking the limit ω → 0 while
multiplying by ω. One might think it is just identically zero. However, if it were zero, the
Ward identity would not make sense, because it would imply that the RHS of equation (2.8.8)
would vanish. The reconciliation is that the S-matrix elements with insertions of these
operators have poles that cancel the explicit factor of ω appearing in equation (2.8.18).

There is a similar formula for ∂zN
−:

∂zN
− = − 1

8πe

√
2

1 + zz̄
lim
ω→0

+

[
ωain

+(ωx̂) + ωain
−(ωx̂)†

]
. (2.8.19)
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The Ward identity in the form (2.8.8) can be reexpressed as

lim
ω→0

[
ω〈out|

(
aout

+ (ωx̂)S −Sain
−(ωx̂)†

)
|in〉
]

=
√

2e(1 + zz̄)

[
n∑

k=1

Qout
k

z − zout
k

−
m∑

k=1

Qin
k

z − zin
k

]
〈out|S|in〉 .

(2.8.20)

This is beginning to look very much like the standard soft photon theorem. There is a
soft pole in the matrix element on the LHS, which we have rendered finite via explicit
multiplication by ω. There are also collinear poles on the RHS for z → zk.

2.8.3 Soft Theorems

Now in principle to show that (2.8.20) is exactly equivalent to the standard soft theorem,
I could take the RHS of the equation and rewrite the zs and zks in terms of the momenta of
the particles. However, it is easier and equivalent to proceed in reverse. That is, we begin
with the textbook formula for the soft photon theorem and show that it is equivalent to
(2.8.20) by going from momentum space to points on a sphere. For the reader’s benefit, the
next section reviews the standard textbook derivation of the soft photon theorem. The soft
theorem states

lim
ω→0

[
ω〈out|aout

+ (~q )S|in〉
]

= e lim
ω→0

[
m∑

k=1

ωQout
k pout

k · ε+

pout
k · q

−
n∑

k=1

ωQin
k p

in
k · ε+

pin
k · q

]
〈out|S|in〉

= − lim
ω→0

[
ω〈out|Sain†

− (~q )|in〉
]
,

(2.8.21)

where qµ = (ω, ~q ) is the momentum of the soft photon, and we are taking the in-state and
out-state in plane wave bases:

|in〉 = |pin
1 , . . . , p

in
n 〉 , 〈out| = 〈pout

1 , . . . , pout
m | . (2.8.22)

The equality of the matrix elements involving in and out soft photons is a consequence of
CPT invariance. Equation (2.8.21) is not quite the standard form, as we have multiplied
both sides of the equation by a factor ω in order to have a finite limit. In the limit where
ω → 0 (the soft limit), the ratios appearing on the RHS are finite and depend only on the
direction of ~q, but not its magnitude. When one writes the formula without this factor of ω,
there is a pole as ω → 0, which is called the “soft pole” or “Weinberg pole.”

To make the comparison between equation (2.8.20) and equation (2.8.21), we note that
in addition to the ω → 0 pole, there is a collinear pole, since qµ and pµk are both null
vectors. When pµk is proportional to qµ, pk · q = 0, and 1

pk·q diverges. In (2.8.20), collinearity

implies zk = z, which again gives a pole. Hence the pole structure of equation (2.8.20) and
equation (2.8.21) agrees.

Now we want to turn equation (2.8.21) into equation (2.8.20) by writing the momentum
of each hard particle in terms of the energy Ek and a point on the sphere (zk, z̄k). For
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example,

(pin
k )µ = Ein

k

(
1,
zin
k + z̄in

k

1 + zin
k z̄

in
k

,
−i
(
zin
k − z̄in

k

)

1 + zin
k z̄

in
k

,
1− zin

k z̄
in
k

1 + zin
k z̄

in
k

)
. (2.8.23)

Similar formulas apply to the soft photon momentum qµ (see (2.8.13)) and outgoing hard
particle momenta pout

k . In other words, knowing that the massless charged particle is going
to land at the point (zk, z̄k) determines what its momentum must be. This enables us to
replace all momenta in equation (2.8.21) with their expressions in terms of energies and
points on a sphere. Summing the contribution from an outgoing positive helicity soft photon
and an incoming negative helicity soft photon then exactly reproduces equation (2.8.20).
The straightforward but somewhat intricate algebra is left to exercise 5. The standard
soft photon formula reduces to the Ward identity following from invariance under large
gauge symmetries, or equivalently, the matrix element of the charge conservation law. This
establishes the central result connecting the soft photon theorem to the large gauge symmetry
of electromagnetism.

The story might have been told backward. Starting with the soft photon theorem, we
could reverse engineer and deduce the fact that abelian gauge theories have an infinite number
of conservation laws associated to antipodally identified large gauge transformations. They
are mathematically equivalent statements.

2.9 Feynman Diagrammatics

In this section, we review the standard field theory derivation of the leading photon and
graviton soft theorems in the form given by Weinberg [7, 151].

2.9.1 Soft Photons

The soft photon theorem states that any S-matrix element with an additional soft (qµ →
0) photon is equal to the original matrix element multiplied by the soft factor plus corrections
of order q0:

〈out|aout
+ (~q )S|in〉 = e

[
m∑

k=1

Qout
k pout

k · ε+

pout
k · q

−
n∑

k=1

Qin
k p

in
k · ε+

pin
k · q

]
〈out|S|in〉+O(q0) . (2.9.1)

The leading order term in the soft expansion is a pole.
To derive this formula, let us take any scattering process with n incoming and m outgoing

particles and then consider adding to it one outgoing photon, denoted by a wavy line in figure
7, with momentum q. (The derivation for an incoming photon is similar.) In the soft limit,
we can write the amplitude as a sum of two types of terms, ones in which the soft photon
attaches to an external line and others in which the soft photon attaches to an internal line.
The soft photon can attach to any one of the n + m external lines, so we must include a
sum over all such terms. The full amplitude has a Laurent expansion in q with an infinite
number of terms whose detailed form depends on what theory we are talking about. For the
pole we need not specify what theory we are studying except that it has a photon. That is
one of the beauties of this formula.
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Figure 7: On the left is a Feynman diagram representing n → m scattering. On the
right the effect of adding an outgoing soft photon (or graviton) with momentum q and
polarization ε is illustrated. In the upper diagrams the soft particle attaches to an
external propagator, while in the lower one it attaches to an internal propagator.

The LSZ rule for computing scattering amplitudes starts out by computing the time-
ordered Green’s functions using the Feynman iε prescription and then amputating the ex-
ternal legs. The Feynman diagrams have factors for vertices and propagators. What happens
when we attach the extra photon to an external leg is, since external legs are amputated,
we need only add a vertex and propagator for the particle to whose external leg the photon
is added. The difference between the diagram with and without the attached external soft
photon is just the vertex and propagator.

Now I have to say a little bit about the interaction vertex. Let us take the interaction to
be

Lint = −Aµjµ . (2.9.2)

For a scalar field of charge Q, the charge current is

jµ = iQ(φ∂µφ
∗ − φ∗∂µφ) . (2.9.3)

For a plane wave, this is just
jµ ∼ 2Qpµ , (2.9.4)

where we have used the normalization for single-particle states

〈p|p′〉 = 2ωp(2π)3δ3(p− p′) . (2.9.5)
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This is the electromagnetic current associated to a scalar field of charge Q, meaning that
under gauge transformations, it acquires a phase eiQε. Moreover, we take the polarization of
the photon to obey εµqµ = 0, where qµ is the momentum of the photon. The propagator for
a scalar particle of mass m gives a factor

−i
(p+ q)2 +m2 =

−i
p2 + 2p · q + q2 +m2 =

−i
2p · q , (2.9.6)

where we have used the fact that in a scattering amplitude, all the external lines must be
on-shell, so q2 = 0 and p2 = −m2. The vertex factor is, up to O(q) corrections,

ieεµ2Qpµ , (2.9.7)

where εµ comes from Aµ and 2Qpµ comes from jµ. The total contribution is

ieεµ(2Qpµ)
−i

(p+ q)2 +m2 →
eQε · p
q · p . (2.9.8)

There is one such term for every outgoing particle, while for the incoming particles there is
an additional minus sign. Altogether these give

m∑

k=1

eQout
k pout

k · ε
pout
k · q

−
n∑

k=1

eQin
k p

in
k · ε

pin
k · q

. (2.9.9)

At the end of the day, if we just consider the diagrams in which the photon attaches to
an external leg, we simply multiply the S-matrix element by the factor in equation (2.9.9),
sometimes called the “soft factor”, which you may recognize from equation (2.8.21).

We have not yet considered the terms coming from the photon attaching to an internal
leg. The key point is that the internal propagators are never on-shell (i.e., they never have
p2 = −m2). In the propagator, one then never has the cancellation between p2 and m2, so if
we take qµ → 0, the difference between p2 and m2 will dominate, and we will not get a pole.
These types of diagrams are most certainly nonzero, but they do not contribute to the pole,
so we can forget about them in the soft limit. This is an extremely simple derivation. Up
to some signs, one finds the same thing for a soft incoming photon.

Now we note an important feature of this formula. The condition εµqµ = 0 defines the

polarization vector only up to shifts of εµ by qµ, because q2 = 0. The physical amplitude
with the soft photon should be invariant if we shift εµ by any multiple of qµ. Now it is
interesting to see what happens to the soft factor (2.9.9). If we shift εµ by qµ, it shifts by

m∑

k=1

eQout
k −

n∑

k=1

eQin
k = 0 . (2.9.10)

In other words, global charge conservation guarantees that this soft factor is gauge invariant.
This observation was in fact the basis of Low’s derivation of the soft formula in 1958 [4].

We have only worked out the soft theorem for the case of a scalar. For a fermion or some
other kind of charged particle, it is a little more complicated, but it works out to the same
expression [151]. One way of seeing that this must be so is that (2.9.9) is the only formula
with the right dimensions that is invariant under shifts εµ → εµ + qµ.
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2.9.2 Soft Gravitons

So far we have largely deferred any discussion of gravity. However, having just derived
the soft formulas for quantum electrodynamics, the generalization to gravity is short and
simple, so we do it now. We do not need to redraw diagrams, because we can just imagine
that the wavy lines are gravitons of momentum qµ rather than photons. We do need to
specify the interaction

Lint =
√

8πGhµνTµν , (2.9.11)

which couples the graviton field hµν in the expansion gµν = ηµν−
√

32πGhµν to matter. This
field is normalized so that there are no factors of G in the kinetic term. The graviton has
polarization tensor εµν satisfying

εµνq
µ = 0 , εµνηµν = 0 . (2.9.12)

For a scalar field,

Tµν = ∂µφ∂νφ−
1

2
ηµν∂

ρφ∂ρφ . (2.9.13)

Now, we apply the same argument, which is that we multiply the S-matrix element by a
factor of the propagator and the vertex. The propagator is the same,

−i
2p · q . (2.9.14)

Whether one has added an external photon or graviton, these poles, which become the
holomorphic poles on the sphere at null infinity, are ubiquitous in soft limits. For a scalar
field the interaction is

Tµν ∼ 2pµpν , (2.9.15)

where the term in Tµν proportional to ηµν does not contribute due to εµν being traceless. In
total, the product of the vertex and propagator gives a factor

i
√

32πGεµνpµpν
−i

(p+ q)2 +m2 →
√

8πG
εµνpµpν
p · q . (2.9.16)

This is just the result for one external particle. More generally, if we have m outgoing and
n incoming particles, we have a soft factor

√
8πG

m∑

k=1

εµνpout
kµ p

out
kν

pout
k · q

−
√

8πG
n∑

k=1

εµνpin
kµp

in
kν

pin
k · q

. (2.9.17)

We get a very similar-looking formula to the gauge theory case with pk replacing Qk. Just
as in the gauge theory case, we cannot get poles by coupling the soft graviton to internal
lines.
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The soft factor must be invariant under the shift εµν → εµν + Λµ(q)qν , the analog of
gauge invariance in the gravity case. Performing such a shift, we can pull the Λµ out from
under the sum and find that the soft factor shifts by

Λµ

[
m∑

k=1

pout
kµ −

n∑

k=1

pin
kµ

]
= 0 , (2.9.18)

due to global energy-momentum conservation. We saw above that global charge conservation
was required for the consistency and gauge invariance of the soft photon theorem. Here we
see that global energy-momentum conservation is required for the consistency and gauge
invariance of the soft graviton theorem. So far we have not used global angular momentum
conservation, which we will see in section 5.3 is responsible for a new soft theorem and set
of asymptotic symmetries called “superrotations”.

2.10 Asymptotic Symmetries

Our discussion so far began with the derivation of conserved charges. These were then
shown, via a canonical formalism, to generate asymptotic symmetries. We might have instead
begun (as was the case historically) with a direct analysis of the asymptotic symmetries. Such
analyses are more of an art than a science, in part because of ambiguities in the choice of
asymptotic falloffs and gauge conditions, which are often only a posteriori justified. However,
despite the lack of rigor, this approach has been extraordinarily fruitful and the source of
many physical insights. Once one has an idea of how it should go, more rigorous methods
can then be developed. The fact that it is an art and not a science is not a derogatory
statement. In fact, maybe art is better than science!

An asymptotic symmetry group (ASG) is defined as

ASG =
allowed gauge symmetries

trivial gauge symmetries
. (2.10.1)

One studies the theory on some spacetime and imposes boundary conditions that describe
how the field components behave near the boundary. The boundary conditions should be
weak enough so that all physically reasonable solutions are allowed, but strong enough so
that relevant charges are finite and well defined. The allowed gauge symmetries are any
ones that respect the boundary conditions. The trivial gauge symmetries are the ones that
act trivially on the physical data of the theory.

It can be quite subtle to decide what kind of behavior is allowed at infinity or which data
is physical. Indeed, this problem remains unresolved in full generality for asymptotically
flat spacetimes in GR. In many cases, part of the definition of the theory is specifying
the boundary conditions. Moreover, we shall encounter examples in sections 2.13 and 2.14
for which the ASG is not even a subset of the local symmetry group, indicating that the
definition (2.10.1) is too narrow. Nevertheless, despite the vagaries of this procedure, it has
proven extraordinarily useful.

Oddly, asymptotic symmetry analyses were first carried out in the context of gravity
rather than gauge theory. An early application was the seminal work of Bondi, van der
Burg, Metzner and Sachs [8,9] (BMS), who wanted to find the subgroup of diffeomorphisms
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of asymptotically flat spacetimes that act nontrivially on the asymptotic data. It seemed
intuitively obvious that if one has an isolated system that is flat near infinity, it should be
acted on non-trivially by the Poincaré group. For an asymptotically flat black hole, a boost is
a diffeomorphism that should certainly be allowed but must be nontrivial, because it changes
the energy. Similarly, translations move the black hole to a different place. BMS expected the
asymptotic symmetry analysis would reproduce the isometries of flat spacetime itself, namely,
the Poincaré group. To everyone’s great surprise and consternation, what they got instead
was an infinite-dimensional group, now called the BMS group. This contains the finite-
dimensional Poincaré group as a subgroup but has an additional infinity of generators known
as “supertranslations.” This result implies that GR does not reduce to special relativity for
weak fields and long distances, as näıvely expected. As we will see below, it is now realized
that the BMS group is not the whole story: it is both too big and too small, but much more
on this in section 5.

Another famous asymptotic symmetry analysis appeared in the work of Brown and Hen-
neaux in the late 1980s on AdS3 [200]. They found a result that no one was expecting:
the asymptotic symmetry algebra is two copies of the Virasoro algebra with a computable
central charge — a harbinger of AdS/CFT. This beautifully demonstrated the power of the
method. It is not just a way of confirming what we already know.

What would we expect for the asymptotic symmetry group of electrodynamics? This
question has been asked only in the past few years [10,11]. In Minkowski space electromag-
netism, we are interested in boundary conditions at I+ or I−. At these null boundaries, one
does not have the same freedom in choosing the boundary conditions as one does, for ex-
ample, for the timelike boundary of a box. Rather one must derive the asymptotic behavior
from the field equations. If we consider a sphere at large r, its surface area grows like r2, so
for the energy flux at any moment to be finite, Tuu ∼ O(1/r2). Note that we are not talking
about the integrated energy flux, whose finiteness requires that fields fall off in a certain way
at late and early times on I±. In electromagnetism,

Tuu ∼ FuzFuz̄
γzz̄

r2 + . . . , (2.10.2)

where the factor of 1

r
2 comes from inverting the metric on the sphere of radius r. This

suggests that Fuz ∼ O(1). However, Fru is the long-range electric field, so it should go as
O(1/r2) to have finite charge configurations. Similarly, Frz ∼ O(1/r2). To summarize:

Fuz ∼ O(1), Fur, Fzr ∼ O
(

1

r2

)
. (2.10.3)

This suggests we choose the boundary falloff conditions for the gauge fields to be

Az ∼ O(1) , Ar ∼ O
(

1

r2

)
, Au ∼ O

(
1

r

)
. (2.10.4)

If we try to impose stronger boundary conditions for Aµ, we would teleologically disallow
some physically reasonable initial data configurations.

Now we ask: what kind of gauge transformations do these falloffs allow? Generic gauge
transformations take the form

δAz = ∂zε , δAu = ∂uε , δAr = ∂rε . (2.10.5)
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These boundary conditions are consistent with

ε = ε(z, z̄) +O
(

1

r

)
. (2.10.6)

Note, the O(1) piece of ε cannot depend on u without violating the boundary conditions
(2.10.4). The transformations (2.10.6) are the exact electrodynamic analog of the BMS
transformations found much earlier for gravity. The additional necessity of an antipodal
matching condition for transformations on I+ and I− may be deduced from the need for a
well-defined Lorentz invariant scattering problem.

There are several ways to see that the transformations (2.10.6) are nontrivial as well as
allowed. One is to show that their Ward identities have nontrivial physical content and are
equivalent to the soft photon theorem. Another is to note that they impart distinct phases
to charged particles at different positions on I+. This leads to an Aharonov-Bohm type
interference pattern, which could be observed for electrons stationed near I+. Details of
how this “electromagnetic memory effect” can be observed are discussed in the literature
[38,39,201]. We will discuss the similar gravitational analog in detail in section 6.

Equation (2.10.6) together with antipodal matching are of course exactly the large gauge
symmetries discussed in section 2.7. This very simple asymptotic analysis quickly leads to the
result that we previously arrived at in a lengthier manner starting from conserved charges.
In fact, this is how the symmetries were first discovered [10]. However, if one thinks about
it a little bit harder, one might ask, for example, why we did not allow Aus that are O(r0)
but pure gauge, since they would maintain the falloff behavior of the field strengths. Indeed,
interesting new developments [61, 62,202] suggest that pure gauge modes for which (2.10.3)
is preserved but (2.10.4) is not provide an effective way to understand the subleading soft
theorem [2,4] and associated symmetries [60]. So while some basics of asymptotic symmetry
analyses are firmly understood, much remains to be learned.

2.11 Spontaneous Symmetry Breaking, Vacuum Degeneracy, and
Goldstone Bosons

As we shall now elucidate, the preceding results imply that abelian gauge theories have an
infinite vacuum degeneracy and undergo spontaneous symmetry breaking. However, because
of the unusual angular dependence of the symmetry parameters, the nature of the symmetry
breaking and relation of the degenerate vacua are different than what we are used to.8 Let
us begin by recalling the standard case of spontaneous breaking of a global symmetry.

A classic example of spontaneous symmetry breaking is a scalar field theory with the
“Mexican hat” potential

V (Φ) = −m2Φ∗Φ + λ
(
Φ∗Φ

)2
, (2.11.1)

8Large gauge symmetries are unlike any previously discussed symmetry both in their asymptotic angle
dependence and in the fact that the action is described at null, not spatial, infinity. Phrases like “spontaneous
symmetry breaking,” “Goldstone boson,” “superselection sector,” and even “conservation law” are used with
slightly different meanings in different physical contexts. In importing those words to the present context, I
have necessarily adapted and refined their meanings. I have done so in the way I thought most natural, but
other adaptations might be possible.
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illustrated in figure 8. This theory has a global symmetry, under which

V (Φ)

|Φ|

Figure 8: The Mexican hat potential.

Φ→ eiθΦ , Φ∗ → e−iθΦ∗ . (2.11.2)

The minimum of the potential occurs when

Φvac(x) =
m√
2λ
eiρ , (2.11.3)

for arbitrary constant ρ. If we want to study excitations of this theory, we expand around
Φ = Φvac, not Φ = 0. In the quantum theory, a particular choice | ρ = ρ0 〉 of vacuum
state is made. Clearly, this state is not invariant under the global symmetry transformations
(2.11.2), that is, if Qθ generates (2.11.2), then it acts on the vacuum state as

eiQθ | ρ0 〉 ∼ | ρ0 + θ 〉 6= 0 . (2.11.4)

Hence we have a symmetry of the Lagrangian but not a symmetry of the vacuum state. In
this case, we say that the symmetry (2.11.2) is spontaneously broken.

Goldstone’s theorem states that whenever a continuous global symmetry is spontaneously
broken, there exists a massless excitation about the spontaneously broken vacuum. Decom-
posing Φ(x) = |Φ(x)|eiρ(x), ρ transforms as ρ(x) → ρ(x) + θ. Hence the Lagrangian can
depend on ρ only via the derivative ∂µρ; there cannot be any mass term for ρ, and it is a
massless field. ρ — identified as the field that transforms inhomogeneously under the broken
symmetry — is referred to as the Goldstone boson.

Let us now relate this elementary example to our discussion in the previous sections.
We have a charge Q+

ε that generates a symmetry of the Lagrangian of any abelian gauge
theory. However, this charge does not annihilate the vacuum. Instead, it creates an extra
soft photon mode φ, which, according to (2.7.3), transforms inhomogeneously under the
broken symmetry. Hence the soft photons are the Goldstone bosons of spontaneously broken
large gauge symmetry. There is an infinite vacuum degeneracy, since we can add any number
of soft photons to any vacuum state and obtain another vacuum state with the same zero
energy. Classically, the infinite-dimensional space of vacua can be labeled by flat abelian
connections ∂zε(z, z̄) on the sphere.
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There is a crucial difference between the usual Mexican hat story of spontaneous global
symmetry breaking and the spontaneous breaking of the large gauge symmetries. In the
usual story, the different vacua form superselection sectors (i.e., no physical finite energy
operator exists that can move us from one vacuum to another). In other words, the charge
Qθ that would in principle move us between various vacua is not a normalizable operator in
the Hilbert space. To see this, consider a system in a vacuum ρ0. Now, suppose we have
a bubble with a different value of ρ, say ρ1, in the interior. Then along the surface of this
bubble, Φ must have nonzero gradient. Hence the bubble carries energy proportional to its
area. To change the vacuum from ρ0 to ρ1 everywhere, we need this bubble to grow in size
and cover the entire volume of the system. In infinite volume systems, this process will take
an infinite amount of energy and therefore cannot be achieved. Thus, there are no finite-
energy physical processes that change the vacuum state in systems of infinite size, and the
Qθ appearing in (2.11.4) is not a finite energy operator on the Hilbert space. This argument
relied on the area of the bubble growing with its volume. This is only true in more than
one space dimension. In two spacetime dimensions the bubble wall is a point, and the area
does not grow. Finite energy processes may then give rise to a change in the vacuum. In
spacetime dimensions d > 2, scattering processes break up into superselection sectors, but
in d = 2 they do not.

Such superselection sectors clearly do not arise for the large gauge symmetry. The vacuum
state is changed by soft photon creation, which occurs in nearly all scattering processes.9

The S-matrix elements do not factorize into superselection sectors. One way to understand
this is that, even though we are working in d = 4, the symmetry action in some regards
mimics the d = 2 case. The parameter that generates the spontaneously broken symmetry
is an arbitrary local function on the sphere — one parameter for every point — as opposed
to the constant parameter in (2.11.2). Hence vacuum-to-vacuum transitions need not occur
simultaneously everywhere at once on the sphere at infinity. Restricting to just one point,
finite energy transitions are possible.

At the classical level, the degenerate electromagnetic vacua connected by large gauge
transformations all have vanishing Fµν and hence carry no large gauge charge. This is
because the large gauge group is abelian, and hence its action commutes with the charge.
As discussed in section 5, an analogous classical vacuum degeneracy appears in gravity.
However in this case, the asymptotic symmetry group is nonabelian, and the different vacua
are classically distinguished by the charges they carry (e.g., angular momentum ~J). The
existence of classically degenerate vacua is then more obvious, as it can then be deduced
from charge conservation. Consider, for example, the situation depicted in figure 9, in which
an initial configuration with angular momentum ~Jinitial radiates angular momentum ~Jrad
and decays to a vacuum spacetime with vanishing Riemann tensor but angular momentum
~Jvac.

10 Angular momentum conservation implies

~Jinitial = ~Jrad + ~Jvac . (2.11.5)

9In the gravitational version of this story, the change in vacuum is classically measured by the gravitational
memory effect, which one hopes to measure at LIGO [34] or elsewhere.

10Explicit solutions of this general type are studied below in section 7.2.1. Formulas for the infinitesimal
change in the vacuum angular momentum under a supertranslation are in [203], and the finite case is treated

in [51]. Vacua with nonzero ~J are also discussed in [204].
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Figure 9: The existence of degenerate vacua in general relativity can be deduced from
angular momentum conservation. According to the Einstein equation, an initial con-
figuration with angular momentum ~Jinitial can decay to flat space while emitting total
angular momentum flux ~Jrad 6= ~Jinitial. Angular momentum is nevertheless conserved,
because the final vacuum carries angular momentum.

Insisting on vacuum uniqueness in gravity leads to the nonsensical conclusion that angular
momentum is not conserved. This is sometimes referred to as the problem of angular mo-
mentum in GR, but it is neatly resolved by the existence of degenerate vacua with nonzero
~J .

2.12 Massive QED

In the previous sections, we have seen that massless electrodynamics has infinitely many
conserved charges, and moreover that the quantum matrix elements of the conservation
laws are the soft photon theorem for amplitudes with massless charged external states. Of
course, in the real world, charged particles like the electron have mass. In this subsection
we generalize the previous results to massive particles.

The basic obstacle is that our analysis so far has been based on I, but massive particles
never reach I (for discussion, see [205]). For theories that only have massless particles,
I forms a Cauchy surface — that is, specification of initial (or final) data on I− (or I+)
is sufficient to obtain the complete evolution of the field into the interior. This no longer
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works for massive particles, since they do not arrive at I. Rather, they arrive from i− and
asymptote to i+. Interestingly, resolving this problem essentially forces one to the use of
hyperbolic slices of Minkowski space employed for holographic reduction by de Boer and
Solodukhin [52]. The massive formulas are a bit more complicated than the massless ones,
but they have a beautiful structure and make suggestive connections to AdS/CFT.

The first step is to understand how the symmetries act near i±. This has been discussed
in two papers [13, 14]. In the first paper, the authors present a gauge invariant description
of the action of the asymptotic symmetries on outgoing massive particles and show that the
Ward identities correctly imply the soft theorem. In the second paper, the authors worked
in Lorenz gauge. Despite making a specific gauge choice, the discussion of the second paper
is more illuminating. We now review it.

Most of the requisite machinery has already been set up in the massless analysis. The
main step left is to understand how the large gauge symmetries act on massive states.
Given this knowledge, we know the action of the hard part of the charge on asymptotic
massive states. With this extra term in hand, we can proceed as before by transforming into
momentum space to reproduce the soft theorem.

For this purpose, a prescription is needed to extend the asymptotic gauge parameter
ε(z, z̄) into the bulk interior of Minkowski space and i±. While this bulk extension can be
done in many different ways, due to gauge invariance, any extension should give rise to the
same final result. It turns out to be very convenient to extend the gauge parameter from
the boundary into the bulk using Lorenz gauge

∇µAµ = 0 , (2.12.1)

which implies that the gauge parameter must satisfy

�ε = 0 . (2.12.2)

We need to solve this equation with the boundary condition that it asymptote to a specific
function ε(z, z̄) on I+. We might try to solve it by Fourier transforming. However, this gives
scattering solutions that fall off like 1

r
near I+ and therefore cannot satisfy our boundary

condition. Fortunately, (2.12.2) also has solutions that have no Fourier transform and do
not die off at I+ (see exercise 6). The solution that approaches ε(z, z̄) can be written as

ε(x) =

∫
d2q̂G

(
x, q̂
)
ε(q̂) , (2.12.3)

where we have parametrized the point on the asymptotic sphere by a unit vector q̂ that
points toward (z, z̄), and G is a Green’s function that must satisfy

�G(x, q̂) = 0 , lim
r→∞
u fixed

G(x, q̂) = δ2(x̂− q̂) . (2.12.4)

This has the solution

G
(
x, q̂
)

= −
√
γ(q̂)

4π

xµxµ

(q · x)2 , (2.12.5)
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where qµ =
(
1, q̂
)
. The first property is easy to show:

�G
(
x, q̂
)

= −
√
γ(q̂)

4π
∂ν

[
2xν

(q · x)2 −
2xµxµ

(q · x)3 q
ν

]

= −
√
γ(q̂)

4π

[
8

(q · x)2 −
4

(q · x)2 −
4

(q · x)2 +
6xµxµ

(q · x)4 q
2

]
= 0 .

(2.12.6)

The second property is exhibited by writing G in retarded coordinates:

G
(
x, q̂
)

=

√
γ(q̂)

4π

u(u+ 2r)
[
u+ r (1− q̂ · x̂)

]2 (2.12.7)

which at large r vanishes if q̂ 6= x̂ and diverges if q̂ = x̂. The overall normalization of the
delta function can then be determined by integrating over q̂.

Another important property of G can be seen by considering the limit toward I−, r →∞,
keeping v = u + 2r constant. In this limit, G localizes to the point q̂ = −x̂. Thus, we find
that in the I− limit, the large gauge parameter is antipodally related to the one obtained in
the I+ limit. In other words, G “knows” about the antipodal map, which is a very convenient
feature of Lorenz gauge. In hindsight, this may not be altogether surprising, since the gauge
chosen here is Lorentz invariant, and the antipodal map is required by Lorentz invariance.

2.12.1 Hyberbolic Slices

Now we are in a position to find the limit of this bulk gauge parameter onto i+. For
this purpose, we introduce a new set of coordinates. The retarded (u, r, z, z̄) or advanced
(v, r, z, z̄) coordinates that we have employed so far are natural when one is interested in
null infinity. However, they are not good near i±. To discuss these boundaries, consider a
hyperbolic slicing of Minkowski space, with slices labeled by the coordinate

τ 2 = −xµxµ = t2 − r2 . (2.12.8)

Hypersurfaces corresponding to constant τ are hyperbolic spaces. For τ 2 > 0, the hypersur-
faces are H3 (or Euclidean AdS3), whereas for τ 2 < 0 the hypersurfaces are three-dimensional
de Sitter space dS3, as illustrated in figure 10. Here we are interested in resolving the struc-
ture of i±, for which we focus on the H3 slices. The dS3 slices were used to resolve the
structure of spatial infinity i0 by Ashtekar and Romano [206] in a related context.

On the H3 slices, we introduce the coordinate ρ:

ρ =
r√

t2 − r2
. (2.12.9)

The Minkowski metric then takes the form

ds2 = −dτ 2 + τ 2

[
dρ2

1 + ρ2 + ρ2dΩ2
2

]
. (2.12.10)
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I+

I−

i0

i−

i+

H3

dS3

Figure 10: Hyperbolic slicing of Minkowski space. The slices correspond to constant
τ2 = t2 − r2 surfaces. The red lines correspond to H3 slices and have τ2 > 0, whereas
the blue lines correspond to the dS3 slices with τ2 < 0.

The metric on the τ = constant hypersurfaces is that of H3, whose isometry group is SL(2,C).
These are Lorentz transformations, which in Minkowski space map each of these slices into
themselves. Similarly, SL(2,C) maps the dS3 slices into themselves.

The Green’s function (2.12.5) in these coordinates takes the form

G(τ, ρ, x̂; q̂) =

√
γ(q̂)

4π
[√

1 + ρ2 − ρq̂ · x̂
]2 . (2.12.11)

Note that τ has completely dropped out of this equation (i.e., ∂τG = 0). This implies that
the gauge parameter (2.12.3) is independent of τ . Viewed as a three-dimensional Green’s
function, (2.12.11) has been studied extensively in the context of AdS3 and is known as the
bulk-to-boundary propagator for a massless scalar, which relates quantities on the boundary
to those in the bulk. We are beginning to see the holographic structure of AdS3 echoing
in Minkowski space. Of course, this Green’s function seems quite special since it does not
depend on τ at all, but in other applications to flat space holography [142,143], H3 Green’s
functions (or bulk-to-boundary propagators) for fields of any conformal weight can arise and
are accompanied by τ -dependence in the full Minkowski space solutions.

Now consider a massive particle moving with constant momentum and following the
trajectory ~r = 1

E
~p t+ ~r0 for some fixed ~r0, as illustrated in figure 11. (τ, ρ, x̂) are given by
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+

Figure 11: Hypersurfaces of constant ρ are shown in green. The grey line is the
worldline of a massive particle moving at constant velocity. The worldline of a particle
asymptotes to a surface of constant ρ as τ →∞.

ρ =
r√

t2 − r2
=

| 1
E
~p t+ ~r0|√

t2 −
(

1
E
~p t+ ~r0

)2
,

τ =
√
t2 − r2 =

√
t2 −

(
1

E
~p t+ ~r0

)2

,

x̂ =
~r

r
=

~p t+ E~r0

|~p t+ E~r0|
.

(2.12.12)

At late times, t→∞,

ρ→ |~p |
m

, τ → m

E
t , x̂→ p̂ . (2.12.13)

Hence ρ, and x̂ asymptote to constants, and a massive particle approaches a fixed location
on the unit hyperboloid at i+. Hence in this resolution, i+ is the hyperbola H3, much as I+

is R× S2. The symplectic form for massive particles on H3 is worked out in exercise 7.
This construction readily gives the large gauge symmetry action on such a one-particle

state at asymptotically late times. As ε is independent of the parameter τ labelling the
hypersurfaces, we simply evaluate it at (2.12.13). Writing the hard part of the charge in a
vicinity of i+ as an integral over the asymptotic late-time H3, one concludes that

Q+H
ε | ~p 〉 = Qε

( |~p |
m
, p̂

)
| ~p 〉 , (2.12.14)
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where ε is given by (2.12.3). To summarize, the action of the large gauge charge on a massive
particle is proportional to the Lorenz gauge value of the gauge parameter at the H3 point to
which the massive particle asymptotes.

2.12.2 Soft Theorem

We are now set to use this result to derive the quantum Ward identity. The derivation is
essentially identical to the massless case. Equations (2.8.3) and (2.8.4) now include additional
terms on the RHS from massive states:11

〈 out |Q+
ε = −2

∫
d2w∂w̄ε〈 out |∂wN

+
∑

k∈massless

Qkε(zk, z̄k)〈 out |+
∑

k∈massive

Qkε

( |~pk|
mk

, p̂k

)
〈 out | .

(2.12.15)

The Ward identity becomes

− 2

∫
d2w∂w̄ε∂w〈 out |

[
N(w, w̄)S − SN−(w, w̄)

]
| in 〉

= −
[ ∑

k∈massless

Qkε(zk, z̄k) +
∑

k∈massive

Qkε

( |~pk|
mk

, p̂k

)]
〈 out |S| in 〉 .

(2.12.16)

To verify that this is the soft photon theorem, set, as before, ε(w, w̄) = 1
z−w and obtain

√
2

1 + zz̄
lim
ω→0

+

[
ω〈 out |a+

(
ωx̂(z, z̄)

)
S| in 〉

]

= e

[ ∑

k∈massless

Qk

z − zk
+

∑

k∈massive

Qkε

( |~p k|
mk

, p̂k

)]
〈 out |S| in 〉 .

(2.12.17)

Using the property

G

( |~pk |
m

, p̂k;w, w̄

)
=

1

2π
∂w̄

[ √
2

1 + ww̄

pk · ε+

pk · q̂

]
, (2.12.18)

we find

ε

( |~pk |
m

, p̂k

)
=

∫
d2wG

( |~pk |
m

, p̂k;w, w̄

)
1

z − w =

√
2

1 + zz̄

pk · ε+(z, z̄)

pk · q̂(z, z̄)
. (2.12.19)

Plugging this into (2.12.17) and multiplying both sides by 1+zz̄√
2

, we reproduce the soft photon

theorem for massive charged particles in the standard momentum space form (2.9.1). It is
rather satisfying to see this detailed equivalence emerge from the properties of bulk-to-
boundary propagators on H3!

11For notational brevity, we introduce here a simplified notation for n-point amplitudes with m outgoing
particles and n−m incoming particles. We drop the superscripts “in” and “out” on the momenta and charges
and simply take the particles labeled k = 1, . . . ,m to be outgoing and particles labelled k = m + 1, . . . , n
to be incoming. We further adopt a convention in which an incoming negative helicity photon of energy p0

is described as a outgoing positive helicity photon with energy −p0. Similarly, an incoming matter state of
helicity h, charge Q, and energy p0 is described as an outgoing matter state of helicity −h, charge −Q, and
energy −p0.
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2.13 Magnetic Charges

In this section, we derive a new nonperturbative soft theorem and generalize the analysis
to include magnetic charges [192].

In perturbation theory, it has been proven using Feynman diagrams [151] that the soft
photon theorem is tree-level exact (i.e., it does not receive any loop corrections). It is natural
to ask whether there can be nonperturbative corrections. To even talk about nonperturbative
contributions to the soft theorem, one first needs a theory that exists nonperturbatively.
QED — the theory of photons and electrons — does not exist due to the Landau pole. It
must be embedded in some bigger theory — maybe one that is asymptotically free — that
does exist nonperturbatively. To the best of my knowledge, all examples of such bigger
theories contain magnetic monopoles.

This leads us to ask whether the soft photon theorem is corrected when magnetic monopoles
are present in the asymptotic states. It is not hard to see that there must indeed be such
a correction. In low-energy effective field theory, a magnetic monopole is represented by a
point particle with magnetic charge. A soft photon will certainly couple to such an object,
and the pole due to the nearly on-shell propagator (2.9.6) is still present. The only thing
that changes is the coupling of the magnetic particle to the gauge field (2.9.7). This coupling
gives rise to a different soft factor, but the pole remains.

To derive the nonperturbative corrections to the soft theorem, we begin with the pertur-
bative electric soft factor

Sα0 =
∑

k

eQkpk · εα
q · pk

, (2.13.1)

for a soft photon of polarization εα. Consider an amplitude involving asymptotic particles
with integral magnetic charges Mk defined by

Mk =
1

2π

∫

S
2
k

F , (2.13.2)

where S2
k is a sphere surrounding the kth particle. Since the pole in the soft factor is

unchanged, we need to simply determine the vertex factor. A trick for this purpose is to
transform to dual variables

F̃ = −2π

e2 ∗ F , ẽ =
2π

e
, Q̃k =

1

ẽ2

∫

S
2
k

∗F̃ = Mk , M̃k =
1

2π

∫

S
2
k

F̃ = −Qk .

(2.13.3)

This duality interchanges the electric and magnetic charges as (Q̃k, M̃k) = (Mk,−Qk). Note
that we are not assuming here that the theory has any kind of duality symmetry; we are
simply rewriting it in terms of the dual field strength as a shortcut to derive magnetic terms
in the soft factor. It is useful to define a dual gauge potential that couples to magnetic
charges in the same way that the usual gauge potential couples to electric charges:

F̃ = dÃ = −2π

e2 ∗ dA , (2.13.4)
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which determines Ã in terms of A (up to magnetic gauge transformations). In the bulk four
dimensions, this is a highly nonlocal relationship, but as we shall see, it becomes local on
I+. Note that (2.13.4) also relates the polarization εα to its dual ε̃α as defined by

Aµ(q) = eεαµ(q) , Ãµ(q) = ẽε̃αµ(q) . (2.13.5)

Since Ã couples to magnetic particles in exactly the same way that A couples to electric
particles, we immediately conclude that magetic charges must correct the soft formula to

Sα0 =
∑

k

pk · (Qkeε
α +Mkẽε̃

α)

q · pk
. (2.13.6)

Electric and magnetic gauge invariance implies that the amplitude should remain invariant
under separate shifts of εα and ε̃α. This indeed follows from the fact that electric and
magnetic charge are each conserved. It is easy to check that this formula is invariant under
electric-magnetic duality. It is conjectured to be nonperturbatively exact [192].

It is illuminating to describe the duality transformations (2.13.3) in retarded coordinates
near I+. Expanding near I+, they simplify to

F̃
(0)
zz̄ =

2πi

e2 γzz̄F
(2)
ru , F̃ (2)

ru =
2πi

e2 γ
zz̄F

(0)
zz̄ , F̃ (0)

uz =
2πi

e2 F
(0)
uz . (2.13.7)

Integrating the last equation of (2.13.7) and choosing the integration constant to get a linear
relation between Az and Ãz, we find

Ã(0)
z =

2πi

e2 A
(0)
z . (2.13.8)

This formula is quite interesting. It states that the duality transformation is simply mul-
tiplication by i. This is unsurprising, since Fuz corresponds to the radiative mode of the
electromagnetic field with one polarization. A multiplication by i corresponds to a phase
shift by π

2
, which is equivalent to exchanging electric and magnetic fields. The soft factor

may then finally be written in the simple form for positive helicity

Sα0 =
∑

k

(eQk + 2πi
e
Mk)pk · ε+

q · pk
, (2.13.9)

while the combination eQk − 2πi
e
Mk appears for the opposite helicity.

In the presence of magnetic charges, there is a second infinity of conserved charges. Let
us define an outgoing charge by

Q̃+
ε =

1

2π

∫

I+
−

εF =
i

2π

∫

I+
−

d2zεF
(0)
zz̄ . (2.13.10)

The Lorentz-invariant matching condition

F
(0)
zz̄ |I+

−
= −F (0)

zz̄ |I−+ (2.13.11)
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then implies that this outgoing magnetic charge is equal to the incoming magnetic charge
on I−:

Q̃+
ε = Q̃−ε = − i

2π

∫

I−+
d2zεF

(0)
zz̄ . (2.13.12)

The extra minus sign in (2.13.11) is present because the (z, z̄) coordinates used on I− are
antipodally mapped to the ones on I+, reversing the orientation of the sphere.

To what symmetry is this new charge associated? In the case of the electric charges,
this question was answered by constructing the asymptotic Dirac brackets and working out
the action of the charge on the fields. In doing so, we assumed that F

(0)
zz̄ vanished on the

boundaries of I+
± . This boundary condition is consistent in the absence of magnetically

charged particles but obviously cannot be imposed here. In fact, the correct boundary
conditions and Dirac brackets in the presence of both electric and magnetic charges have not
yet been worked out. It remains an important open problem.

However, without going through this long procedure, duality covariance gives an obvious
guess for the final result: Q̃±ε should generate magnetic gauge transformations on the dual
gauge fields, namely

δ̃εÃ
(0)
z = ∂zε . (2.13.13)

Using (2.13.8), this can be written in terms of the gauge field Az as

δ̃εA
(0)
z = −ie

2

2π
∂zε . (2.13.14)

These may be interpreted as electric gauge transformations but with an imaginary gauge

parameter ε̃ = − ie
2

2π
ε. The original real U(1) symmetry is now enhanced to a complex U(1).

This complexification enables us to simultaneously and locally realize both the electric and
magnetic gauge symmetry on the asymptotic fields! From this point forward, showing that
the Ward identity of this complexified large gauge symmetry is precisely the full nonpertur-
bative electric+magnetic soft photon theorem follows through exactly as before. We will not
work through the derivation here.

It is instructive to note here that in the standard electric presentation of abelian gauge
theory, the large electric symmetries are manifest as a nontrivial subgroup of the gauge
symmetry, whereas magnetic symmetries are not. In the dual magnetic description, the
opposite is true. The lesson here is that not all asymptotic symmetries can be thought of
as subgroups of some bulk gauge symmetry. As truly physical symmetries with measurable
dynamical implications, they have a more fundamental status. Since trivial gauge symmetries
correspond to redundant degrees of freedom, one may have many different presentations
of a theory in which different redundant degrees of freedom appear. However, since the
asymptotic symmetries are physical, they must exist in each presentation, although not
necessarily describable as a subgroup of a local gauge symmetry. Indeed, we will see in the
next section that the soft photino theorem in N = 1 QED implies the existence of infinitely
many fermionic symmetries. These are not a subgroup of a local gauge symmetry in any
known presentation of the theory.
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2.14 Supersymmetry

In supersymmetric theories, every particle has a superpartner. The partner of the pho-
ton is called the photino. One might expect a soft photino theorem as a superpartner of
the soft photon theorem. This is indeed the case. For every soft theorem, one expects an
asymptotic symmetry. Furthermore, since the soft theorem can be thought of as one rela-
tionship between two S-matrix amplitudes for every direction (z, z̄) of the soft particle, the
associated asymptotic symmetry should be infinite dimensional. The soft photino theorem
is thus expected to give rise to an infinite number of fermionic symmetries of the S-matrix.

This simple conclusion is quite surprising as, in the simplest case of N = 1, the global
supersymmetry is generated by four real fermionic parameters. Clearly, the infinitely many
fermionic symmetries alluded to above cannot possibly be a subgroup of these finitely many
supersymmetries! This is therefore another example, following the magnetic one, of an
asymptotic symmetry that is not realized as a subgroup of any manifest local symmetry of
the full bulk theory. However, in the magnetic case, we were able to construct a reformulation
of the theory in terms of dual variables in which the magnetic symmetry was manifest
as a subgroup of the local gauge symmetry of the dual magnetic potentials. In contrast,
there is no known description of the fermionic symmetries in N = 1 theories in which a
nontrivial infinite-dimensional symmetry is manifest.12 Hence, the fermionic symmetries
that we uncover here are completely new and different.

In this section, we present the soft photino theorem and rewrite it as the matrix element
of an infinite set of fermionic conservation laws, with some details referred to the original
work [58]. In section 2.14.1, we review the soft photino theorem. Section 2.14.2 derives
the equivalent fermionic conservation laws. Further directions involving supersymmetric
asymptotic symmetries are discussed in section 2.14.3.

2.14.1 Soft Photino Theorem

First we review the soft photino theorem. The Lagrangian for N = 1 supersymmetric
QED with photino Λ and generic matter supercurrent K (the superpartner of the charged
matter current jµ) is

L = − 1

4e2FµνF
µν − i

e2 Λ̄σ̄µDµΛ + iK̄Λ̄− iΛK + Lmatter + . . . , (2.14.1)

where we follow the spinor conventions of Wess and Bagger [207]. Here, Lmatter is the full
interacting matter Lagrangian and “. . .” denotes any higher derivative interactions. Our
discussion of the soft photino theorem will not depend on the precise nature of these terms.
The only important term is the linear coupling of the supercurrent to the photino. The
structure of this interaction is fixed completely by gauge invariance and supersymmetry.

For clarity, we work with a specific example, but the discussion is completely general and
applies to any supersymmetric abelian gauge theory. Consider the case where the matter

12In superspace formalisms, the gauge parameter sometimes has a fermionic superpartner that is gauge
fixed to zero. However, the fermionic symmetries we find here are unrelated to these superpartners. It
is of course possible that alternate superspace formulations exist in which our fermionic symmetries are
superpartners of gauge symmetries.
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content of this theory contains a single, massless charged chiral multiplet with charge Q.
This multiplet contains a complex scalar field Φ and its superpartner Ψα. The fermionic
current is

Kα =
√

2QΦ̄Ψα, K̄α̇ =
√

2QΦΨ̄α̇. (2.14.2)

To describe the soft theorem, consider an amplitude with n particles with momenta pk,
k = 1, . . . , n, and a photino with momentum q. Since all momenta are null, we can write
them in terms of spinors as

pkµσ
µ
αα̇ = ηkαη̄kα̇, qµσ

µ
αα̇ = ηαη̄α̇. (2.14.3)

The soft photino theorem (a derivation is in [58]) is then simply

lim
η→0
〈 out |a+(η)S| in 〉 =

√
2ie
∑

k

1

η · ηk
〈 out |FkS| in 〉, (2.14.4)

where F is the operator whose action on states is given by

〈Φ |F = −Q〈Ψ |, 〈 Ψ̄ |F = Q〈 Φ̄ |, 〈 Φ̄ |F = 〈Ψ |F = 0. (2.14.5)

Note that the soft theorem here takes on a qualitatively different form than the examples
considered so far. In the soft photon theorem, the soft factors were all simply numbers in a
plane wave basis, whereas here the soft factor is an operator that changes external bosons
into external fermions and vice versa. Going forward, we will encounter many more examples
in which the soft factor is an operator acting on the external states.

Note that F is a fermionic operator (i.e., it takes bosonic states into fermionic states and
vice versa). This is to be expected, as all nonvanishing amplitudes must have an even number
of external fermions. If the LHS of (2.14.4) is nonvanishing, the S-matrix 〈 out |S| in 〉 must
itself vanish. Note also that F only acts on charged states, and even then it does not act on
all charged states, only on 〈Φ | and on 〈 Ψ̄ |. This action is quite distinct from that of the
supercharge itself, which acts on all states; see Exercise 8.

We will not derive the soft photino theorem in detail, but we can understand qualitatively
why the soft photino theorem must involve the operator F as follows. The derivation of
the soft theorem for the photino follows through in exactly the same way as for the photon,
with the 1

pk·q pole coming from the untruncated, nearly on-shell propagator. The only new
element is the coupling of the photino with the chiral fields. For an outgoing positive helicity
photino, the relevant interaction term is K̄α̇ =

√
2QΦΨ̄α̇. The factor of Q indicates that one

only gets a contribution to the soft factor from particles with charge, as seen in (2.14.4).
Moreover, one only gets a nonzero soft factor from states created by fields Φ̄ and Ψα, which
are precisely the states on which the operator F has a nonzero action.13

13The notation used here is that the ket state |Φ 〉 is created by the field Φ. Thus, its adjoint 〈Φ | is
created by the field Φ̄.
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2.14.2 Fermionic Conservation Laws

Following the theme of these lectures, we strongly suspect that (2.14.4) can be recast as
the quantum matrix element of a charge conservation law. There are not too many sensible
possibilities for what that charge could be. Our approach will be to simply motivate an
Ansatz and then establish the conservation law by checking that the corresponding Ward
identity is equivalent to (2.14.4).

Note that the generic structure of this fermionic charge, F [χ] (χ is an arbitrary angle-
dependent fermionic parameter), has to be similar to the structure of the large gauge charge
— namely, that there is a soft charge linear in the photino field and a hard charge containing
the matter particles. Thus, we guess that the new infinity of conserved charges F [χ] loosely
takes the form of a I+

− integral:

F [χ] ∼
∫
χΛ +

∫
χK. (2.14.6)

To refine this guess, we require that somehow supersymmetry should play a role in this story.
This is because the soft photino theorem itself was obtained as a supersymmetrization of the
soft photon theorem. Supersymmetry commutes with all gauge transformations. Thus, it
cannot be possible to obtain F [χ] directly by the action of supersymmetry on Q+

ε . However,
the reverse might be (and as we shall see, is) true: the action of supersymmetry on F [χ]
could give us Q+

ε . Another motivation for suspecting such a relation is that it implies F [χ]
as an operator has mass dimension −1

2
, consistent with the mass dimension of F as defined

in (2.14.5).
To implement this guess, note that the supersymmetry transformations of the photino

field are

δsusy
α Λβ = −Fαβ + . . . . (2.14.7)

Here, δsusy
α is a supersymmetry transformation with a spinor index α, and Fαβ = σµναβFµν .

The corrections “. . .” depend on the precise form of the Lagrangian and of the theory under
consideration. In the off-shell superfield formalism, these corrections are simply εαβD, where
D is an auxiliary field. In any case, these terms will not matter for our purposes, since
they die off rapidly near I+. Equation (2.14.7) then suggests that for the supersymmetry
transformation of the fermionic charge,

ζαδsusy
α F [χ] = Q+

ζχ, ζ̄ α̇δsusy
α̇ F [χ] = 0. (2.14.8)

This equation can be used to determine the precise form of F [χ]. One might anticipate at
this point that it is just a I+

− integral of χΛ. This is almost right, except that Λ has a term
that grows in the far past of I+, which we must take some care to project out.

To do so explicitly, let us describe in more detail the structure of spinors near I+. Define
a spinor basis by

σz
zξ(±) = ±1

2
ξ(±), ξ(+)ξ(−) = 1. (2.14.9)
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Near I+, we can then expand the photino and fermionic current as

Λα =
1

r
λ(+)ξ

(+)
α +

1

r2λ(−)ξ
(−)
α +O

(
r−3
)
,

K̄α̇ =
1

r2 k̄(−)ξ̄
(−)
α̇ +

1

r3 k̄(+)ξ̄
(+)
α̇ +O

(
r−4
)
.

(2.14.10)

The constraint equation on I+ is

(1 + zz̄)Dz̄λ(+) − 2∂uλ(−) = e2k̄(−). (2.14.11)

This is the superpartner of the leading-order Maxwell constraint equation (2.5.10), and it
will play the same role as that constraint in converting boundary expressions for charges into
bulk ones. The supersymmetry transformation of λ(±) can be determined by taking the I+

limits of (2.14.7). It is convenient to define the following supersymmetry transformation

δ(−) = ξα(−)δ
susy
α . (2.14.12)

Then, near I+, (2.14.7) simplifies to

δ(−)λ(+) = −2(1 + zz̄)F (0)
uz , δ(−)λ(−) = F (2)

ur − γzz̄F (0)
zz̄ + . . . , (2.14.13)

where “. . .” are the D-term contributions. In general, λ(+) goes to a finite value at large
|u|. Equation (2.14.11) then implies that λ(−) may diverge linearly in u. Thus, to define a

fermionic charge as an integral over I+
− of λ(−), we must project out the term linear in u:

F [χ] =
1

e2

∫
d2zγzz̄χξ

(−) (1− u∂u)λ(−)

∣∣
I+
−
. (2.14.14)

The supersymmetry transformation (2.14.13) then immediately implies

ζαδsusy
α F [χ] = Q+

ζ
α
χα
. (2.14.15)

This fermionic charge satisfies all the properties discussed above. Appropriate photino
matching conditions imply that it commutes with the S-matrix. The corresponding Ward
identity states

〈 out |
(
F [χ]S − SF−[χ]

)
| in 〉 = 0. (2.14.16)

Then, using formulas from the previous sections for rewriting boundary expressions in a
plane wave basis, we find that this is indeed equivalent to the soft photino theorem (2.14.4).

The symmetry corresponding to this charge follows with the help of the symplectic form
for fermions on I+. The action of the charge on the photino is found to be

{
F [χ], λ(+)(u, z, z̄)

}
= 0,

{
F [χ], λ̄(−)(u, z, z̄)

}
= −∂z̄χ. (2.14.17)

We see that the photino gets an inhomogeneous shift, implying a new kind of “fermionic
gauge transformation.” This new and infinite set of symmetries exists for all supersymmet-
ric abelian gauge theories, yet is not a subset of any previously considered local fermionic
symmetry.
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2.14.3 N = 4, 8

It is an important and outstanding problem to extend this construction to gauge theo-
ries with N = 4 supersymmetry or gravity theories with N = 8 supersymmetry. Clearly,
conceptually new features will arise from supermultiplets of soft theorems with nonabelian
R-symmetry groups. Multiple soft limits are known not to commute in this more general
context [99]. At this time, there is not even a conjecture for what the asymptotic symmetry
group should be!

The fact that the action of supersymmetry on the fermionic charges/symmetries gives
the large gauge charges/symmetries is closely related to an observation of Larkoski [94]
that the leading and subleading soft theorems in QED are related by conformal symmetry.
Going forward to higher supersymmetry groups, we may encounter a rich structure in which
hierarchies of asymptotic symmetries related to leading, subleading, and sub-subleading soft
theorems merge into a unified infinite-dimensional symmetry group. This will be interesting
indeed to explore.

In Barnich et al. [125], a charge-weighted vacuum partition function that encodes the
BMS-degeneracy of the vacuum in three-dimensional gravity was constructed. It would be
of interest in supersymmetric theories to define and compute charge-weighted vacuum indices
characterizing the degeneracy.

2.15 Infrared Divergences

A salient and much-studied feature of QED in the deep infrared is the appearance of IR
divergences in the integral over momenta in internal loops [151]. These divergences set all
conventional Fock-basis S-matrix elements to zero. Often they are dealt with by restricting
to inclusive cross sections in which physically unmeasurable photons below some IR cutoff
are traced over. The trace gives a divergence, which offsets the zero and yields a finite result
for the physical measurement [6, 7, 208, 209]. While this is adequate for most experimental
applications, for some purposes it is nice to have an S-matrix. For example, discussions of
unitarity or asymptotic symmetries require an S-matrix.

It is natural to ask whether the considerations of this book bear on the issue of IR
divergences. We shall see that they indeed give a satisfying picture: imposing the infinity
of conservation laws on amplitudes eliminates some and possibly all IR divergences. To see
this, consider Bhabha scattering as illustrated in figure 12, in which an incoming electron-
positron pair scatters to an outgoing electron-positron pair, with no incoming or outgoing
radiation. To restrict attention to I (rather than i±), we take the charged particles to be
massless.14 In this case the constraint equations on I+ imply (see (2.5.10))

∂uF
(2)
ru +���

��:0
DzF (0)

uz +��
��
�*0

Dz̄F
(0)
uz̄ = −e2j(2)

u , (2.15.1)

while on I−,

∂vF
(2)
rv −���

��:0
DzF (0)

vz −��
��
�*0

Dz̄F
(0)
vz̄ = e2j(2)

v . (2.15.2)

14We suppress here the effects of loop corrections in the massless case, which make the coupling run in
the deep IR. The qualitatively similar and more realistic massive case is treated in [210].
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Figure 12: Bhabha scattering, e+e− → e+e−, involves incoming and outgoing electron-
positron pairs unaccompanied by radiative photons. In the massless case depicted, the
Maxwell equation implies Coulomb fields on I to the future of the incoming pair and
the past of the outgoing pair. If the scattering angle is nonzero, these Coulomb fields
cannot obey the required matching conditions where I+ and I− meet. The amplitude
for Bhabha scattering therefore vanishes identically.

Here we have set F (0)
uz = F (0)

vz = 0, as this process involves no radiative modes. j(2)
v and

j(2)
u are the electron and positron charge fluxes at I. For example, an outgoing positron at

(u0, z0, z̄0) creates a flux

j(2)
u = γzz̄δ(u− u0)δ2(z − z0). (2.15.3)

Since the incoming (outgoing) state is taken to be the vacuum in the far past (future), we
should solve (2.15.2) ((2.15.1)) with the boundary condition that the Coulomb field vanishes
in the far past (future). One then finds that, as long as the scattering angle is nontrivial,
the fields cannot obey the matching conditions (2.4.9)

F (2)
ru (z, z̄)

∣∣∣
I+
−

= F (2)
rv (z, z̄)

∣∣∣
I−+

(2.15.4)

at the boundary of I near i0. Therefore Bhabha scattering must vanish identically.
This may sound bizarre at first, but in fact the result is well known and is usually

attributed to IR divergences. As depicted in figure 13, the tree level one-photon exchange is
finite, but the one loop correction is infinite due to IR divergences in pairwise exchanges of
soft photons between charged external legs. The source of this divergence is the ω → 0 pole
in the coupling of a soft photon to a charged particle. Including arbitrary numbers of soft
photon exchanges and resumming, this divergence exponentiates with a minus sign and sets
the full amplitude to zero. Here we have provided a simple physical interpretation of that
well-known result. IR divergences are not “real”, rather they are a clever trick employed by
the Feynman rules to set conservation-law-violating amplitudes to zero!
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Figure 13: The resummation of IR divergent processes, in which pairs of external
charged legs exchange soft photons, sets the amplitude for Bhabha scattering to zero.

Finding a new way of computing zero, however, is not enough: we would like to use our
insights to construct finite amplitudes. The problem above was the mismatched Coulomb
fields produced by the asymptotic charge fluxes. This mismatch can be avoided by using
radiative, rather than the Coulombic, modes to satisfy the constraints:

��
��*

0
∂uF

(2)
ru +DzF (0)

uz +Dz̄F
(0)
uz̄ = −e2j(2)

u ,

��
��*

0
∂vF

(2)
rv −DzF (0)

vz −Dz̄F
(0)
vz̄ = e2j(2)

v . (2.15.5)

For a single outgoing positron, this has the radiative shock wave solution15

A(0)
z = − e2

4π(z − z0)
θ(u− u0). (2.15.6)

The field strength has support only at at u = u0, but the gauge potential is shifted by
the shock wave, indicating a transition between the degenerate vacua. Its frequency space
Fourier transform has the signature ω → 0 pole. The corresponding “dressed” coherent
quantum state for the outgoing positron,

|j0〉dressed = e
( i

2π

∫
d
2
z

z0−z
A

(0)
z̄ (u0,z,z̄)−h.c.)|j0〉 , (2.15.7)

is annihilated by the I+ constraint equation (2.15.5) (with the fields promoted to operators).
This state can be described as a positron surrounded by a cloud of soft photons. Dressing
all the positrons and electrons in this manner, one finds for “dressed” Bhabha scattering16

F (2)
ru (z, z̄)

∣∣∣
I+
−

= 0 = F (2)
rv (z, z̄)

∣∣∣
I−+

, (2.15.8)

15This solution is singular at z =∞, but in the case of Bhabha scattering with zero net global charge the
singularity is cancelled.

16When there is net global charge, this procedure sets the leading radial component of the electric field to
a nonzero but angle-independent constant.
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Figure 14: The Faddeev-Kulish mechanism. IR divergences from soft exchanges be-
tween external charges are pairwise cancelled by exchanges between external charges
and soft photon clouds surrounding each particle.

and the matching conditions (2.15.4) are trivially satisfied. Of course, there are many other
ways to satisfy the matching condition, but the example (2.15.7) is particularly simple and
illustrates the main point.

Since the conservation laws are satisfied, there is no reason for dressed Bhabha ampli-
tudes to vanish and no need for IR divergences. In fact, these amplitudes are known to be
completely IR finite!17 The dressed state here is a special case of the ones shown by Kulish
and Faddeev in 1970 [147] to have IR finite scattering amplitudes. As shown in figure 14,
there is a pairwise cancellation of IR divergences in soft photon exchanges between pairs of
external charges and external charges and soft clouds.18 We can now understand the role of
Faddeev-Kulish clouds as inserting radiative photons to satisfy the conservation laws.

This is progress, but Faddeev-Kulish states are highly nongeneric. When the net charge is
zero, they all have vanishing leading radial electric fields near spatial infinity as in (2.15.8).
When it is not zero, the leading electric field is nonzero but is independent of the angle,
because the soft photon cloud shields all the angle-dependent components. Such states are
unphysical. When pairs of protons are thrown at one another at the LHC, they are not
followed up with a finely tuned cloud of soft photons to shield the angle-dependent part
of the electric field. The S-matrix SFK restricted to Faddeev Kulish states is not unitary:
rather S†FKSFK = PFK is a projection operator projecting onto such shielded states. PFK
projects out the states we scatter in accelerator experiments.

It is desirable to have IR finite scattering amplitudes for all physical states. The discussion
here suggests that IR divergences arise only to enforce charge conservation. Accordingly, it
was conjectured in [210] that all amplitudes allowed by charge conservation are free of IR
divergences.19 As depicted in figure 15, a leading order analysis corroborates this conjecture.

17There are UV divergences in this particular example, as the positrons, electrons, and shock waves are
all infinitely localized. These divergences can be eliminated by smearing but are not our interest here.

18More generally, cloud-cloud exchanges also participate in the cancellations.
19This conjecture was recently proven by R. Akhoury and S. Choi [211].
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Figure 15: IR divergences from soft exchanges between external charges are pairwise
cancelled by exchanges between external charges and soft photon clouds associated
with, but not necessarily surrounding, each particle.

Let us move the soft cloud surrounding an incoming positron to an antipodal outgoing
position in a manner such that all the constraints on I are still satisfied. This can be done
by omitting the incoming positron dressing operator and acting with its hermitian conjugate
on the out state. When we move the radiative cloud from I− to I+, the constraints imply
nontrivial but matched Coulomb fields will be created near i0. The original IR divergence
from soft photon exchange between the outgoing positron and the soft cloud around the
incoming positron is traded for a divergence from exchange between the outgoing positron
and the new antipodally positioned outgoing cloud. The soft photon theorem, which takes
the same form (up to a sign) for ingoing and outgoing photons, implies that the IR divergent
parts of these diagrams are equal, and hence the pairwise cancellation of these leading
divergences is still in effect with the repositioned cloud [210].

It is possible to antipodally reposition all the incoming clouds to outgoing ones while
maintaining the leading Faddeev-Kulish cancellation of IR divergences. Physical scattering
processes at accelerators are described by such incoming charges with no incoming soft
clouds. The resulting outgoing soft clouds are then simply identified as the soft radiation
inevitably produced in the scattering process.

3 The S-matrix as a Celestial Correlator

So far, the framework for our discussion has been the conventional one of an S-matrix
that maps an incoming to an outgoing Hilbert space. Multiparticle states in the in- and out-
Hilbert spaces are described as asymptotic, noninteracting energy-momentum eigenstates.
In this section, we present an alternate description, which for some purposes is both compu-
tationally and conceptually more convenient.

The alternate description of scattering [12] is as a type of correlation function on a sphere,
depicted in figure 16. In the massless case, “in” and “out” massless particles are labelled by
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Figure 16: The four-dimensional Minkowski S-matrix for any theory can be rewritten as
a two-dimensional correlator on the celestial sphere CS2, which is parametrized by the
asymptotic angle (z, z̄) on I. Incoming or outgoing massless particles are represented
by operators at the location where they enter I− or exit I+, labeled by quantum
numbers such as the energy or boost charge. The angles on I+ and I− are antipodally
identified so that a free massless particle enters and exits at the same point on CS2.
The dashed line on CS2 separates the regions associated with incoming and outgoing
particles. The four-dimensional SL(2,C) Lorentz invariance acts as the global two-
dimensional conformal group on CS2.

operators denoted
Ok(z, z̄). (3.0.1)

Here,

z =
x1 + ix2

r + x3 (3.0.2)

denotes the point on the sphere at past or future null infinity where the particle of type k
enters or exits the spacetime. This sphere is referred to as the celestial sphere and is denoted
CS2. Ok may depend on other quantum numbers, such as the angular momentum, boost
weight, energy, or electromagnetic charge, but we often suppress these labels. The asymptotic
angle (z, z̄) and either energy or boost weight replace the conventional three-momentum ~p
characterizing a massless particle.

Massive particles in energy-momentum eigenstates, in contrast, do not enter or exit
spacetime at a definite point on CS2. Rather, as discussed in section 2.12, they enter or exit
i± at a definite point on the hyperboloid H3 in (2.12.13). They correspond to operators that
are smeared on CS2 with the weighting given by (2.12.11). Alternately, boost-eigenstate
wave functions for massive particles associated to a point on CS2 can be constructed using
the bulk-to-boundary propagator on H3 [142].

It is then natural to express the n-particle scattering amplitudes in the form of a celestial
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correlator on CS2:

〈 out |S| in 〉 → 〈O1(z1, z̄1) · · · On(zn, z̄n) 〉. (3.0.3)

Note that no assumptions are being made here; we are simply rewriting the S-matrix in a
different notation.

We are interested in Lorentz invariant theories. The four-dimensional Lorentz symmetry
is SL(2,C), which acts on CS2 as

z → az + b

cz + d
, ad− bc = 1. (3.0.4)

This formula is very familiar to anyone who has studied two-dimensional CFT, because
SL(2,C) is the global conformal group of the two-sphere. In quantum field theory, scat-
tering amplitudes must transform covariantly under the Lorentz group, so these correlation
functions must transform covariantly under the global conformal group. Hence they must
look a lot like the familiar correlation functions in a two-dimensional CFT on the sphere.
This connection becomes manifest when the external particle wave functions are taken to be
SL(2,C) primaries labeled by their conformal dimensions and location on CS2 rather than
the traditional plane waves [68, 142,144].

This connection becomes even more interesting later on when we get to quantum gravity.
We will see that — up to currently unresolved issues involving IR finite quantum anomalies
— the global conformal group gets enhanced to the full local conformal group z → w(z)
that appears in two-dimensional CFT. There is even an operator constructed from soft
gravitons [67, 68, 117] whose Ward identities are those of a two-dimensional stress tensor.
This likely places powerful constraints on the structure of scattering amplitudes that are
currently under investigation [142, 144]. More ambitiously, one may attempt to find a two-
dimensional CFT whose correlators on CS2 reproduce the S-matrix of a four-dimensional
quantum theory of gravity. This would provide a microscopic realization of the holographic
principle in four-dimensional flat space quantum gravity, or flat space holography.

At this point in the lectures, we are still considering QFT and have not started to discuss
gravity in any depth. Nevertheless, if the QFT can be coupled to gravity, it suggests that
the celestial correlators (3.0.3) are those of a two-dimensional CFT, possibly in unusual
representations.20 Indeed, as a simple example we will see in the next section that tree-level
celestial correlators involving soft gluons are those of a nonabelian two-dimensional Kac-
Moody algebra. A brief discussion of the abelian case already appeared around equation
(2.8.8).

4 Nonabelian Gauge Theory

Now we turn to another type of soft theorem, namely, the soft gluon theorem. This
theorem applies to theories with a nonabelian gauge group G which is neither confined nor
higgsed. Otherwise, there are no soft gluons! Unlike the (leading) soft photon theorem, the

20The work of Pasterski et al. and Cardona and Huang [140–142, 144] suggests that the principal series
plays an important role.
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soft gluon theorem has corrections at the loop level. These are related to the running of
the gauge coupling in the infrared, which affects the coupling constant appearing in front of
the hard part of the charges. However, this is not the whole story of quantum corrections.
Even in N = 4 Yang-Mills, where the coupling does not run, there are still corrections to
the soft gluon theorem that are one-loop exact [110–113]. I have a little bit to say about
this below, but the consequences of these anomalies for the asymptotic symmetries remain
to be analyzed. A related issue in gravity was recently addressed in He et al. [117].

Soft theorems are essential for controlling IR divergences and getting IR finite inclusive
cross sections. The absence of an uncorrected quantum soft theorem in the nonabelian
case is intertwined with the fact that there is no known unitary S-matrix for quantum
nonabelian gauge theories, although a large class of IR finite dressed states were constructed
in [148, 149] and earlier references therein. For a general state, the best one can do is to
define finite inclusive cross sections with an IR cutoff. This is perfectly acceptable for most
or all experimental applications, which in practice have an IR cutoff from limits on detector
sensitivity. However, it is a problem, for example, for the theoretical studies of N = 4 Yang-
Mills scattering amplitudes, which do not actually exist. It is hard to analyze unitarity or
symmetries of the S-matrix without an S-matrix! The lack of an S-matrix for these theories
is an elephant in the room. We hope that understanding the IR symmetries will enable the
construction of a finite unitary S-matrix or a suitable replacement thereof.

In this section, which largely reviews He et al. [12], we sidestep these issues simply
by restricting the discussion to tree level. The presentation will proceed a bit differently
than that for the abelian case. Rather than discuss a canonical formalism with an in- and
out-Hilbert space, it is more efficient to illustrate the physics in the language of celestial
correlators discussed in section 3. In this language, the scattering of a soft gluon becomes
the insertion of a current into a correlation function on CS2. In section 4.1, it is shown
that this current obeys the Ward identities of a G-current algebra, which provides a useful
alternate representation of the asymptotic symmetry group. In section 4.2, we construct the
infinity of nonabelian conserved charges.

4.1 G-Kac-Moody Algebra

Following the discussion around expression (3.0.3), we adopt the language of celestial
correlators, in which asymptotic particles are represented by operators Ok on CS2:

〈 out |S| in 〉 = 〈O1(E1, z1, z̄1) · · · On(En, zn, z̄n) 〉. (4.1.1)

The operators Ok are taken to be in the kth representation of the nonabelian gauge group
G, whose generators satisfy

[
T ak , T

b
k

]
= ifabcT ck , (4.1.2)

where the fabc are the real, completely antisymmetric structure constants normalized so that

facdf bcd = δab = tr
[
T aT b

]
, (4.1.3)
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with T a the generators in the adjoint representation, and the trace is over the suppressed
color index. The field strength is constructed from the gauge field Aµ = AaµT a as

Fµν = ∂µAν − ∂νAµ − i
[
Aµ,Aν

]
= FaµνT a (4.1.4)

and obeys the equations of motion

∇νFνµ − i
[
Aν ,Fνµ

]
= g2

YMj
M
µ . (4.1.5)

Here gYM is the gauge coupling, and jM is the matter color current. The nonabelian gauge
transformations act on the gauge and matter fields as

δεAµ = ∂µε− i
[
Aµ, ε

]
, δεφk = iεaT ak φk , δεj

M
µ = −i

[
jMµ , ε

]
. (4.1.6)

Near I+, the gauge field has a large-r expansion as in the abelian case:

Az(u, r, z, z̄) = Az(u, z, z̄) +O
(

1

r

)
,

Ar(u, r, z, z̄) =
1

r2Ar(u, z, z̄) +O
(

1

r3

)
,

Au(u, r, z, z̄) =
1

r
Au(u, z, z̄) +O

(
1

r2

)
.

(4.1.7)

The field strength then has the expansion

Fur =
1

r2Fur +O
(

1

r3

)
, Fuz = Fuz +O

(
1

r

)
, Fzz̄ = Fzz̄ +O

(
1

r

)
, (4.1.8)

where the leading components are given by

Fur = ∂uAr + Au, Fuz = ∂uAz, Fzz̄ = ∂zAz̄ − ∂z̄Az − i
[
Az, Az̄

]
. (4.1.9)

The asymptotics (4.1.7) allow large gauge transformations infinitesimally generated by

δεAz(u, z, z̄) = Dzε(z, z̄). (4.1.10)

A finite transformation yields an arbitrary flat G-connection over CS2. These flat connections
label the inequivalent vacua.

In classical Yang-Mills theory, the scattering problem is to find a map from initial data on
I− to final data on I+. These data include the connection Az, as the gauge field explicitly
appears in the equations of motion and therefore must be specified as part of the initial
Cauchy data on I−. However, the maximal Cauchy development of incoming data on I− via
the field equations cannot by itself fully determine the outgoing data on I+, because given
any one solution, another can always be obtained by acting with a large gauge transformation
on I+. As in the abelian case, when there are no long-range magnetic fields,21 the ambiguity

21Although it has not been carefully worked out, a generalization that drops this restriction presumably
exists, as it is not required in the derivation of the Kac-Moody symmetry which follows.
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is eliminated, and the scattering problem becomes well defined if we impose the antipodal
boundary condition

Az
∣∣
I+
−

= Az
∣∣
I−+
, (4.1.11)

along with Fru|I+
−

= Frv|I−+ . This boundary condition is preserved by large gauge transfor-

mations provided the parameter on I+ is related to the one on I− by

ε(z, z̄)
∣∣
I+
−

= ε(z, z̄)
∣∣
I−+
. (4.1.12)

Hence given any one solution of the scattering problem, infinitely more may be generated
by acting on both the in- and the out-data with such a transformation.

Note that the boundary condition (4.1.11) is required simply for the existence of a well-
defined classical scattering problem. The maximal Cauchy development of data on I− gives
the data on I+ only up to large gauge transformations. Without an additional condition
such as (4.1.11), we cannot even determine whether the final state is a color singlet. As in
the abelian case, the infinity of conservation laws is an immediate consequence of the need
for a matching condition, although in this section, we adopt a different approach based on
celestial correlators.

The tree-level nonabelian soft theorem can be written

〈O1(p1) · · · On(pn)Oa(q, ε) 〉U=1 = gYM

n∑

k=1

pk · ε
pk · q

〈O1(p1) · · ·T akOk(pk) · · · On(pn) 〉U=1 +O(q0).

(4.1.13)

Here, Oa(q, ε) is the soft gluon operator of momentum q and polarization ε with color index
a displayed. In textbook QFT, a state with a red gluon at the south pole and an anti-red
gluon at the north pole is usually said to have zero total color charge. This implicitly assumes
that the color connection Az = U−1∂zU with U ∈ G on the S2 is trivial (U = 1 or constant)
so that the gluon does not change color under parallel transport from the north to the south
pole. This assumption is made explicit in (4.1.13) by the U = 1 subscript.

In fact, given the boundary condition (4.1.7), it is not possible in all contexts to choose
the color frame U = 1 everywhere. Consider a generic classical solution with an initially
trivial flat connection Az = 0 with U = 1 and a pulse of radiation passing through I+. The
final connection will be flat if the system decays to zero energy, but the equations of motion
imply that the final flat connection will not be trivial: Az = U−1∂zU 6= 0.22 A pair of quarks
near I+ initially in a color singlet will generically not be a singlet at late times, due to a
change in the color frame. This is the “color memory” effect. An explicit formula for the
color memory in terms of a Green’s function convoluted with the color flux at I+, analogous
to the one derived for gravity in [41], is given in [40]. As in QED, the nonabelian gauge
theory vacua are infinitely degenerate and labeled classically by flat connections.

We define the soft gluon operator at I+ just as in the abelian case:

Nz =

∫ ∞

−∞
duFuz = Az

∣∣
I+

+
− Az

∣∣
I+
−
. (4.1.14)

22The boundary condition (4.1.7) prevents us from gauging this away with a time dependent gauge trans-
formation.
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Similarly, at I−,

N−z =

∫ ∞

−∞
dvF−vz = A−z

∣∣
I−+
− A−z

∣∣
I−−
. (4.1.15)

Finally, we define the soft gluon current

Jz = − 4π

g2
YM

(
Nz −N−z

)
. (4.1.16)

Trading the operator momenta pk in (4.1.13) for zk and q for z, the soft theorem takes the
suggestive form

〈 JazO1(z1, z̄1) · · · On(zn, z̄n) 〉U=1 =
n∑

k=1

1

z − zk
〈O1(z1, z̄1) · · ·T akOk(zk, z̄k) · · · On(zn, z̄n) 〉U=1.

(4.1.17)

This is a very familiar formula in two-dimensional CFT. It is the Ward identity of a holo-
morphic Kac-Moody symmetry.23

Consider now the weighted integral of the current around a contour C on CS2

JC[ε] =

∮

C

dz

2πi
tr [εJz] , (4.1.18)

where ε(z) is any holomorphic function in the interior of C. Insertions of these operators
obey

〈 JC[ε]O1 · · · On 〉U=1 =
∑

k∈C
〈O1 · · · εa(zk)T akOk · · · On 〉U=1. (4.1.19)

That is, they generate gauge transformations ε inside C.
So far, all the amplitudes have been constructed with the trivial connection U = 1 on

CS2. Large gauge transformations change this connection, so we would like to understand
the more general case. The Ward identity (4.1.19) relates U = 1 amplitudes to the more
general case. Consider, for instance, an infinitesimal change in flat connection

δU(z, z̄) = iε(z, z̄) + . . . . (4.1.20)

Suppose we choose ε so that ε = 0 outside C and is nonzero and holomorphic in C. Then,
the change in the correlator under this shift is simply given by a large gauge transformation
of the operators themselves:

δε〈O1 · · · On 〉U=1 ≡ 〈O1 · · · On 〉U=1+iε − 〈O1 · · · On 〉U=1

= i
∑

k∈C
〈O1 · · · εa(zk)T akOk · · · On 〉U=1

= i〈 JC[ε]O1 · · · On 〉U=1.

(4.1.21)

23 There is also an antiholomorphic current Jz̄, whose insertions are related to negative helicity gluons.
One may consider the double soft limits involving either JzJw or JzJw̄. It turns out that the former is
unambiguous, whereas the latter depends on the order of limits [12]: see exercise 9. This was not the case
with photons and begs for interpretation.

62



We can characterize this relation by

JC[ε] =

∫

RC

d2zγzz̄ε
a δ

δUa , (4.1.22)

where RC is the region inside the contour C. In other words, insertions of JC[ε] generate
locally holomorphic large gauge transformations on the boundary that are characterized by
a general flat connection Az = U−1∂zU .

4.2 Conserved Charges

In section 4.1, I presented the soft gluon theorem as a Kac-Moody Ward identity. It is
also possible to formulate the entire problem as an infinity of charge conservation laws. The
nonabelian analogue of (2.5.2) is24

Q+
ε =

1

g2
YM

∫

I+
−

tr [ε ∗ F ] . (4.2.1)

As before, by integrating by parts and using the nonabelian constraint equations, this can
be written as an integral over all of I+. The final expression contains a soft term Q+S

ε and
a hard term Q+H

ε . Similar constructions apply on I−. The soft term is, of course, related to
the current defined here. The precise relationship turns out to be

JC[ε] = Q−Sε −Q+S
ε . (4.2.2)

The left-hand side depends only on the value of ε on the curve C. This has a meromorphic
extension to CS2. On the right-hand side, we take ε to be given by this extension inside C
and zero outside C. Actually, this procedure gives two possible expressions, depending on
which side of C we regard as the interior. It is illuminating to check that the equivalence of
these two expressions is a consequence of the soft theorem.

I close with a comment on loop corrections. Rather than using the soft theorem, the
nonabelian conservation law Q+

ε = Q−ε can be derived directly from the nonabelian matching
conditions (4.1.11), as we did for the abelian case. As discussed, such matching conditions
are classically required to determine the future color frame from the past one, and without
them the scattering problem makes no sense. This suggests that the conservation laws
somehow survive the one-loop quantum corrections [110–113] to the soft theorem, perhaps
in a modified or shifted form along the lines discussed for gravity in [117].

5 Gravity

Finally we turn to gravity, where the implications of the IR structure become even more
far reaching. Oddly, many of the ideas herein were first understood in the gravitational

24As in section 2.13, the magnetic generalization is obtained by replacing ∗F with F in (4.2.1). It would
be interesting to understand the action of S-duality on the electric and magnetic charges.
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rather than the seemingly simpler gauge-theoretic context. These lectures have presented
the material in ahistorical order.

Section 5.1 reviews the basics of asymptotically flat spacetimes and Bondi coordinates.
Section 5.2 begins with a review of the BMS analysis of asymptotic data and the discovery
of supertranslations of I+ and I−. Then I present the antipodally matched subgroup of past
and future supertranslations, which is a symmetry of gravitational scattering. Following the
abelian gauge theory case, the conserved charges are derived from the matching condition,
shown to generate the symmetry and to imply the leading soft graviton theorem. In section
5.3, conserved charges are derived from a matching condition for subleading metric compo-
nents and their relation to superrotation symmetry (an extension of BMS symmetry), and
a new subleading soft theorem are discussed.

5.1 Asymptotically Flat Spacetimes

In the previous sections, flat Minkowski space in retarded coordinates near I+ was de-
scribed by the metric

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄. (5.1.1)

We would now like to study gravitational theories in which the metric is asymptotic to, but
not exactly equal to, the flat metric. We will work in Bondi coordinates (u, r, z, z̄), and we
abbreviate ΘA = (z, z̄). In this gauge, the most general four-dimensional metric takes the
form

ds2 = −Udu2 − 2e2βdudr + gAB

(
dΘA +

1

2
UAdu

)(
dΘB +

1

2
UBdu

)
, (5.1.2)

where

∂r det

(
gAB

r2

)
= 0. (5.1.3)

Equation (5.1.3) implies that r is the luminosity distance. Note that we have completely
fixed here the local diffeomorphism invariance by the conditions grr = grA = 0 together with
(5.1.3). We adopt these coordinates largely because they are used in most of the literature
on asymptotically flat spacetimes. However, important insights have arisen in other gauges,
such as the harmonic gauge [183,184], which may ultimately prove more useful.

So far, we have not imposed any sort of asymptotic flatness condition. Any geometry
can be described locally by the metric (5.1.2). Imposing asymptotic flatness at large r with
fixed (u, z, z̄) leads to falloff conditions on the metric components. There is no a priori
preferred method of determining what these falloffs must be, and the literature discusses
various options. They are typically chosen to be weak enough to allow for all interesting
solutions, including gravity waves, but strong enough to rule out unphysical solutions, such
as those with infinite energy. For the natural choice made by Bondi, van der Burg, Metzner,
and Sachs (BMS) [8,9], the large-r structure of the metric is constrained to be (see exercise
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10)

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 +DzCzzdudz +Dz̄Cz̄z̄dudz̄

+
1

r

(
4

3
(Nz + u∂zmB)− 1

4
∂z(CzzC

zz)

)
dudz + c.c.+ . . . ,

(5.1.4)

where Dz is the covariant derivative with respect to γzz̄; Czz, mB and Nz depend on (u, z, z̄)
but not on r. The first three terms in (5.1.4) are simply the flat Minkowski metric, and the
remaining terms are the leading corrections. The ellipsis “. . .” involves further subleading
terms at large r, whose precise structure we will not need. Near I+, spacetime is flat to
leading order, and we can relate the retarded Bondi coordinates to the standard Minkowski
coordinates u = t− r + . . .. Equation (5.1.4) corresponds to the large r falloffs:

guu = −1 +O
(

1

r

)
, gur = −1 +O

(
1

r2

)
, guz = O(1),

gzz = O(r), gzz̄ = r2γzz̄ +O(1) , grr = grz = 0.

(5.1.5)

So far, no mention of Einstein’s equations has been made. (5.1.4) is simply a geometric
constraint that defines the class of spacetimes that we are interested in studying.

The quantity mB is known as the Bondi mass aspect. For Kerr spacetimes, mB = GM
is constant and proportional to the mass. However, in a generic spacetime, it will depend
on both the retarded time u and on the angle (z, z̄). Its integral over the sphere is the total
Bondi mass. Nz is known as the angular momentum aspect, because its integrals over the
sphere, contracted with a rotational vector field, give the total angular momentum. Our
definition here of this term is shifted relative to some of the literature to simplify some
formulas below. Czz describes gravitational waves. It is 1

r
-suppressed relative to the leading

metric component and is transverse to I+. The “Bondi news tensor” is defined by

Nzz = ∂uCzz. (5.1.6)

It is the gravitational analogue of the field strength Fuz = ∂uAz, and its square is proportional
to the energy flux across I+.

Eventually we will need to supplement (5.1.5) with additional boundary conditions near
the boundaries I+

± of I+. If Nzz does not fall off fast enough for u→ ±∞, the solution will
have infinite energy. We discuss this in Section 5.2.1.

5.2 Supertranslations

We now turn to the asymptotic symmetries of gravitational theories in asymptotically flat
spacetimes. As argued by BMS [8,9], these are generated by diffeomorphisms that preserve
both the Bondi gauge (5.1.2) as well as the boundary falloffs (5.1.5). Since researchers were
looking for symmetries that act in the asymptotic region where spacetime is almost flat, it
was expected that one would reproduce the isometries of flat spacetime itself, namely, the
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Poincaré group. Had this been the case, GR would reduce to special relativity at large-
distances and weak fields. Surprisingly, as we now review, what they got instead was an
infinite-dimensional group, now called the BMS group. This contains as a subgroup the
finite-dimensional Poincaré group. However, the four global translations are elevated to a
whole function’s worth of “supertranslations” that act independently on each point of the
asymptotic sphere. Moreover, as we shall see, GR does not reduce to special relativity at
large distances and weak fields. Instead, a large space of degenerate vacua remains.

5.2.1 BMS Analysis

We will not reproduce here the entire calculation of BMS [8, 9], which is a bit lengthy.
We instead make a simplifying assumption that eliminates six Lorentz generators. Namely,
we restrict consideration to diffeomorphisms that have the large-r falloffs:

ξu, ξr ∼ O(1) , ξz, ξz̄ ∼ O
(

1

r

)
. (5.2.1)

This condition is equivalent to the statement that the vector field is O(1) at large r in an
orthonormal frame, thereby eliminating boosts and rotations that grow with r at infinity.
We return to a discussion of these in section 5.3.

The Lie derivative of the metric components at large r are then

Lζgur = −∂uζu +O
(

1

r

)
,

Lζgzr = r2γzz̄∂rζ
z̄ − ∂zζu +O

(
1

r

)
,

Lζgzz̄ = rγzz̄
[
2ζr + rDzζ

z + rDz̄ζ
z̄
]

+O(1),

Lζguu = −2∂uζ
u − 2∂uζ

r +O
(

1

r

)
.

(5.2.2)

Then, requiring that the Bondi gauge conditions (5.1.2) and falloffs (5.1.5) are both preserved
implies that at large r,

ζ = f∂u −
1

r

(
Dzf∂z +Dz̄f∂z̄

)
+DzDzf∂r + . . . , (5.2.3)

where f(z, z̄) is any function of (z, z̄). It turns out that (5.2.3) also preserves all the remaining
conditions. We note here that the last term in (5.2.3) is derived from the condition that

gur = −1+O
(

1

r
2

)
. In other formulations of asymptotically flat spacetimes (for instance, the

one considered by Newman and Unti [212], where gur = −1), this term takes on a different
form. The first two terms are universal and are directly measured by the gravitational
memory effect, which we discuss in Section 6. The transformations generated by (5.2.3)
are called supertranslations, depicted in figure 17. They are generalizations of the four
translations in Minkowski space. For instance, for f(z, z̄) = constant, (5.2.3) generates u-
translations. What is less obvious, though, is that if f(z, z̄) is taken to be the ` = 1 harmonic
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Figure 17: Under a supertranslation, retarded time u is shifted independently at every
angle on I.

on the sphere, we retrieve the three spatial translations. The most general f effectively allows
separate translations along every null generator of I+.

Supertranslations transform one geometry into a new, physically inequivalent geometry,
despite the fact that they are diffeomorphisms. To see this, consider a solution where an
outgoing pulse of gravitational or electromagnetic waves crosses the south pole of I+, and
another pulse crosses the north pole of I+, both at retarded time u = 100. Now supertrans-
late this solution with a function f(z, z̄) that has the property that f(south pole)=100 and
f(north pole)=0. The new solution now has one outgoing pulse at the north pole only at
u = 100 and one at the south pole only at u = 200. The outgoing data are measurably
changed by the supertranslation.

This simple example shows that the effect of a supertranslation on a solution can be
discerned even at the classical level. While the structure here follows the abelian gauge
theory case quite closely, the large abelian gauge transformations only modified phases of
states and therefore are somewhat quantum in nature. For this reason, it can be less confusing
to discuss asymptotic symmetries in the case of gravity. Although supertranslations were not
understood to be a symmetry of gravitational scattering until recently [42,43], the fact that
they act nontrivially on the phase spaces at I± was understood fifty years ago by BMS [8,9].
It is odd that this symmetry of gravity was at least partially understood fifty years ago,
whereas the precisely analogous symmetries in electromagnetism were only understood in
the past few years [10, 11, 13, 14]. This is perhaps in part due to the quantum nature of the
electromagnetic symmetries.

The action of supertranslations on the I+ data mB, Czz, and Nzz can be determined by
computing the Lie derivative of the appropriate component of the metric and then extracting
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the appropriate coefficient in the large-r expansion. This process gives (see exercise 11)

LfNzz = f∂uNzz,

LfmB = f∂umB +
1

4

[
N zzD2

zf + 2DzN
zzDzf + c.c.

]
,

LfCzz = f∂uCzz − 2D2
zf.

(5.2.4)

The last equation above is especially interesting. Suppose we supertranslate flat Minkowski
spacetime described by mB = Nzz = Czz = 0. Equation (5.2.4) implies that the super-
translated spacetime will still have zero Bondi mass and Bondi news and vanishing Riemann
tensor. This is consistent with the fact that a diffeomorphism cannot change the physical
mass squared or create gravitational waves. However, the supertranslated spacetime does
have a nonzero Czz. One may check that the vanishing of the curvature in fact requires

Czz = −2D2
zC, (5.2.5)

for some function C(z, z̄). Under a supertranslation,

LfC = f. (5.2.6)

Hence C is the Goldstone boson of spontaneously broken supertranslation invariance. It
parametrizes the classically inequivalent gravitational vacua. Since the ` = 0, 1 modes of C
are annihilated by D2

z , the four rigid spacetime translations are not broken.
If one drops the overly restrictive falloffs (5.2.1) on ζ, one obtains the larger BMS+

group which is a semidirect product of supertranslations with Lorentz transformations on
I+. The four spacetime translations are an ideal of BMS+ and so may be canonically
identified in any BMS+ frame. In general, there is no preferred Poincaré subgroup of BMS+.
Different subgroups are transformed into one another via conjugation by supertranslations.
In particular, this implies that there is no BMS+ invariant definition of angular momentum.
This is sometimes referred to as “the problem of angular momentum in general relativity,”
although I view it as a feature, not a bug. However, given any particular classical choice of
vacuum, there is a unique Poincaré subgroup of BMS+ under which it is invariant.25

So far, we have not utilized any equations of motion. Assume that the geometry is
governed by the Einstein equations

Rµν −
1

2
gµνR = 8πGTMµν . (5.2.7)

Since we are here interested in the structure of null infinity, we assume that TMµν is a matter

stress tensor corresponding to massless modes.26 Plugging in the explicit form of the met-
ric (5.1.4) and expanding in large r, we find that the leading uu component of Einstein’s
equations is

∂umB =
1

4

[
D2
zN

zz +D2
z̄N

z̄z̄
]
− Tuu, (5.2.8)

25Thus, classically, there is always an unbroken Poincaré subgroup of BMS+ in flat space. In the quantum
theory, a generic superposition of vacua will have only the four global translations as an unbroken symmetry.

26The massive case is treated by Campiglia and Laddha [183,184].
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where

Tuu =
1

4
NzzN

zz + 4πG lim
r→∞

[
r2TMuu

]
. (5.2.9)

Equations (5.2.8) and (5.2.9) constrain the leading data at I+. There is an additional
constraint involving Nz from the uz component of the Einstein equation. However, (5.2.8)
suffices for our current discussion on supertranslations.

The traceless Bondi news Nzz(u, z, z̄) comprises two unconstrained real functions on I+

as expected for the two helicities of the massless graviton. We assume that near the past and
future boundaries of I+, I+

− and I+
+ , the news falls off faster than 1

|u| . These (and stronger)

asymptotic boundary conditions were proven by Christodoulou and Klainerman [47] to hold
in a finite neighborhood of flat space: here we shall consider spacetimes with this asymptotic
behavior but do not require them to be near flat space in the deep interior.27 The news then
trivially determines Czz up to an integration function by integrating (5.1.6). Moreover, the
vanishing of the Weyl tensor at I+

− requires Czz|I+
−

= −2D2
zC|I+

−
[42]. Therefore we may

take the integration function to be C|I+
−

. Given the news tensor and these initial data at I+
− ,

the constraints may be integrated to give the mass mB and Nz everywhere on I+. Hence
the Cauchy data include

{Nzz(u, z, z̄), C(z, z̄)|I+
−
,mB(z, z̄)|I+

−
}. (5.2.10)

At higher orders in 1
r
, more data are needed, including Nz|I+

−
. This will be important when

we consider superrotations below, but is suppressed for now.
There is an analogous story at I−. The metric in advanced Bondi coordinates (v, r, z, z̄)

has the expansion

ds2 = −dv2 + 2dvdr + 2r2γzz̄dzdz̄ +
2mB

r
dv2 + rCzzdz

2 + rCz̄z̄dz̄
2 + . . . , (5.2.11)

where mB and Czz depend on (v, z, z̄) rather than on (u, z, z̄). The angular (z, z̄) coordinates
on I− are as usual antipodal to the ones on I+, and v = t+ r + . . . . Supertranslations act
on I− as

LfNzz = f∂vNzz, LfCzz = f∂vCzz + 2D2
zf, (5.2.12)

which may be enlarged with boosts and rotations to give the action of BMS− on I−. The
constraint equation takes the form

∂vmB =
1

4

(
D2
zN

zz +D2
z̄N

z̄z̄
)

+ Tvv, Tvv =
1

4
NzzN

zz + 4πG lim
r→∞

[
r2TMvv

]
. (5.2.13)

Defining Czz|I−+ = 2D2
zC|I−+ , the analog of the Cauchy data (5.2.10) is

{Nzz(v, z, z̄), C(z, z̄)|I−+ ,mB(z, z̄)|I−+}. (5.2.14)

27If the news is only required to fall off slowly enough to make the total energy finite, Czz is not well
defined at the boundaries I+

± . This is one of the reasons it was thought impossible to match the BMS frames

of I±. However, the results of [47] demonstrate that the region of phase space in which the boundary values
of Czz are well defined and the matching (given below) is possible is a physically reasonable one.
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5.2.2 The scattering problem

The scattering problem in classical general relativity is, roughly speaking, to find the
map from Cauchy data on I− to that on I+.28 Such a map is not even formally determined
from the maximal Cauchy development of the I− data (5.2.10) with the Einstein equation.
This determines the data on I+ at most up to a supertranslation, or more generally, a BMS+

frame. A prescription is needed to attach I+, choose a future BMS+ frame, and determine
the initial values for integrating mB (and Nz) along I+ using the constraints. Without such
a prescription, the scattering problem in GR is not defined. In [42] it was proposed that the
BMS+ frame should be determined by the Lorentz- and CPT-invariant matching conditions

C(z, z̄)|I+
−

= C(z, z̄)|I−+ , mB(z, z̄)|I+
−

= mB(z, z̄)|I−+ . (5.2.15)

The matching condition for Nz is discussed below. Conditions (5.2.15) break the combined
BMS+ × BMS− action on I+ and I− down to the diagonal subgroup that preserves these
conditions, namely,

f(z, z̄)|I+
−

= f(z, z̄)|I−+ . (5.2.16)

This condition fixes the BMS+ frame in terms of the BMS− frame. The diagonal subgroup
generated by (5.2.16) remains as a symmetry of gravitational scattering. Given one solution
of the scattering problem, this group generates infinitely many more.

With our conventions, (5.2.15) antipodally equates past and future fields near spatial
infinity. We expect that it is the only Lorentz and CPT invariant choice, and it is implicit
in most or all GR computations in asymptotically flat spacetimes. The matching condition
(5.2.15) was proven [43] to be implicit to all orders in standard weak field perturbation theory
by demonstrating its equivalence to Weinberg’s soft graviton theorem [7]. This perturbative
analysis motivates the proposal that (5.2.15) is part of the definition of the scattering problem
whenever the fields are sufficiently weak near spatial infinity, even if the interior contains a
black hole.

5.2.3 Conserved Charges

The mere existence of infinitely many matching conditions, one for every point on the
celestial sphere, implies an infinite number of conserved charges. Following closely the gauge
theory discussion, the supertranslation charges are

Q+
f =

1

4πG

∫

I+
−

d2zγzz̄fmB,

Q−f =
1

4πG

∫

I−+
d2zγzz̄fmB.

(5.2.17)

The matching conditions (5.2.15) immediately imply the conservation law

Q+
f = Q−f . (5.2.18)

28Of course, if a black hole is formed, we need Cauchy data on I+∪H, where H is the future horizon, but
for now, we assume that black holes are absent.
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Integrating by parts, using the constraint equation, and assuming mB decays to zero in the
far future, we can write

Q+
f =

1

4πG

∫

I+
dud2zγzz̄f

[
Tuu −

1

4

(
D2
zN

zz +D2
z̄N

z̄z̄
)]
,

Q−f =
1

4πG

∫

I−
dvd2zγzz̄f

[
Tvv +

1

4

(
D2
zN

zz +D2
z̄N

z̄z̄
)]
.

(5.2.19)

To understand the conservation law better, suppose we take f(z, z̄) = δ2(z − w). Then
(5.2.18) implies that the integrated (over u) energy flux at a point w on I+ is equal to the
integrated energy flux at the antipodal point w on I−:

∫

I+
duγzz̄

[
Tuu −

1

4

(
D2
zN

zz +D2
z̄N

z̄z̄
)]

=

∫

I−
dvγzz̄

[
Tvv +

1

4

(
D2
zN

zz +D2
z̄N

z̄z̄
)]
.

(5.2.20)
Here, the local energy at a point includes not only the usual term involving the stress tensor,
but also a crucial extra term that is linear in the gravitational field and is also a total u
derivative (i.e., it is a soft graviton contribution to the local energy). Thus, the conservation
law (5.2.18) is the statement that energy is conserved at every angle.

In the quantum theory, conserved charges commute with the S-matrix:

Q+
f S − SQ−f = 0. (5.2.21)

We can now sandwich this between in- and out-states. The resulting Ward identity is of
course equivalent to Weinberg’s soft graviton theorem,

〈 out |a±S| in 〉 =
√

8πG
∑

k

ε±µνpkµpkν
q · pk

〈 out |S| in 〉, (5.2.22)

where a± annihilates a helicity ± graviton. We already derived this formula using Feynman
diagrams in section 2.9. The proof [43] that (5.2.22) and (5.2.20) are equivalent is almost
exactly the same as in the gauge theory case and is not repeated here.

One expects that, in a Hamiltonian formulation, supertranslation symmetries correspond-
ing to f are generated via Dirac brackets or commutators with Q+

f :

[Q+
f , . . .] = iδf , [Q+

f , H] = 0, H = Q+
f=1. (5.2.23)

This guess turns out to be correct, but, as in the gauge theory case, verification is quite
subtle [43]. It requires computing the terms in the symplectic form involving the Goldstone
mode C and the soft graviton mode N . On the physical phase space one must impose the
vanishing of the Weyl tensor as a constraint at the boundaries I+

± of I+. This changes
various commutators by important factors of 2, yielding exactly (5.2.23). These factors of
2 are, as in the gauge case, related to the fact that soft gravitons and Goldstone modes are
both described by a single real scalar field, despite the existence of two polarizations of the
former [43].

The existence of these conserved charges is in principle experimentally verifiable. Indeed,
proposed tests of the gravitational memory effect [34–36], although not initially recognized
as such, are tests of supertranslation charge conservation [41].
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5.3 Superrotations

Our analysis so far has centered around Czz and the Bondi mass mB, which are the first
nontrivial corrections to the flat metric near I. Proceeding in the large-r expansion, at the
next order we encounter the angular momentum aspect Nz, which bears the same relation
to the total angular momentum that the mB bears to the total mass. In this subsection, we
see that the matching condition for Nz leads to conserved superrotation charges, just as the
matching condition for mB led to conserved supertranslation charges.

5.3.1 Conserved Charges

The angular momentum aspect Nz is subject to the constraint equation Guz = 8πGTMuz .
The leading uz component of the Einstein equations is (compare to (5.2.8) for the analogous
constraint on mB)

∂uNz =
1

4
∂z
(
D2
zC

zz −D2
z̄C

z̄z̄
)
− u∂u∂zmB − Tuz. (5.3.1)

Here we have introduced the (rescaled) momentum density in the z-direction of the gravita-
tional field (compare to (5.2.9) for Tuu):

Tuz ≡ 8πG lim
r→∞

[
r2TMuz

]
− 1

4
∂z (CzzN

zz)− 1

2
CzzDzN

zz. (5.3.2)

Nz is constrained in relation to a momentum density Tuz, in contrast to mB, which was
constrained in relation to the energy density Tuu. Once mB and Czz are fully specified, then
∂uNz is also specified by (5.3.1). This fixes Nz up to an integration function. We fix this
function by the matching condition [57]

Nz(z, z̄)|I+
−

= Nz(z, z̄)|I−+ , (5.3.3)

which is just like the matching condition for mB. A new subleading soft graviton theorem
was proven [56, 213, 214], to all orders using Feynman tree diagrams,29 and then shown to
imply (5.3.3) [57,215]. Motivated by this perturbative analysis, we propose that (5.2.15) and
(5.3.3) are part of the definition of the scattering problem whenever the fields are sufficiently
weak near spatial infinity, even if the interior contains a black hole.

Condition (5.3.3) implies a second infinity of conserved charges, which can be constructed
from an arbitrary vector field Y z on the sphere. Using (5.3.3), we find

Q+
Y =

1

8πG

∫

I+
−

d2z(Yz̄Nz + YzNz̄) =
1

8πG

∫

I−+
d2z(Yz̄Nz + YzNz̄) = Q−Y . (5.3.4)

Equation (5.3.4) expresses conservation of superrotation charge. The special cases for which
Y z is one of the 6 global conformal Killing vectors on S2 are conservation of ADM angular

29Quantum mechanically, (5.3.3) is possibly deformed by an anomaly at one-loop [79,110–114]. Since some
matching relation of the form (5.3.3) must exist for gravitational scattering to be defined, this reasoning
suggests that these one-loop corrections deform rather than eliminate the conserved charges. This is an
important open problem on which recent progress has been made [67,117,210].
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momentum and boost charge, sometimes referred to as the BORT (Beig-O’Murchada-Regge-
Teitelboim) [216,217] center-of-mass. Choosing the vector field to be a delta function, these
new conservation laws equate net “in” and “out” angular momentum flux for every angle. A
recent proposal to test superrotation charge conservation via the gravitational spin memory
effect [69] was made by Nichols [70].

5.3.2 Symmetries

Given an infinite number of conserved charges that generalizes angular momentum and
boost charges, one naturally expects an infinite number of symmetries generalizing Lorentz
transformations. Indeed, conjectures that such a superrotation symmetry exists have been
made from several different perspectives, as reviewed in this subsection. We will see that
subtleties arise in part because a finite symmetry action changes the asymptotics, the con-
sequences of which remain to be analyzed.

Aspects of superrotation symmetry were implicit in early work of Penrose [218], but were
first conjectured in their modern form in the prescient work of de Boer and Solodukhin [52],
who were trying to understand holography in Minkowski space. These authors considered
the hyperbolic slicing of Minkowski space, which is discussed in section 2.12, and argued
that the parameter τ that labels the slices should be viewed as the coordinate of an internal
space. This describes four-dimensional Minkowski space as a “noncompactification” to the
three-dimensional hyperbolas H3. Because the internal space is noncompact, the effective
field theory on H3 contains a continuum of representations of the Lorentz isometry group.
De Boer and Solodukhin [52] conjecture that standard holographic arguments nevertheless
apply. In particular, the asymptotic analysis of Brown and Henneaux for AdS3 [200] implies
that Lorentz symmetry should be enhanced to the Virasoro symmetry, or equivalently, to
superrotations.

A second line of reasoning that leads to superrotations arose while revisiting the original
BMS analysis. It was suggested by Banks [53] in a footnote, and independently in greater
detail by Barnich and Troessaert [54, 55, 203, 219], that some of the falloff assumptions in
BMS are overly restrictive. We now review this illuminating perspective.

In the course of the derivation of the supertranslations in section 5.2, an important
restriction was imposed: we required that the components of the vector field ζ be bounded
in an orthonormal frame as the latter approaches I+. However, in general this is clearly too
strong an assumption, because it rules out both boosts and rotations. One should (and BMS
did [8, 9]) do an analysis without that assumption. We now summarize the salient points
of this analysis and show along the way how the supertranslations naturally generalize to
superrotations.

Lorentz Killing vectors are of the general form

ζY =
(

1 +
u

2r

)
Y z∂z −

u

2r
Dz̄DzY

z∂z̄ −
1

2
(u+ r)DzY

z∂r +
u

2
DzY

z∂u + c.c., (5.3.5)

where (Y z, Y z̄) is a two-dimensional vector field on CS2. At null infinity ζY simplifies to

ζY |I+ = Y z∂z +
u

2
DzY

z∂u + c.c.. (5.3.6)
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The claim is (see exercise 12) that for flat Minkowski space, described by the first three
terms of (5.1.4), if we take

Y z = 1, z, z2, i, iz, iz2, (5.3.7)

then the six real vector fields ζY generate the Lorentz transformations.
Instead of restricting ourselves to Y z ∼ 1, z, z2, let us instead compute, for a general Y z,

the Lie derivative with respect to ζY (denoted by LY ) of various components of the metric.
We find that

LY gur = O
(

1

r2

)
, (5.3.8)

LY gzr = O
(

1

r

)
, (5.3.9)

LY gzz̄ = O(r), (5.3.10)

LY guu = O
(

1

r

)
, (5.3.11)

LY gz̄z̄ = 2r2γzz̄∂z̄Y
z +O(r). (5.3.12)

Let us focus now on the last equation, which is the most important one. The falloff conditions
(5.1.5) are obeyed if the first O(r2) term vanishes. This requires that Y z be a holomorphic
vector field. Locally this is solved by Y z = zn for any integer n. However, only the restricted
choice Y z ∼ 1, z, z2 leads to globally defined vector fields, the six global conformal Killing
vector fields of the sphere. BMS discarded all the rest on the grounds that equation (5.3.12) is
violated at isolated points in the more general meromorphic case. For example, if Y z = 1

z−w ,
then

∂z̄Y
z = 2πδ2(z − w) 6= 0, (5.3.13)

and the falloff condition is violated at z = w.30 The Lie bracket algebra of Y z = zn for any
n is the centerless Virasoro algebra.

Interestingly, exactly the same equation (5.3.12) was encountered some 20 years later by
Belavin, Polyakov, and Zamolodchikov [221] in analyzing the symmetries of two-dimensional
CFTs. However Belavin et al. chose to allow Y z to be any meromorphic function on
the sphere, allowing for analytic singularities. This was a very good idea. While every
practitioner of two-dimensional CFT will agree that this is the right thing to do, different
explanations are given to support it. One is that the symmetries can be analyzed in a local
patch, and singularities outside the patch do not affect the local identities obtained with the
symmetry. Another is that the Ward identities of these symmetries provide quick derivations
of relations among correlators that can be independently derived using other, more tedious
methods. This justification readily adapts to four-dimensional quantum gravity where, as
shown in the next subsection, the Ward identities are equivalent to the new subleading
soft theorem [56, 213, 214], as well as to the superrotation conservation laws of the previous
subsection.

30This violation can be physically interpreted as due to cosmic strings [220].
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In any case, since allowing meromorphic vector fields was such a good idea in two-
dimensional CFT, perhaps we should go beyond the six global vector fields that were retained
by BMS in their original analysis and instead consider the whole infinite-dimensional local
conformal group generated by Y z = zn for all n. This is a tantalizing conjecture, because we
have learned an incredible amount about two-dimensional CFTs simply by unraveling the
powerful implications of the local conformal = Virasoro group. One may hope for similarly
powerful insights into four-dimensional quantum gravity. Perhaps we have even gotten our
foot in the door of the long-sought holographic description of quantum gravity in Minkowski
space, in which bulk quantum gravity in Minkowski space is dual to an exotic CFT on CS2.
The conjectured superrotation symmetry will be verified at linearized and tree level in section
5.3.4.

5.3.3 Canonical Formalism

It is natural to ask whether superrotation charges generate superrotation symmetries in a
canonical formalism. We will see that the answer to this question is yes, but only at linearized
order. As discussed at the end of this subsection, singularities prevent the exponentiation of
the infinitesimal transformations.

As with supertranslations, we begin by investigating how the boundary data specifying
the geometry change under superrotations; see Barnich and Troessaert [203] for further
details. The Lie derivative with respect to Y (denoted δY ) of the Czz component of the
metric is given by

δYCzz =
u

2
D · Y Nzz + Y ·DCzz −

1

2
D · Y Czz + 2DzY

zCzz − uD3
zY

z. (5.3.14)

Taking the u derivative yields

δYNzz =
u

2
D · Y ∂uNzz + Y ·DNzz + 2DzY

zNzz −D3
zY

z. (5.3.15)

Note that if we sit at u = 0, then the last three terms in (5.3.15) are exactly the infinitesimal
transformation law of a stress tensor in a two-dimensional CFT (i.e., the linearization of the
Schwarzian derivative).

Now consider the conserved superrotation charge

Q+
Y =

1

8πG

∫

I+
−

d2z[Yz̄Nz + YzNz̄] . (5.3.16)

Integrating by parts and using the constraints (5.3.1) gives

Q+
Y = Q+

H +Q+
S ,

Q+
S = − 1

16πG

∫

I+
dud2z[D3

zY
zuN z

z̄ +D3
z̄Y

z̄uN z̄
z],

Q+
H =

1

8πG

∫

I+
dud2z (Yz̄Tuz + YzTuz̄ + u∂zYz̄Tuu + u∂z̄YzTuu) , (5.3.17)
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where the graviton stress-energy component Tuz was defined in (5.3.2). The soft charges
are linear in the metric flutuation Czz, while the hard charge is quadratic. To compute
commutators, we need [49,222–224]

[
Nz̄z̄(u, z, z̄), Cww(u′, w, w̄)

]
= 16πGiγzz̄δ

2(z − w)δ(u− u′). (5.3.18)

It follows that
[
Q+
S , Czz

]
= −iuD3

zY
z, (5.3.19)

[
Q+
H , Czz

]
=
iu

2
D · Y Nzz + iY ·DCzz −

i

2
D · Y Czz + 2iDzY

zCzz. (5.3.20)

Putting this together, we conclude that
[
Q+
Y , . . .

]
= iδY . (5.3.21)

The conserved charge generates the symmetry as expected.
However, something is not quite right. Commutators with Q+

Y shift the news by a func-
tion that goes to a constant at I+

± , while Czz diverges linearly. Such behavior violates the
boundary conditions we started off with and hence maps points in the initially defined phase
space to points outside that phase space. To make good sense of this behavior, we need
to define a larger phase space. This is related to the observation [220] that singularities
produced by superrotations correspond to cosmic strings, which destroy asymptotic flatness.
Hence, to fully understand superrotations, we will at a minimum need to consider a larger
phase space that allows for such defects. This is a topic for future investigations.

5.3.4 Subleading Soft Theorem

Given the infinities of conserved superrotation charges and symmetries, one expects an
associated soft theorem. There is of course Weinberg’s soft graviton theorem, but we have
already seen that this is equivalent to supertranslations. Invoking the IR triangle (Section
1.1) leads to the conclusion that there must be a second soft theorem in gravity. Indeed,
motivated by this observation, a new subleading soft theorem was proven diagrammatically
[56, 63–65] and shown [57, 66] to be equivalent to the superrotation charge conservation
equation (5.3.4). This logic can be turned around and the subleading soft theorem used to
prove (5.3.4).

At the level of the quantum S-matrix, superrotation charge conservation states

〈out|
(
Q+
Y S − SQ−Y

)
|in〉 = 0. (5.3.22)

From the decomposition (5.3.17) it is clear that this identity equates a soft graviton inser-
tion to a hard term. Equation (5.3.22) is most directly expressed in terms of the (zk, z̄k)
coordinates at which asymptotic particles pierce CS2. After quite a lengthy calculation [57]
using relations such as (2.8.23) and setting Y z = 1

z−(q
1
+iq

2
/q

0
+q

3
)
, one finds this equation can

be reexpressed in momentum space as

lim
ω→0

(1 + ω∂ω) 〈pn+1, pn+2, . . .| a−(q)S |p1, p2, . . .〉 =
√

8πGS(1)− 〈pn+1, pn+2, . . .| S |p1, p2, . . .〉 ,
(5.3.23)
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where a−(q) is the annihilation operator for a negative helicity graviton of four-momentum
q = ω(1, q̂), and the subleading soft factor is

S(1)− = −i
∑

k

pkµε
−µνqλJkλν
pk · q

, Jkµν ≡ Lkµν + Skµν , (5.3.24)

with Lkµν the orbital angular momentum and Skµν the helicity of the internal spin of the
kth particle. In reference [56] it was directly shown, through some diagrammatics far more
tedious than Weinberg’s, that this subleading expression is valid at tree level. This confirms
the classical existence of an infinite number of conserved superrotation charges.

Comments about this soft relation are now in order. Recall from our discussion of su-
pertranslations that the addition of a soft graviton to a scattering amplitude produces a
Weinberg pole proportional to 1/ω. But here, the prefactor (1 + ω∂ω) projects out this pole,
eliminates the leading divergence and leaves the finite, subleading O(1) piece (note the fac-
tors of q in both the numerator and denominator of (5.3.24)). We see there is a universal
form not just for the leading but also for the subleading part of the amplitude in the soft
limit. Although we have not discussed it, a similar (and much older) story exists for QED:
there is also a subleading soft theorem discovered in 1958 by Low [4]. Following the triangle,
it is also related to a new symmetry in gauge theory, as discussed in [60,61].

The subleading soft factor S(1)− can be obtained from the leading soft factor by replac-
ing pν with qµJkµν , in other words, by replacing translations with rotations about q. This
makes sense, because the first term in the hard piece Q+

H is Y zTuz, which generates a rota-
tion around the axis through which the particle is emerging, whereas the hard part of the
supertranslation-generating charge involves fTuu. This relation can be made more precise by
looking at details of geodesics with nonzero angular momentum, for which it can be shown
that the replacement fTuu → Y zTuz is akin to the replacement pν → qµJkµν , with q the
direction around which the rotation is performed. Indeed, this is how the soft formula was
first guessed before it was properly derived.

While I do not reproduce the diagrammatic proof of the subleading soft graviton theorem
here, I present a simple but important consistency check. Recall that the Weinberg soft
graviton theorem involves the leading soft factor

∑

k

εµνpkµpkν
pk · q

, (5.3.25)

which for consistency had better vanish for pure gauge gravitons, that is, when

εµν = Λµqν . (5.3.26)

Indeed, with this choice, the soft factor (5.3.25) becomes

Λµ
∑

k

pkµpk · q
pk · q

= Λµ
∑

k

pkµ = 0, (5.3.27)

where the last equality follows from energy-momentum conservation.
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Consistency demands that a similar property hold for our new expression for S(1)(εΛ).
Since it is not automatically symmetric, let us now insert

εµνΛ = qµΛν + qνΛµ (5.3.28)

and hence find that

iS(1)(εΛ) = qµΛν
∑

k

Jkµν +
∑

k

pk · ΛqµqνJkµν
pk · q

= 0, (5.3.29)

as required. In the last step, the second term vanishes just because Jkµν is antisymmetric
while qµqν is symmetric. Meanwhile, the first term vanishes by angular momentum conser-
vation. We again see that angular momentum is to superrotations as energy-momentum is
to supertranslations.

A powerful reformulation of superrotational invariance has recently been achieved in the
celestial language of section 3. References [67,68] construct a four-dimensional soft operator
whose amplitudes are precisely those of a two-dimensional CFT stress tensor.

6 The Memory Effect

In this section, we describe the third corner of the IR triangle, the memory effect. In the
case of gravity, the memory effect characterizes a pair of inertial detectors stationed near I+

in a region with no Bondi news at both late and early times. At intermediate times, gravity
waves may pass through, causing oscillating distortions in their relative separations, which
we denote (sz, sz̄) and depict in figure 18. The equation of geodesic deviation implies (see
exercise 13)

r2γzz̄∂
2
us
z̄ = −Ruzuzs

z , (6.0.1)

where
Ruzuz = −r

2
∂2
uCzz . (6.0.2)

Integrating this equation reveals a DC effect. Namely, the initial and final separations differ
by (in retarded coordinates)

∆sz̄ =
γzz̄

2r
∆Czzs

z . (6.0.3)

This is the gravitational memory effect [23–33]. The difference ∆Czz between initial and
final transverse metric components need not vanish, as flatness does not require Czz = 0.
Proposals to measure the gravitational memory effect with a variety of methods are given in
Lasky et al. and van Haasteren and Levin [34,35].

The effect is harder to see than gravity waves themselves but has a decent chance of
being measured in the coming decades. The connection of the memory effect with basic
symmetries of gravity makes this an exciting prospect.

A quick way [41] to see the equivalence of gravitational memory to the soft graviton
theorem is to compare formulas in the original literature. An excerpt with the central
formula for the outgoing metric fluctuation sourced by elementary particle collisions from
Weinberg [7] is
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Figure 18: The memory effect. The passage of gravitational radiation past a pair of
inertial detectors stationed near I+ causes a temporary oscillation in their relative
positions followed by a permanent displacement which “remembers” certain moments
of the energy flux.
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orders of magnitude greater than from more usually
considered sources, like planetary motion.
The formalism derived in Sec. II is used in Sec. V to

calculate the divergent 6nal- and initial-state inter-
action phases in arbitrary scattering processes.

G. REAL AND VIRTUAL INFRARED
DIVERGENCES

This section shows how to treat the infrared di-
vergences arising from very soft real and virtual
gravitons. In order to keep the discussion as perspicuous
as possible, I repeat the conventional treatment'6 of
infrared divergences in electrodynamics (correcting a
mistake in Ref. 5), with explanations at each step of
how the same arguments apply to gravitation. It is not
really quite correct to treat gravitation and electro-
magnetism as mutually exclusive phenomena, but it
will be made obvious that in a combined theory the
infrared photons and gravitons simply supply inde-
pendent correction factors to transition rates.

1. One Soft Photon or Graviton

If we attach a soft-photon line with momentum q to
an outgoing charged-particle line in a Feynman dia-
gram, we must supply one extra charged-particle
propagator with momentum p+q and one extra vertex
for the transition p+q-+ p. If the soft-photon line is
attached to an incoming charged-particle line, the extra
propagator is for momentum p—q and the transition is
p ~ p—q. For instance, if the charged particle has zero
spin, these factors are~

i(2~)"(2p"+W")[—i(2~) ']
X[(p+gq)2+m' —ie]-", (2.1)

where q =+1 or —1 for an outgoing or incoming charged
particle. In the limit q —+ 0 Eq. (2.1) becomes (because
p'+ m=2)0:

the sum running over all external lines in the original
diagram.
If we attach a soft-graviton line to an external spin-

zero line, the extra factors are'

k~( ~)'(S~)"'( p"+nq") ( p "+nq")
y [—i(2s)—'][(p+qq)'+eP —ie]—', (2.4)

where p, , v are the graviton polarization indices. For
q~0 this gives

(SzG)'"qpI'p"/[p q—ice]. (2.5)
The limiting form (2.5) is actually valid whatever the
spin of the external line to which we attach the
graviton. For example, if this line is outgoing and has
spin -'„ then we have instead of Eq. (2 4) the factor
—-'(2~)'(S~)"'((2p"+q")v"+ (2p"+q")v"}

i (p"+—q")y),+m
X[—i(2~)- ] . (2.6)

(p+q)'+ nP ie—
But (2.6) appears multiplied on the left with a Dirac
spinor 6 such that

u,[ip"yg+m] 0=
Thus, moving the propagator numerator to the left
of the vertex function, we are left with an anticom-
mutator equal to (2.5) in the limit q —+ 0. For general
spin the same conclusion can be reached on grounds of
I.orentz invariance, ' without embroiling oneself in
higher spin formalisms. The normalization factor
(SW)'Ia is chosen so that an arbitrary nonrelativistic
two-particle scattering amplitude will have a one-
graviton-exchange pole with the correct residue to
correspond to a potential 6m~m~//r.
The dominance of the 1/(p q) pole in (2.5) implies

that the effect of attaching one soft-graviton line to an
arbitrary diagram is to supply a factor equal to the
sum of (2.5) over all external lines in the dia, gram

egpI'/[p q ice]— (2.2) (~)'I'P q p ~p."/[p q iq„e]—(2.7)

+e& p "/[p 'q (2.3)

~ J.M. Jauch and F. Rohrlich, Theory of Photons end Elecfrons
{Addison-Wesley Publishing Company, Inc., Reading, Massa-
chusetts, 1955), Chap. 16.ID. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys.(¹Y.) D, 379 (1961).

7 The notation used is that of Ref. 5. In particular, A=c=1,
and p q—y-q—P'q.

11 For j=$ see Ref. 5 or 6. For general spin see Ref. 1.

Although (2.1) applies only for zero spin, the limiting
form (2.2) is well known' to hold for any spin.
Diagrams with the soft-photon line attached to an

internal charged-particle line lack the denominator p q,
and therefore are negligible for q —+ Q. Hence the e6ect
of attaching one soft-photon line to an arbitrary dia-
gram is simply to supply an extra factor,

2. Many Soft Photons or Gravitons
It is well known that the eGect of attaching several

soft-photon lines to an arbitrary diagram is to supply a
product of factors of the form (2.3), one for each soft
photon. For we note that if X soft photons are emitted
from an outgoing (incoming) charged-particle line with
photon r last (first), photon s next-to-last (second),
etc., then the charged particle propagators will con-
tribute a multiple pole factor

[p.q.—in ] [p. (q+q)—i~ ]-' ",
but this must be summed over the Ã~ permutations
12. S—+rs ., and the sum is just

[p a ~re] [pq2.

It is interesting to compare this to the central equation for the DC shift in the outgoing
metric sourced by black hole or neutron star collisons in Braginsky and Thorne [25]:

© 1987 Nature  Publishing Group

A glance reveals that the two equations are indeed strikingly similar! In fact, to see that
they are identical, not just similar, requires a conversion of notation and a Fourier transform,
as follows [41]:

• Replace the four-momenta PA
i of colliding stars or black holes with the four-momenta
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pµn of elementary particles.

• Account for the different conventions for Newton’s constant G and normalization.

• Substitute the graviton momentum q with its energy ω times the unit null vector k via
q = ωk.

• Act with a Fourier transform
∫
dteiωt on the Weinberg momentum-space formula to

obtain the Braginsky-Thorne formula for the difference between the initial and final
transverse metric components.

The fact that identical formulas were independently derived, using wildly different meth-
ods, for both the collisions of black holes and the collisions of elementary particles is a
testimony to the universality of the IR phenomena discussed in these lectures. At very long
distances, astrophysical black holes and elementary particles are both effectively pointlike!

Universal phenomena are often related to symmetries. Since the memory effect is a
Fourier transform of the soft theorem, and the soft theorem is the Ward identity of super-
translation symmetry, there should be a direct connection between memory and supertrans-
lations that does not involve soft theorems. To derive this connection, note that if there is
no energy flux or retarded time dependence of the asymptotic data at late and early times,
Czz must vanish up to a supertranslation:

Cearly
zz = −2D2

zC
early, C late

zz = −2D2
zC

late , (6.0.4)

where ∂uC
early = ∂uC

late = 0 . The early and late geometries are related by a supertranslation

∆C = C late − Cearly . (6.0.5)

Hence we can think of a pulse of radiation passing through I+ as a domain wall separating
diffeomorphic but BMS-inequivalent vacua. Using the constraint equation (5.2.8), we find

D2
z∆C

zz = 2∆mB + 2

∫
duTuu , (6.0.6)

where the u-integral extends from the early to the late regions. Solving this differential
equation, it follows that

∆C(z, z̄) = −
∫
d2wγww̄G(z, z̄;w, w̄)

(∫
duTuu(w, w̄) + ∆mB

)
, (6.0.7)

where the Green’s function is

G(z, z̄; z′, z̄′) =
1

π
sin2 ∆Θ

2
log sin2 ∆Θ

2
, (6.0.8)

with ∆Θ the angle on CS2 between (z, z̄) and (z′, z̄′). This is an explicit formula for the
supertranslation induced by waves (gravity or otherwise) passing through I+. One of its
unusual characteristics is that it is highly nonlocal on CS2. Indeed, if a gravity wave passes
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Figure 19: An array of evenly spaced inertial detectors (black dots) on the sphere
near I+ will be permanently displaced (red arrows) by the passage of gravitational
radiation. The displacements are a measurement of the BMS diffeomorphism, which
relates the vacua before and after the passage of the radiation.

through the north pole, the effect vanishes both there and at the south pole but is large near
the equator.

The relative displacements (6.0.3) of inertial detectors have a simple explanation in this
framework. Imagine tiling CS2 with initially evenly spaced inertial detectors. Passage of
a gravity wave will adjust the relative (z, z̄) positions by amounts of order 1

r
, defining a

diffeomorphism on CS2, as depicted in figure 19. This was shown [41] to be exactly the
angular diffeomorphism appearing in the subleading term of the supertranslation vector
field (5.2.3). It would be exciting indeed to observe these supertranslations in the sky!

The gravitational memory effect imparts a physical meaning to the soft graviton theorem.
Soft gravitons may seem a bit unphysical, because it takes longer and longer to measure them
as the energy goes to zero. Surprisingly, despite this, the memory effect can be measured
in a finite time, because the Fourier transform of the Weinberg pole is a step function in
retarded time.

This completes the third leg of the triangle containing Weinberg’s soft graviton theorem
and asymptotic BMS symmetries. Memory is connected to the soft theorem by a Fourier
transform and measures transitions between BMS-inequivalent vacua. There are other kinds
of memory effects associated with other triangles. Taking the Fourier transform of the
subleading soft theorem led to a new gravitational memory effect called spin memory [69],
which gives relative time delays to counterorbiting objects and might be measurable [70].
In (unconfined and unhiggsed) nonabelian gauge theory, the color memory effect rotates the
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relative colors of nearby quarks [40]. If a pulse of gluons passes a pair of initially singlet
quarks, it will generically no longer be in a singlet. In abelian gauge theories, such as QED,
the electromagnetic memory effect gives relative phases to adjacent charged particles, which
can be measured by quantum interference or other experiments, as recently discussed in the
literature [37–39,201].

7 Black Holes

So far, black holes have barely been mentioned. It turns out that the IR triangle is highly
relevant to the behavior of black holes and to the famous information paradox [161]. While
many of the implications of the IR symmetries for black hole physics are topics of current
investigation and remain to be fully understood, others follow straightforwardly from the
groundwork laid in these lectures. Some of the latter already well understood material is
described in this section, with occasional pointers to open problems.

We begin in section 7.1 with a lightning review of the information paradox. In section
7.2, it is shown that the infinity of conservation laws requires that black holes must carry cor-
responding “soft hair”, invalidating Hawking’s argument [161] that information is destroyed.
In section 7.2.1, the properties of soft hair are perturbatively described at the classical level.
Section 7.2.2 constructs the horizon contribution to the linearized supertranslation charge
and shows that this charge generates horizon supertranslations. Quantum aspects of soft
hair and its relation to soft gravitons on the horizon are discussed in section 7.2.3. The
electromagnetic version involving soft photons is in section 7.2.4. Future outlook and the
status of the information paradox are discussed in section 7.3.

7.1 The Information Paradox

There are many ways to characterize the information paradox, but perhaps the most
striking is in the formation and total evaporation of a black hole in an asymptotically flat
space. We begin with the process of black hole formation, which is classically described by
the Penrose diagram in figure 20. One could consider a more generic collapsing geometry,
but it is useful to be specific. In this picture, the far past is empty flat space. Then at
advanced time v = 0, a null shockwave with total energy M is sent in. This infinitely
thin collapsing shell of matter eventually forms a Schwarzschild black hole of mass M . The
resulting spacetime geometry can be described by the Vaidya metric, which in advanced
coordinates takes the form

ds2 = −
(

1− 2MGθ(v)

r

)
dv2 + 2dvdr + 2r2γzz̄dzdz̄ , (7.1.1)

where θ denotes the step function

θ(v) =

{
0 if v < 0 ,

1 if v ≥ 0 .
(7.1.2)

This metric evidently describes flat space before the passing of the shockwave and a Schwarzschild
black hole after. The two regions are glued along the shockwave of infalling matter, whose
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Figure 20: Vaidya geometry. The red lines denote a null spherical shockwave imploding
at advanced time v = 0. When the shockwave crosses its Schwarzschild radius, the
(blue) event horizon forms. The causal future of the event horizon is the black hole
and ends at the jagged singularity.

collapse results in the creation of an event horizon, that is, a region from which light rays
cannot escape to infinity (depicted in blue). The spacelike singularity is hidden behind the
horizon.

More generally, the collapsing matter may have arbitrary multipole moments and may
not be spherically symmetric. However, according to the usual interpretation (which we
question below) of the no-hair theorem [225], regardless of how it is formed, after a rather
short time scale (roughly speaking, the light-crossing time of the black hole), it will settle
down to a stationary state that is characterized by only ten conserved Poincaré charges: the
energy-momentum (E, ~P ), the total angular momentum ~J and the boost charge or BORT

center of mass ~K. The standard statement is that a black hole in Einstein gravity has ten
hairs, or equivalently, the phase space is ten-dimensional.31 Of course, in the presence of
gauge fields, there may be more, such as the total electric charge, but we ignore these for
the moment.

Quantum mechanically, the situation differs radically. If we wait a long time, the black
hole will eventually evaporate [226]. This leads to the qualitatively different picture in figure
21. As before, we first throw in a shockwave to create the black hole. Then, after a very
long time, the black hole begins to evaporate. Since classical black holes do not evaporate,
this must take a period of time that goes to infinity as ~ → 0. As long as ~ > 0, however,
the black hole eventually starts to Hawking evaporate, becoming smaller and smaller until
(assuming no remnants) it ultimately disappears altogether, as illustrated at the top of the
diagram.

31Of these, only two — the magnitude of the intrinsic spin J and mass M =
√
E2 − ~P 2 — are invariant

under Poincaré transformations.
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Figure 21: Evaporating black hole. The red collapsing shell makes a black hole, which
at early times, looks just like the classical black hole of figure 20. However, at late
times the black hole evaporates. This process causes the horizon, depicted in blue,
to become timelike, and the black hole eventually disappears. In the far future the
system reverts to a vacuum state.

Hawking gave a semiclassical derivation of the spectrum of radiated particles in his famous
1975 paper [226]. He found a blackbody spectrum with a temperature given by the Hawking
temperature,

TH =
~

8πGM
. (7.1.3)

Moreover, he argued that the outgoing Hawking radiation does not carry any information
about what formed the black hole. The radiation results from a pair production process
outside the horizon, in which a negative energy particle goes into the black hole and is
correlated with a positive energy particle going out to infinity. This process is insensitive
to all details concerning the interior of the black hole. The no-hair theorem is invoked in
this argument to conclude that the exterior contains no information about the formation
process. We could have made the black hole of red, green, or blue matter, but since the
final geometry is the same in all cases, so must be the outgoing Hawking radiation. Finally,
the black hole is presumed to eventually decay to the vacuum, traditionally assumed to
be unique (also questioned below) and incapable of storing information. Hence, Hawking
argued [161], all information falling into the black hole has no place to go and is destroyed
in the formation/evaporation process.
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Both in Hawking’s argument and in figure 21, a divide is placed between the periods
of black hole formation and evaporation. It is assumed that quantum effects are negligi-
ble during formation and that during evaporation the black hole can be approximated as
stationary. These assumptions are justified if the mass M is large enough in Planck units.
Ignoring constants, the Hawking temperature (7.1.3) varies like

T ∼ ~
GM

. (7.1.4)

Thus, T → 0 as ~ → 0 or as the black hole gets bigger. The Stefan-Boltzmann law then
implies that the power radiated by the black hole varies as

P ∼ AT 4

~3 ∼
~

G2M2 , (7.1.5)

where A is the area of the horizon. It follows that the rate of mass loss also obeys

dM

dt
∼ ~
G2M2 . (7.1.6)

The typical time for the black hole to lose a small fraction, say 1%, of its total mass is

ttyp ∼ .01
G2M3

~
. (7.1.7)

So we have to wait a long time of order G2M3/~ to see the geometry change appreciably due
to Hawking emission. Any classical transient effects that occur during the matter shell infall,
such as those associated with emission of radiation to I+, will all clear out and settle down in
timescales that cannot involve ~. Hence we have a clean division between the classical black
hole formation phase and the onset of Hawking evaporation. The argument for information
loss [161] applies only when M is large and such a clean division can be made.

We now revisit this argument in light of the new insights into the IR structure of gravity.

7.2 Soft Hair

In the standard analysis, it is not claimed that the Hawking radiation is completely
uncorrelated with the quantum state of the black hole. For example, even in the semiclassical
regime, it has always been presumed that the total mass is exactly conserved. If the black
hole emits a quantum of Hawking radiation of energy ∆E, then it must necessarily decrease
its mass by an amount exactly equal to ∆E. This holds at the level of quantum states and
has never been thought to be a probabilistic statement. Instead there should exist an exact
correlation for all conserved quantum numbers (such as the energy) of the black hole and
the conserved quantum numbers of the outgoing radiation. This correlation is not manifest
in the leading-order Hawking calculation. It must be enforced by hand when computing the
backreaction of the outgoing Hawking quanta on the geometry. The result will be exact
correlations between the quantum states of the outgoing Hawking radiation and of the black
hole. Not much attention has been paid to these correlations, even if they do modify the
thermal spectrum and imply that some information is carried out by the radiation. The
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reason is they are too few in number — one for each of the ten black hole hairs — to rescue
the macroscopic quantities of lost information.

This story is, however, significantly modified [41, 48, 160] by the infinite number of con-
served charges discussed in these lectures. First, it is a common misconception, originating
in a misinterpretation of the no-hair theorem, that black holes (in the absence of gauge fields)
have only ten hairs, corresponding to the ten conserved Poincaré charges. The no-hair the-
orem states that all stationary solutions are diffeomorphic to Kerr spacetimes. While this
statement is mathematically correct, these diffeomorphisms, if they are within BMS, need
not act trivially on the black hole spacetime. Generically they map one black hole spacetime
to a second, physically inequivalent one. A simple example is a boost that changes both
the energy and momentum and so clearly changes the quantum state. However, we have
learned that there is no canonically preferred “boost” element of the asymptotic BMS sym-
metry group. For the same reason that two black hole spacetimes that differ by a boost are
physically inequivalent, two black hole spacetimes which differ by any BMS transformation
(except Killing time translations) are also physically inequivalent. This simple observation
implies that there are not merely ten, but an infinite32 number of “soft hairs” [160] on
classical black holes. We will see below that superrotation charges serve as a diagnostic
distinguishing the different black hole “hairdos” and that a supertranslated Schwarzschild
black hole generically carries nonzero angular momentum.

The presence of a lush head of soft hair on black holes is required for supertranslation
and superrotation charge conservation. Since the conservation laws follow from the long-
distance behavior of fields near spatial infinity, they should not be affected by the presence
of black holes — classical or quantum. The conserved charges can be expressed as bulk
integrals over any Cauchy surface. In the presence of a classical black hole, I+ is no longer a
Cauchy surface. One must include a contribution from the future event horizon H+, which
is the black hole contribution to the conserved charge. In the quantum theory, black holes
evaporate, but one may still choose to consider a Cauchy surface — such as the green one
in figure 22 — which crosses the spacetime before the black hole has disappeared. The
integrand on such a surface will contain a contribution both from the black hole and from
I+.

A generic massless Hawking quantum from an evaporating black hole will carry nonzero
amounts of all the supertranslation, superrotation, and (if it is charged) large-gauge charges
across I+. Exact conservation of these charges requires that the black hole decrease its su-
pertranslation, superrotation, and large-gauge charges by an exactly compensating amount.
This enforces an infinite number of correlations between the quantum state of the black hole
and the quantum state of the outgoing Hawking radiation. A mere ten constraints from
Poincaré charges forcing correlations cannot have a significant effect on how macroscopic
quantities of information flow in and out of the black hole; an infinite number of constraints
gives a very different story. It potentially significantly modifies the information flow, or
equivalently, the entanglement, between the portions of the bulk quantum state on I+ and
on the horizon. Motivated by this observation, in the next few subsections we begin a de-
tailed perturbative analysis of soft hair. We note that it has been suggested that soft hair is

32In the quantum theory, it may not be sensible to discuss hairs localized to a region smaller than the
Planck length, which would render the number of hairs finite [160].
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Figure 22: An infinite number of conserved charges can be defined as surface integrals
at I+

− or I−+ . Integrating by parts and using the constraints, they can be written as
an outgoing integral over I+ (yellow surface), an incoming integral over I− (purple
surface), or an intermediate time integral over the green surface that includes a black
hole contribution. The equality of these three expressions is possible only if the black
hole itself can carry an infinite number of charges, or soft hair.

an alternate description of the edge modes discussed in [227–231].

7.2.1 Classical Hair

The first and simplest thing to understand about soft hair, and the subject of this section,
is classical, linearized supertranslation hair on a Schwarzschild black hole.

Our first problem is to extend the action of supertranslations from a neighborhood of I
to the entire spacetime. The extension of an asymptotic gauge symmetry into the interior is
gauge dependent. In a general time-dependent situation, there is unlikely to be a canonical
choice of gauge. Quantum fluctuations further diminish the utility of specific choices. For
quantum gravity in asymptotically flat spacetimes, we expect the only fully well-defined
observables are supported at the boundary at infinity. It is nevertheless sometimes possible,
armed with a gauge choice, to define interior quantities, such as local gravitational energy
densities, at first nontrivial order in perturbation theory around the Schwarzschild solution.
This can be useful in developing a picture and intuition for the behavior of the spacetime
away from its boundary. For example, one may show at leading order in perturbation theory
that, at both the classical and quantum levels, the total energy comprised of linearized
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perturbations plus the mass of the black hole itself is conserved. Moreover, this perturbative
conservation law is the linearization of an exact, nonperturbative conservation law, which
can only be exactly phrased in terms of asymptotic quantities. It is in this spirit that we
study the linearized action of supertranslations in the Schwarzschild solution.

Supertranslated Schwarzschild Solution. In advanced Bondi coordinates, the Schwarzschild
metric is

ds2 = −V dv2 + 2dvdr + r2γABdΘAdΘB , V ≡ 1− 2mB

r
, (7.2.1)

where mB = GM . It is not hard to show that, for the Schwarzschild geometry, the super-
translation vector field,

ζf = f∂v +
1

r
DAf∂A −

1

2
D2f∂r , f = f(z, z̄) , (7.2.2)

preserves Bondi gauge for all r, not just to leading order. Taking the Lie derivative, we find

ds2 + Lfds2 = −
(
V − mBD

2f
r2

)
dv2 + 2dvdr − dvdΘADA(2V f +D2f)

+ (r2γAB + 2rDADBf − rγABD2f)dΘAdΘB . (7.2.3)

The event horizon is at r = 2mB+ 1
2
D2f . This geometry describes a black hole with linearized

supertranslation hair. Horizon supertranslations have been studied in other gauges [232–234].

Superrotation Charges. Supertranslating a black hole does not add supertranslation
charges to the black hole, just as an ordinary translation of a black hole does not add
momentum. This result follows from the fact that the supertranslation group is abelian and
may also be seen at linear order directly, because mB is unshifted in (7.2.3). However, as
supertranslations and superrotations do not commute, a supertranslated black hole can and
does carry superrotation charges, already at the classical level. In (5.3.4), we derived the
conserved superrotation charges

Q−Y =
1

8πG

∫

I−+
d2Θ
√
γY ANA , (7.2.4)

where Y A is any smooth vector field on the sphere. We are interested in the differential super-
rotation charges carried by an infinitesimally supertranslated Schwarzschild black hole of the
type considered in the previous paragraph. As seen from (7.2.3), under a supertranslation
δfgµν = Lfgµν of the Schwarzschild geometry,

δfNA = −3mB∂Af . (7.2.5)

It follows immediately that [48,164]

Q̂−Y (g, h = δfg) = − 3

8π

∫

I−+
d2Θ
√
γY AM∂Af . (7.2.6)
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The hat here on Q̂−Y and on other quantities below are to remind the reader that we are
doing a linearized analysis. Equation (7.2.6) is nonzero for a generic vector field Y A and
supertranslation f . An infinite number of superrotation charges can be independently added
to the black hole by different choices of f . Hence superrotation charges classically distin-
guish differently supertranslated black holes. Classical black holes sport an infinite head of
“supertranslation hair.”

Hair implants. In the previous paragraphs we described a supertranslated eternal Schwarzschild
black hole. To be certain such objects really exist, in this section we describe how one phys-
ically implants hair, or rearranges the hairdo, by throwing something into a Schwarzschild
black hole. Similar conclusions were reached using the membrane paradigm [166,169].

At advanced time v0 in the Schwarzschild geometry, we send in a linearized shockwave
with energy-momentum density

T̂vv =
µ+ T̂ (Θ)

4πr2 δ(v − v0) (7.2.7)

near I−. Here µ is the total mass of the shockwave, and we take T̂ to have only ` > 2
components for simplicity. We wish to solve for the linearized metric in such a way that the
solution is diffeomorphic to the Schwarzschild solution both before and after the shockwave.
Stress-energy conservation, ∇µT̂

µν = 0, then mandates subleading-in-1
r

corrections to the
stress tensor for shockwaves that are not spherically symmetric. Defining

Ĉ(Θ) ≡ G

∫
d2Θ′G(Θ,Θ′)T̂ (Θ′), (7.2.8)

where G is the Green’s function (6.0.8) arising in the memory effect, the solution is

T̂vv =
1

4πr2

[
µ+

1

4G
D2
(
D2 + 2

)
Ĉ − 3M

2r
D2Ĉ

]
δ (v − v0) ,

T̂vA = − 3M

8πr2DAĈδ (v − v0) .

(7.2.9)

Solving the linearized Einstein equation with this shockwave source then gives (see exercise
15)

hvv = θ(v − v0)

(
2Gµ

r
− mBD

2Ĉ

r2

)
,

hAB = −2rθ(v − v0)

(
DADBĈ −

1

2
γABD

2Ĉ

)
,

hvA = θ(v − v0)∂A

(
1− 2mB

r
+

1

2
D2

)
Ĉ . (7.2.10)

Comparing with the formula (7.2.3) for a supertranslation of the Schwarzschild metric, we
find that (7.2.10) can be written

hµν = θ(v − v0)

(
Lf=−Ĉgµν +

2Gµ

r
δvµδ

v
ν

)
. (7.2.11)
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Hence the shockwave is a domain wall interpolating between two BMS-inequivalent Schwarzschild
vacua, whose mass parameters differ by µ.

The shockwave induces a shift in the transverse components of the metric perturbation
on the horizon. Integrating over a null generator of the horizon, we have

∆hAB(r = 2mB,Θ) =

∫ ∞

−∞
dv∂vhAB(r = 2mB, v,Θ) = −4mB

(
DADBĈ(Θ)− 1

2
γABD

2Ĉ(Θ)

)
.

(7.2.12)
Hence the shockwave induces a supertranslation on the Schwarzschild horizon, which is
registered by a nonzero value for the zero mode of the transverse, traceless fluctuations of
the horizon metric. In the physical phase space, two black hole spacetimes that differ by any
element of BMS correspond to different points. For the case of boosts, the two spacetimes
have different energies. For supertranslations, they are energetically degenerate but carry
different angular momenta and other superrotation charges. An important difference between
boosts and supertranslations is that, as discussed in section 5.2, the latter act nontrivially on
all the zero-energy vacua as well, imparting angular momentum and superrotation charges at
quadratic order [51]. Hence the phase space of asymptotically flat geometries with nonzero
energy and four Killing vectors is not a simple product of vacuum and black hole phase
spaces.33

The formula (7.2.6) of superrotation charges requires only the asymptotic behavior of
the black hole and hence pertains to any geometry with nonzero mass. We would like to
understand how a classical black hole compares in this regard to a configuration with the
same mass and many internal states, such as a star, or an elementary particle with few or no
internal states. Suppose we send the supertranslating shockwave into a star or a collection of
stars instead of into a black hole. The wave will excite and rearrange the interior structure
of the star and, in the case of multiple stars, their relative motions. Generically gravitational
radiation will carry some, but not all, of the superrotation charge back out to infinity, while
some will be retained by the star(s). It is unsurprising that a star or a collection of stars
(which has many internal degrees of freedom and possible interior states) can carry many
superrotation charges. There is no no-hair theorem for a star! Now consider instead replacing
the black hole by a massive, stable, “bald” elementary particle with no internal degrees of
freedom. Such an object cannot carry arbitrary superrotation charges: the pre- and post-
superrotation charges are generically the same (except for the l = 1 component). To leading
order, the supertranslating shockwave will simply be reflected through the origin and scatter
back up to future null infinity. The elementary particle has no mechanism to absorb all the
superrotation charges. The outgoing wave will cancel the superrotation charges induced by
the ingoing wave and, in the far future, the superrotation charges will revert to their initial
incoming values.

So we see that, in its ability to absorb superrotation charges, a black hole acts more
like a complex “hairy” star with many internal degrees of freedom than a massive “bald”
elementary particle. The observer at infinity can confirm this by sending in shockwaves and
watching what comes out. This is a classical signal that black holes are not bald.

However, there are also intriguing differences, yet to be fully understood, between the

33We consider here supertranslations that act in unison on the horizon and null infinity. As discussed at
the end of this subsection, one may try to consider separate actions, but we do not do so here.
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supertranslation hair on a black hole as described above and the internal states of a star.
Bondi gauge supertranslations change the metric of the spacetime everywhere, including
both at the event horizon and at infinity, while internal states of a star can be changed with
possibly34 no effect at infinity. It is interesting to ask whether horizon supertranslations
can be untethered from supertranslations of null infinity. There has been discussion of this
point [48,128,166,170,173], but as it remains unsettled, I do not go into detail here. A related
point is that we do not know how to describe supertranslation hair (one proposal is edge
modes [227–229]) on a classical stationary black hole in AdS, whose asymptotic boundary
does not support supertranslation symmetry. In contrast, a star in AdS clearly retains many
internal degrees of freedom, which, however, AdS/CFT tells us are recorded on the boundary.
Evidently this issue goes to the heart of the holographic structure of spacetime. We will not
settle it here. The next subsection sheds some light on it by constructing the intrinsic horizon
contribution to the supertranslation charge without reference to infinity.

7.2.2 Horizon Charges

In the absence of eternal black holes or massive fields, we saw in section 5.2.3 that the
linearized supertranslation charges Q̂+

f can be written as volume integrals of local operators

over I+. However, for the Schwarzschild geometry this is clearly impossible, as I+ is not a
Cauchy surface. Instead, for massless fields, I+∪H+ is a Cauchy surface. Hence one expects
a relation of the form

Q̂+
f = Q̂I

+

f + Q̂H
+

f . (7.2.13)

The second term, Q̂H
+

f , is the horizon supertranslation charge. In general (for example, with
Hawking radiation), supertranslation charge can be exchanged between the horizon and I+,
and one does not expect them to be separately conserved.

The literature [196–198, 223, 235–237] on the covariant canonical formalism, symplectic
forms, and conserved charges in GR contains general expressions for the charges associated
with diffeomorphisms of a surface Σ as an integral over its boundary ∂Σ. In our case,
H+ has past and future boundaries, H+

±, which is the key reason it is possible to have a

nontrivial horizon charge.35 The precise form of the horizon contribution Q̂H
+

f will depend
on the coordinate choice used to extend the supertranslations in from infinity to the horizon.
Adopting the Bondi gauge, one finds the boundary expression [48]

Q̂H
+

f =
M

8π

∫
d2Θ
√
γf
[
DA∂rhAv + 2hvv +D2hvr

]H+
+

H+
−
. (7.2.14)

Integrating by parts and using the constraints gives the horizon integral

Q̂H
+

f =
1

8πG

∫

H+
d2Θ
√
γdvf

(
1

4mB

DADB∂vhBA

34I add the caveat “possibly” because in full quantum gravity, the holographic principle may ultimately
imply that the internal states of the star are recorded at the boundary at infinity. However, ignoring this, it
is at least true semiclassically.

35In the quantum theory, the black hole evaporates, and the horizon (however it is defined) may not have a
boundary. This suggests there cannot be a quantum exact notion of horizon charges independently of those
at infinity.
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+
1

2
D2hvv +mBD

2∂rhvv +
1

2
D2hvr −

1

4mB

DAhAv

)
. (7.2.15)

As a check, we would like to see that (7.2.15) generates supertranslations of the horizon
components of the metric via the inverted symplectic form. However, this is still not quite
possible, because the Bondi gauge allows residual trivial diffeomorphisms that vanish at
the boundaries H+

± of the horizon and are zero modes of the symplectic form. We must
first eliminate these modes and reduce to the physical horizon phase space ΓH+ , which is

parametrized by hAB. After some effort [48], Q̂H
+

f reduces to

Q̂H
+

f =
1

32πGmB

∫

H+
dvd2Θ

√
γDADBf∂vhAB . (7.2.16)

This charge is nothing but a soft graviton on H+, just as the linearized charge Q̂I
+

f is a soft
graviton on I+. The symplectic form can now be inverted, and the commutator is

[
Q̂H

+

f , hAB

]
= i2mB(2DADBf − γABD2f) . (7.2.17)

This relation is the desired linearized supertranslation action on the horizon metric fluctua-
tions.

This construction makes sense only in leading-order perturbation theory: in the general
case the classical horizon is defined only nonlocally, and in the quantum case it evaporates
altogether. In the presence of interactions it is unlikely that a clean separation can be made
between the two terms on the right-hand side of (7.2.13). Nevertheless, it provides a starting
point for an analysis of horizon supertranslations.

We note that the construction requires the charges Q̂H
+

f (i.e., the soft graviton modes) to
be incorporated as symplectic partners of the v-independent part of hAB in the physical phase
space ΓH+ . Moreover, the analysis is fully intrinsic to the horizon and does not require any
properties of asymptotic infinity. Because the classical horizon has boundaries, it is possible
for pure diffeomorphisms that do not vanish at these boundaries to be nonzero eigenvectors
of the symplectic form. This is the basic reason that supertranslations act nontrivially on
the black hole horizon.

7.2.3 Quantum Hair

Let |M〉 denote a quantum state corresponding to a Schwarzschild black hole. Then an
infinitesimally supertranslated black hole corresponds to the quantum state

|Mf〉 = |M〉+ iQ+
f |M〉 . (7.2.18)

In section 7.2.1 it was noted that, because the supertranslation group is abelian, a classically
supertranslated black hole does not carry classical supertranslation hair. The quantum
version of this statement is that to linear order in f

〈Mf |Q+

f
′ |Mf〉 = 0 (7.2.19)
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for any non-constant f ′. However, it does not imply that the supertranslation charge Q+
f

annihilates |M〉. Instead, Q+
f adds a soft graviton to |M〉, leaving its energy unchanged

but adding angular momentum and more general superrotation charges. According to the
decomposition (7.2.13), the soft part of the charge has two terms, one that acts on H+ and
the other on I+. Hence the soft graviton may be either a soft mode on H+ or a soft mode
on I+.

Similar statements apply to the quantum vacuum. The supertranslated vacuum carries
no classical supertranslation charge, as mB = 0. However, the soft part Q+S

f acts nontrivially
on the vacuum, turning it into an orthogonal vacuum with an extra soft graviton and different
superrotation charges.

7.2.4 Electric Hair

In this section, we repeat the discussion in the context of abelian gauge theories, replac-
ing supertranslations with large gauge transformations and soft gravitons with soft photons.
Technically, the discussion is much simpler, both because there are fewer indices and be-
cause there is less ambiguity in the extension of boundary quantities into the bulk. However,
conceptually it is more subtle, because the action of large gauge transformations on charged
particles is only a phase, which is most naturally detected by quantum interference exper-
iments. The quantum nature of the large gauge symmetry action contrasts with that of
supertranslations, which has a clear classical interpretation as advancing or delaying the
arrival times of massless particles at I+. Moreover, in the gauge theory case, there is no
analog of superrotation charge that provides a classical measurement of the supertranslation
hairdo on the black hole. Because the large gauge symmetry is abelian, classical large gauge
charges of large gauge transformed black holes must vanish. It is for these conceptual reasons
that we discussed the gravity case before the gauge theory one. However, the gauge theory
case is also illuminating, as it displays many of the basic concepts in simpler forms that are
uncluttered by proliferating indices.

To begin, let us briefly recall the argument for conservation of the total electric charge.
The total charge may be written as a surface integral at infinity,

Q̂+
ε=1 =

1

e2

∫

I+
−

∗F , (7.2.20)

where again the hat on Q̂ serves to remind the reader that in this section, we linearize around
a fixed background. Equivalently, using integration by parts, we may write it as an integral
of the charged matter current on a bulk slice Σ that ends at I+

− :

Q̂+
ε=1 =

∫

Σ

∗jM . (7.2.21)

The result must be the same regardless of which slice Σ through the bulk we choose, as
illustrated in the context of black hole formation and evaporation depicted in figure 22. For
instance, we could compute Q̂+

ε=1 by integrating over the purple slice hugging I− at the
bottom of the diagram before we create the black hole. Alternately, we could use the yellow
slice at the top of the diagram after the black hole has evaporated or the green slice that runs
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into the horizon of the black hole. In the latter case, we can either continue the slice along
the horizon as depicted, or we could end the slice at the horizon with an extra boundary
term that tells us about the charge carried by the black hole itself. Either way, the black
hole typically contributes to the electric charge. This contribution is required to ensure that
the total Q̂+

ε=1 is conserved throughout the entire bulk evolution.
This argument may be applied to the infinite number of such conserved electric charges

that generalize the total charge. That is, given any function ε on CS2, there is a conserved
charge (2.5.2),

Q̂+
ε =

1

e2

∫

I+
−

ε ∗ F =
1

e2

∫

Σ

(
dε ∧ ∗F + e2ε ∗ jM

)
, (7.2.22)

where Σ again is an arbitrary three-dimensional slice of the bulk ending on I+
− , and ε on the

slice is any function with the prescribed boundary value at I+
− . Clearly, as we vary this slice

and let it end at different surfaces on the black hole horizon, there will be different amounts
of large gauge charge that pass through the horizon portion of the slice. This amount will
vary in a complicated way as we change the time at which the slice meets the horizon.
Therefore, to ensure charge conservation, it must be the case that black holes are capable of
storing Q̂+

ε charge, just as they store global charge. That is, the black hole must carry an
infinite amount of soft electric hair.

We wish to analyze the linearized charges in perturbation theory about a fixed black hole
background. For the case of supertranslations, we linearized around the eternal Schwarzschild
black hole. It should also be possible to do a linearized analysis around the more physical
geometry of a black hole formed by gravitational collapse. In practice, for supertranslations,
the equations become unwieldy in a time-dependent background. However, for the large
gauge transformations, the algebra simplifies and such an analysis is both instructive and
possible, as we shall now see.

Consider a Vaidya black hole formed by a neutral null incoming shockwave at v = 0.
Then at some later time v0, we send in a linearized null shockwave with an asymmetric
null charge current j, so that the higher large gauge charges are excited. This situation is
depicted in figure 23. To be explicit, let us take

jv =
Y`m(z, z̄)

r2 δ(v − v0) . (7.2.23)

It takes only one line to check that this current is conserved. We are going to examine the
effects of this shell of charge in linearized perturbation theory, neglecting its backreaction
on the geometry. Note that since it has an angular profile Y`m, the net charge is zero. If the
net charge were nonzero, we would need to discuss a transition from a Schwarzschild to a
Reissner-Nördstrom black hole instead of just a Schwarzschild to a Schwarzschild one.

Now we solve the sourced Maxwell equation. The leading constraint equation at I−
(2.5.10) says that

∂vF
(2)
rv + γzz̄

(
∂zF

(0)
z̄v + ∂z̄F

(0)
zv

)
= e2Y`m(z, z̄)δ(v − v0) . (7.2.24)

There are many different ways of solving this constraint equation, as it is one equation for
the four components of the vector potential. The one that most simply illustrates the physics
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v = 0

v = v0

I−
−

I−
+

I+
−

I+
+

I−

I+ u

v

H+

H+
+

Figure 23: A black hole formed by the spherically symmetric red shockwave at v = 0 is
classically supertranslated at a later time v = v0 by the asymmetric purple shockwave.
The solution is diffeomorphic to the Schwarzschild geometry or vacuum away from
the shockwaves but generically carries arbitrary superrotation charges in the region
v > v0. The charges computed on the orange and green surfaces must agree, but the
latter adds contributions from the horizon and null infinity.

is obtained by stipulating that the radial electric field vanish on I−,

F (2)
vr = 0 , (7.2.25)

and the initial connection is Az|I−− = 0. These initial data on I− then determine the full

solution. Explicitly in Av = 0 gauge, we have

Az = ∂z

[
θ(v − v0)

e2

`(`+ 1)
Y`m(z, z̄)

]
, (7.2.26)

as in equation (2.15.6). It is easy to check that this potential is indeed a solution by using
∂vθ(v − v0) = δ(v − v0) and

D2Y`m(z, z̄) = −`(`+ 1)Y`m(z, z̄) . (7.2.27)

If we ignore the factor θ(v − v0), Az is manifestly just a pure gauge transformation, so F
is identically zero both before and after the shockwave. We sent in a complicated angle-
dependent charge distribution but dressed it with photons in just such a way that no electric
field was produced. After the shockwave passes, the entire spacetime (including both the
black hole and null infinity) is acted on by a gauge transformation A→ A+ dε, with gauge
parameter

ε =
e2

`(`+ 1)
Y`m(z, z̄) . (7.2.28)
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Hence, the effect of this shockwave is to induce a large gauge transformation. It is a domain
wall connecting a black hole spacetime to a large gauge transformation thereof.

The large gauge transformation (7.2.28) depends only on the data of the charge current
and not the further choice of electric field data (7.2.25). In Hawking et al. [160], for instance,

it was not assumed that F (2)
vr = 0, but the same conclusion was reached. To see why, integrate

the constraint along the horizon:

∫

H+
dv
[
∂vF

(2)
rv + γzz̄

(
∂zF

(0)
z̄v + ∂z̄F

(0)
zv

)]
= e2Y`m(z, z̄) . (7.2.29)

If the radial electric field eventually decays near H+
+,
∫
H+ dv∂vF

(2)
vr = 0. In the more general

case, the gauge field is a Heun function and does not have a simple analytic expression. We
nevertheless learn that the zero-modes of the transverse components of the field strength are
always excited when charge is asymmetrically thrown in.

Equation (7.2.29) can be rewritten as

∫

H+
dvd2zY`′m′

(
∂zF

(0)
z̄v + ∂z̄F

(0)
zv

)
= e2δ`,`′δm,m′ . (7.2.30)

This expresses the fact that the classical soft photon mode is excited by the asymmetric
charge shell or, for that matter, by any charged object that is thrown into the black hole. In
the quantum theory, the quantum state of the soft photons on the horizon will be a coherent
state in which the expectation value of the transverse electric field obeys (7.2.30). We note
that, in contrast, horizon soft photons cannot be excited by throwing in photons from I−,
because the relevant greybody factors vanish at zero momentum. Nevertheless, it follows
from (7.2.30) that soft photons on the horizon can be excited by throwing in charges and
are needed for a perturbative description of black hole dynamics.

The incoming charge Q̂−ε can be written as an integral over the orange slice hugging I− in
figure 23. This slice is punctured by i−, past timelike infinity. In general, one must be careful
about contributions from the i− puncture, but for the present case of massless fields they
vanish. This conclusion follows from the mathematical fact that I− by itself constitutes a
complete Cauchy surface for massless fields. Physically, it means massless fields decay before
reaching timelike infinity.

Likewise, the integral for the charge Q̂+
ε can be extended up along I+, giving an integral

Q̂I
+

ε along I+. Clearly, this term is no longer on its own equal to Q̂−ε , because I+ no
longer constitutes a Cauchy surface. To apply Gauss’s law, we need a complete Cauchy
slice. We may obtain one by following the green slice hugging the event horizon H+. This
additional portion of the surface gives the black hole contribution to the charge. Again if
we do not include massive particles, H+ and null infinity I+ together form a Cauchy surface
for massless fields, so there should be no contributions from i+.

The conservation law thus takes the form

Q̂−ε = Q̂I
+

ε + Q̂H
+

ε . (7.2.31)

This equation says that the large gauge charge computed along the green slice has two pieces:

one from null infinity (the outgoing charge Q̂I
+

ε ) and one from the black hole (the horizon
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charge Q̂H
+

ε ). Moreover, the sum of these two charges equals the single term obtained by
computing Q̂−ε on the single incoming orange slice.

We have already seen in section 2.6 that in a canonical formalism, Q̂I
+

ε generates large

gauge transformations on the data at I+. It is not hard to see that Q̂H
+

ε similarly generates
large gauge transformations on the data at H+. Integrating by parts, we find

Q̂H
+

ε =
1

e2

∫

H+
+

ε ∗ F =
1

e2

∫

H+

(
dε ∧ ∗F + e2ε ∗ jM

)
. (7.2.32)

In exercise 14, the interested reader is invited to show, following the same steps as in section
2.6, that in advanced gauge Av = 0,36

[
Q̂H

+

ε , Az

]
H+

= i∂zε|H+ , (7.2.33)

which are large gauge transformations on the horizon. This equation also states that the
soft part of the horizon charge — the soft photons — are symplectically paired with the
Goldstone bosons of spontaneously broken large gauge transformations on the horizon.

In general, a necessary condition for a gauge mode to be physical is that it have a
nonvanishing symplectic form. From the general formula for the symplectic form, this is
possible only if the surface has a boundary. The boundary of the future horizon H+ is H+

+,37

and v-independent gauge transformations are indeed nonvanishing there.

Note that classically, in an asymptotically stationary situation, Q̂H
+

ε always vanishes,
because the electromagnetic fields (except for the ` = 0 mode) go to zero at late times. We
already saw this in our linearized analysis: equation (7.2.29) says that the hard and soft part
of the charge are classically equal and opposite. However, it is not zero as an operator, as we
have just seen its commutators create large gauge transformations. Moreover, when we pass
to the quantum theory and expand in creation/annihilation operators, the associated charges
will create and annihilate soft photons on the horizon. Acting on the horizon Hilbert space

with the operator Q̂H
+

ε will not change the energy, since it commutes with the Hamiltonian
(as we know, because we can write the charge as a boundary integral at infinity), but it
nonetheless inserts a soft photon, which will change the angular momentum of the black
hole by one unit. Thus, a black hole with a soft photon is different from a black hole without
one. The action of this infinitesimal symmetry is nontrivial:

Q̂H
+

ε |M〉 =

(
1

e2

∫

H+
dε ∧ ∗F

)
|M〉 6= 0 , (7.2.34)

where we use |M〉 to denote the portion of the black hole quantum state on the null surface
H+. The classical vanishing of the linearized horizon charge holds at the level of expectation
values:

〈M | Q̂H
+

ε |M〉 = 0 . (7.2.35)

36 Av = 0 gauge is natural for analyzing how excitations from I−, such as our shockwave, affect H+,
because advanced Bondi coordinates cover both regions. However, they do not cover I+. For this reason, it
would be interesting to analyze the problem in harmonic gauge, as considered by Campiglia and Laddha [215].

37For eternal black holes there is also a past boundary H+
−.
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A similar situation was already encountered in the electromagnetic vacuum in the ab-
sence of black holes. Since the field strength vanishes, the charges Q̂+

ε are all classically
zero. However, they are not zero as operators. Instead, they create and annihilate photons,
mapping one classical vacuum to another with different angular momenta.

In conclusion, black holes have an infinite electromagnetic degeneracy that can be de-
scribed at both the classical and quantum levels. At the classical level, the degeneracy arises
from nontrivially-acting gauge transformations. At the quantum level, there is an alternate
perturbative description in terms of zero-energy soft photons on the horizon.

7.3 Discussion

The no-hair theorem tells us that Einstein-Maxwell gravity has a three-parameter38 family
of black hole solutions labeled by the mass M , charge Q, and total angular momentum J ,
up to diffeomorphisms and gauge transformations. It has long been accepted that a few
diffeomorphisms (for example, boosts or translations) act nontrivially on the physical phase
space and impart a sparse head of hair on black holes. We have shown that there are in fact an
infinite number of diffeomorphisms, including an antipodal subgroup of BMS+ × BMS−, that
act nontrivially and thereby impart a lush head of soft hair on black holes. The soft hairdo
is classically measured by conserved superrotation charges at infinity. More hair is supplied
by large gauge transformations. The hairdo is rearranged whenever anything is thrown into
the black hole, and it thereby stores partial information about how the black hole is formed.
Exactly how much information is stored, and how it is transmitted to the outgoing Hawking
radiation, is presently unknown. At the very least, understanding black hole information
requires understanding the properties of soft hair and more generally keeping careful track
of how much information flows into or is stored in the deep infrared [163].

Our analysis reveals two subtly flawed assumptions underlying the argument given in
Hawking [161] that there is an information paradox:

• The adage “black holes have no hair” is misleading at best. In reality they carry an
infinite number of conserved charges which generalize the ten Poincaré and one electric
charges. These provide some memory of how the black hole was formed. Moreover,
since these charges are exactly conserved, they must affect the quantum state of the
outgoing Hawking radiation, correlating it with both the quantum state of the black
hole and outgoing soft radiation [162]. The argument in Hawking [161] incorrectly
assumed such correlations do not exist.

• “When the black hole evaporates completely, there is no place where the information
can be stored” is a second incorrect assumption in Hawking [161]. We have seen that
the vacuum itself is infinitely degenerate and hence can store information. In particular,
from what is understood so far, it is a logical possibility that the final vacuum state and
or the outgoing soft quanta could be correlated with the outgoing Hawking radiation
in such a way as to maintain quantum purity.

38We suppress possible magnetic charge.
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Of course, it is always possible that these assumptions are ultimately inessential and the
paradox can be resolved without taking them into account. This does not seem to be the
case so far, but much remains to be understood.

To phrase the issue more generally, soft gravitons are produced in every scattering process.
The IR pole in the soft theorem says that their production is more ubiquitous than might
have been expected. In fact, infinitely many are produced in any physical process. The soft
modes are correlated highly with the hard modes [162,238] and can store information at little
or no cost in energy. Many are made in any process of black hole formation/evaporation in
a manner that is highly regulated by an infinite number of conservation laws. It strikes me
as implausible that we could solve the information paradox in asymptotically flat spacetime
without a good understanding of these modes.

What would it actually mean to solve the black hole information paradox? First, a
convincing solution must microscopically reproduce the Bekenstein-Hawking entropy SBH =
Area
4G

with the right factor of 1/4 in front, not just a squiggly line. As we now understand
them, soft modes on the horizon are both too many and too few for this purpose (although
see Donnay et al. [170]). They are too many because there is no UV cutoff. Presumably,
modes that are localized to shorter than the Planck length on the horizon should be thrown
out, but we do not know how to do this systematically. They are too few because of a
variant of the flavor problem: there are many different ways of throwing things into the
black hole that produce the same soft hairdo. Second, a satisfactory understanding of black
hole information should not be merely verbal but should enable explicit computations. In
particular, one would like an algorithm for computing the rate at which the information is
returned to infinity [239].

The last 40 plus years of contemplating the wonders of quantum black holes have been
truly amazing. It has led us to unexpected and fundamental new insights about the structure
of classical spacetime, exotic quantum states of matter, quantum chaos, nonperturbative
string theory, and a potentially revolutionary holographic reformulation of the laws of nature!
At the same time, clearly much more is to come, as the basic paradox in Hawking [161]
remains unresolved, while the current literature is replete with promising ideas and directions.
The adventure continues!

8 Exercises with Prahar Mitra and Monica Pate

This section contains exercises. We set G = 1 in all exercises and solutions.

1. Exercise 1. (Section 2)

Consider a scattering process in which an incoming null shockwave of the form

jv(v, r, z, z̄) =
1

r2 δ(v)Y`m(z, z̄) , jr = jz = 0 , (8.0.1)

scatters at the origin u = v = 0 into an outgoing null shockwave

ju(u, r, z, z̄) =
1

r2 δ(u)Y`′m′(z, z̄) , jr = jz = 0 , (8.0.2)

where Y`m
(
z, z̄
)

are the usual spherical harmonics on S2.
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(a) Find a solution for the field strength sourced by the null shockwave described
above, assuming that

F (2)
vr = lim

r→∞

[
r2Fvr

]
= 0 , (8.0.3)

and that F (0)
vz = lim

r→∞
Fvz only has support at the source v = 0.

(b) Using the result of part (a), compute A(0)
z on I+ and I− assuming A−(0)

z

∣∣
I−−

= 0

and A(0)
z

∣∣
I+
−

= A−(0)
z

∣∣
I−+

.

2. Exercise 2. (Section 2)

Working in Lorenz gauge ∇µAµ = 0 and, using a large-r expansion, show that in pure
abelian gauge theory, the four-dimensional gauge field Aµ(u, r, z, z̄) is determined, up
to u-independent integration constants by the equations of motion with boundary data
(initial conditions)

A(0)
z (u, z, z̄) = lim

r→∞
Az(u, r, z, z̄) . (8.0.4)

Hint: Use the residual gauge freedom to set A(1)
u = 0.

3. Exercise 3. (Section 2)

(a) Starting from the usual action for free abelian gauge theories

S = − 1

2e2

∫
F ∧ ∗F , (8.0.5)

use the formalism in [198] to derive the symplectic form (2.6.3).

(b) Work out the symplectic form explicitly on Σ = I+, and derive the commutators
(2.6.10) and (2.6.12).

4. Exercise 4. (Section 2)

Starting from the free field mode expansion

Aµ(x) = e
∑

α=±

∫
d3q

(2π)3

1

2ωq

[
εα∗µ (~q)aα(~q)eiq·x + εαµ(~q)a†α(~q)e−iq·x

]
, (8.0.6)

show that

e2∂zN(z, z̄) = − 1

8π

√
2e

1 + zz̄
lim
ω→0

+

[
ωa+(ωx̂) + ωa−(ωx̂)†

]
, (8.0.7)

where x̂ is the unit three-vector

x̂ =

(
z + z̄

1 + zz̄
,
−i(z − z̄)

1 + zz̄
,
1− zz̄
1 + zz̄

)
. (8.0.8)
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5. Exercise 5. (Section 2)

In this problem, you will show that the soft photon theorem for a single outgoing
photon,

〈out| aout
± (~q)S |in〉 → e

(
m∑

k=1

Qout
k

pout
k · ε±
pout
k · q

−
n∑

k=1

Qin
k

pin
k · ε±
pin
k · q

)
〈out| S |in〉 , (8.0.9)

is equivalent to the Ward identity for large gauge transformations.

(a) For massless momenta, use parameterizations of the type (2.8.13), namely,

pµ = E

(
1 ,

z + z̄

1 + zz̄
,
−i(z − z̄)

1 + zz̄
,
1− zz̄
1 + zz̄

)
, (8.0.10)

and rewrite the soft theorem (8.0.9) in terms of z, zin
k , zout

k , and Nz.

(b) For massive particles of mass m, use the momentum parameterization (2.12.13),

~p = mρx̂ , (8.0.11)

while keeping the parameterization q = ω(1, q̂) for the photon momentum, and
rewrite the soft theorem for a scattering amplitude of massive particles in the
(ρ, x̂) coordinates.

6. Exercise 6. (Section 2)

In this problem, we study large gauge transformations in Lorenz gauge, ∇µAµ = 0.
These are gauge transformations that are nonzero on I± and satisfy ∇µ∇µε = 0. We
will work in coordinates (ν, r, θ, φ), where ν = t

r
.

(a) On a Penrose diagram, draw lines of constant ν and lines of constant r.

(b) Determine the scalar wave equation in these coordinates.

(c) Find the most general non singular r-independent solution that is of the form
ε`m(ν, θ, φ) = A`(ν)Y `

m(θ, φ). Be sure to demand that the solution is continuous
and finite at both ν = ±1 and the origin ν = ±∞ (by choosing appropriate
branch cuts at ν = ±1).

(d) Determine the near-I+ expansion of ε2m(u, r, θ, φ) to O(r−1).

(e) Verify from a large-r expansion around I+ (in retarded radial coordinates) that
the form of the subleading behavior obtained in part (d) is required for any so-
lution of the wave equation whose limit on I+ is an arbitrary nonvanishing and
nonsingular function on S2.

7. Exercise 7. (Section 2)

In this problem, you will derive the symplectic form for massive scalar fields near future
timelike infinity. To resolve i+, work in the coordinates (2.12.10) [14],

τ =
√
t2 − r2 , ρ =

r√
t2 − r2

. (8.0.12)
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(a) Start with the free field mode expansion for a real massive scalar

φ(x) =

∫
d3p

(2π)3

1

2ωp

[
a(~p)eip·x + a†(~p)e−ip·x

]
, (8.0.13)

and determine the leading order term in the asymptotic expansion of the field in
the limit τ →∞.

(b) Determine the symplectic form on a Cauchy surface Σ for a free massive real
scalar, governed by the action

S = −1

2

∫
d4x
√−g

[
(∂µφ)2 +m2φ2

]
. (8.0.14)

(c) Now take Σ to be a constant-τ slice in the coordinates defined in (8.0.12), and
determine the symplectic form in the limit τ →∞.

(d) Verify that the commutation relations determined by this symplectic form are the
standard free field commutation relations:

[a(~p), a†(~p′)] = (2π)3(2ωp)δ
3(~p− ~p′) . (8.0.15)

8. Exercise 8. (Section 2)

Consider the hard part F h[χ] of the fermionic charge that generates the soft-photino
theorem,

F h[χ] =
1

4

∫
dud2zγzz̄χ(z, z̄)u∂uk̄− , (8.0.16)

where k̄− is the large-r limit of the fermionic current. For minimally coupled N = 1
supersymmetric QED, k̄− =

√
2Qφψ̄−, where φ and ψ̄− are the boundary values of the

bulk fields Φ and Ψ̄α̇, respectively:

Φ(u, r, z, z̄) =
1

r
φ(u, z, z̄) +O(r−2) ,

Ψ̄α̇(u, r, z, z̄) =
1

r
ψ̄−(u, z, z̄)ξ̄−α̇ +O(r−2) .

(8.0.17)

ξ±α and ξ̄∓α̇ are commuting two-component helicity basis spinors (i.e., they are eigen-
spinors of σz

z)

(σz
zξ±)α = ±1

2
ξ±α ,

(
ξ±α
)∗

= ξ̄∓α̇ . (8.0.18)

Using the form above, derive the action of F h[χ] on the radiative modes ∂uφ̄ and ψ+.
Note that the action of F h[χ] mimics that of the superconformal generators Sα except
that it acts only on charged matter.

Hint: You can either derive the symplectic form on I+ for scalars and fermions or
rewrite the fields on I+ in terms of the usual creation and annihilation operators.
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9. Exercise 9. (Section 4)

(a) Consider an amplitudeAa1,a2
n+2 (q1, ε1, q2, ε2; p1, · · · , pn) containing two outgoing glu-

ons with color, momentum, and polarization (a1, q1, ε1) and (a2, q2, ε2), and n
particles charged under the gauge group. Derive the following double-soft limit

[
lim
q1→0

, lim
q2→0

]
Aa1,a2
n+2 (q1, ε1, q2, ε2; p1, · · · , pn) . (8.0.19)

(b) Show that when the two gluons have the same helicity the above quantity vanishes.

10. Exercise 10. (Section 5)

Any four-dimensional Lorentzian metric can be written in Bondi gauge as

ds2 = −Udu2 − 2e2βdudr + gAB

(
dxA +

1

2
UAdu

)(
dxB +

1

2
UBdu

)
. (8.0.20)

Asymptotically flat spacetimes are defined by the following falloff conditions for the
Weyl tensor:

Crzrz ∼ O(r−3) , Crurz, Crurz̄ ∼ O(r−3) at large r, (8.0.21)

along with some other assumptions of uniform smoothness that will not be considered
here. In (5.1.4), asymptotically flat spacetimes are described by the large-r expansion

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ +
2mB

r
du2 + rCzzdz

2 + Uzdudz + c.c.+ · · · .
(8.0.22)

Show that this metric satisfies the first equation of (8.0.21). Use the second equation
to derive a constraint on Uz and Uz̄.

11. Exercise 11. (Section 5)

In retarded Bondi gauge, a four-dimensional Lorentzian spacetime can be written as

ds2 = −Udu2 − 2e2βdudr + gAB

(
dxA +

1

2
UAdu

)(
dxB +

1

2
UBdu

)
, (8.0.23)

where det g = r4 det γ, and γAB is the two-dimensional metric on the round sphere, S2.
As discussed in section 5.1, the asymptotic falloff conditions for the component fields
are

U = 1− 2mB

r
+O(r−2) , β = O(r−2) ,

UA =
1

r2D
BCBA +O(r−3) , gAB = r2γAB + rCAB +O(1) ,

(8.0.24)

where γAB is the round metric on S2, DA is its covariant derivative, and all indices
(A,B,C, · · · ) are raised and lowered with respect to γAB.
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(a) Show that the coordinate condition ∂r det
(
gAB
r
2

)
= 0 implies that CAB is traceless.

(b) Find the most general diffeomorphism ξ that preserves the form of this metric and
that satisfies the asymptotic falloffs ξu, ξr ∼ O(1) and ξz, ξz̄ ∼ O(r−1) at large r.
Be sure to keep track of the leading and the first subleading terms in the large-r
expansion.

(c) The diffeomorphism in part (b) is parametrized by a function f(xA) on the sphere.
Show that, to leading order, the Lie algebra of supertranslations is abelian:

[ξ(f1), ξ(f2)] = O(r−1) . (8.0.25)

(d) Show that the action of ξ(f) on mB, CAB, and NAB = ∂uCAB is

LfCAB = f∂uCAB − 2DADBf + γABD
2f ,

LfNAB = f∂uNAB ,

LfmB = f∂umB +
1

4

(
NABDADBf + 2DAN

ABDBf
)
.

(8.0.26)

Note that the traceless condition on CAB is preserved under supertranslations.

(e) The function f(xA) can be expanded in spherical harmonics on the sphere. Show
that the ` = 0 and ` = 1 modes in this expansion correspond to the standard
global translations in Minkowski spacetime. Find the action of these modes on
CAB, NAB, and mB.

12. Exercise 12. (Section 5)

In addition to the supertranslations, the four-dimensional BMS algebra also contains
generators of an (extended) Lorentz group. We will study these in this problem.

(a) Determine the Killing vector ζ that generates Lorentz transformations in flat
spacetime in the (u, r, z, z̄) coordinates. Show that it can be parametrized in
terms of a global CKV Y A on S2, and find ζ(Y ).39

(b) Show that [ζ(Y1), ζ(Y2)] = ζ ([Y1, Y2]). This shows that the Lorentz algebra is
isomorphic to SL(2,C), the algebra of global CKVs of S2.

(c) Show that ζ(Y ) preserves the asymptotic form of the metric in asymptotically flat
spacetimes even when Y is a local CKV of S2, except at possibly isolated analytic
singularities. Find the action of ζ(Y ) on CAB. These diffeomorphisms are called
superrotations.

13. Exercise 13. (Section 6)

In this problem, we study the gravitational memory effect experienced by inertial
observers due to supertranslations.

39A conformal Killing vector (CKV) on S2 is one that satisfies DAYB + DBYA = γABDCY
C . In the

(z, z̄) coordinates, this equation reads ∂z̄Y
z = ∂zY

z̄ = 0, implying that any holomorphic vector field Y z(z)
is locally a CKV. The ones that are defined globally on the sphere S2 take the special form Y z(z) = a+bz+cz2

for a, b, c ∈ C.

104



(a) Working in retarded Bondi coordinates, determine the first subleading correction
to the component of the four-velocity of an inertial time-like observer that is
stationary with respect to retarded time at leading order (i.e., vµ = δµu +O(r−1)).
Then determine the trajectory with this four-velocity that passes through the
point (u0, r0, z0, z̄0) and is valid for |u − u0| � r0. Be sure to determine any
subleading corrections needed to reproduce the subleading corrections to the four-
velocity.

(b) Now consider a nearby inertial observer, who at u = u0 is located at the same
radius r0 but at a different point (z1, z̄1) on the asymptotic S2, where |z1 − z0| ∼
O(r−1

0 ). Determine the proper distance between the observers at retarded time
u > u0 to leading order in the large-r0 limit. Assume u− u0 � r0, so you can use
the trajectory determined in part (a).

(c) A burst of radiation of the following form passes the observers:

TMuu(u, r, z, z̄) =
µ

4πr2 δ(u− urad)γzz̄δ2(z − zrad) , (8.0.27)

where

urad > u0 ,
|urad − u0|

r0

� 1 . (8.0.28)

Determine the change in proper distance between the observers as a result of the
passage of this radiation. You will need to work consistently to an order at which
this change is nonzero. Also, assume that the Bondi mass mB is independent of
(z, z̄).

(d) Find the supertranslation f that gives rise to the same change in proper distance
as calculated in part (c).

14. Exercise 14. (Section 7)

Consider a Schwarzschild black hole with mass M perturbed by a null shockwave at
v = v0 described by the stress tensor

Tvv =
1

4πr2

[
µ+

1

4
D2
(
D2 + 2

)
f

]
δ (v − v0)− 3M

8πr3D
2fδ (v − v0) ,

TvA = − 3M

8πr2DAfδ (v − v0) .

(8.0.29)

(a) Solve the linearized Einstein’s equations about the initial Schwarzschild solution
in Bondi gauge. Assume that only the zero mode of the Bondi mass aspect mB

on I− changes under this perturbation.

(b) Show that the final black hole (after v > v0) can be obtained instead by sending
a spherically symmetric null shockwave with stress tensor

Tvv =
µ

4πr2 δ (v − v0) , (8.0.30)

followed by an infinitesimal supertranslation.
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15. Exercise 15. (Section 7)

Consider the Vaidya black hole created by a spherically symmetric null shockwave at
v = 0. We define the horizon large gauge charge as

QH
+

ε ≡ 1

e2

∫

H+
+

ε ∗ F , (8.0.31)

where H+
+ is the future of the horizon of the Vaidya black hole.

(a) Using the constraints derived from Maxwell’s equations on the horizonH+, rewrite

QH
+

ε as an integral over H+, and determine the soft and hard parts of this charge.
Write the soft charge explicitly in the (v, r, z, z̄) coordinates.

(b) Determine the symplectic form for the gauge fields on H+. (Hint: You can use the
symplectic form ΩΣ derived in exercise 3 and set Σ = H+). Write it out explicitly
in (v, r, z, z̄) coordinates.

(c) By using the explicit forms of the charge and symplectic form derived in parts (a)

and (b), show that Q̂H
+

ε generates large gauge transformations on the horizon,
that is,

[
Q̂H

+

ε , Az

]
H+

= i∂zε
∣∣
H+ . (8.0.32)

9 Solutions with Prahar Mitra and Monica Pate

1(a). First consider the electric field produced by an incoming null shockwave. We work in
the (v, r, z, z̄) coordinates. Maxwell’s equations take the explicit form

(∂v + ∂r)
(
r2Frv

)
− γzz̄ (∂zFvz̄ + ∂z̄Fvz) = e2δ(v)Y`m ,

∂r
(
r2Frv

)
+ γzz̄ (∂zFrz̄ + ∂z̄Frz) = 0 ,

r2 (∂v + ∂r)Frz + r2∂rFvz − ∂z
(
γzz̄Fzz̄

)
= 0 .

(9.0.1)

We also have the Bianchi identities, namely,

∂vFzz̄ + ∂z̄Fvz − ∂zFvz̄ = 0 ,

∂rFzz̄ + ∂z̄Frz − ∂zFrz̄ = 0 ,

∂vFrz − ∂zFrv − ∂rFvz = 0 .

(9.0.2)

A simple solution satisfying the boundary conditions is

Fvz = −e2δ(v)∂zε`m , Fvr = Frz = Fzz̄ = 0 , (9.0.3)

where

ε`m =

{
log
(
1 + zz̄

)
Y00 , ` = 0 ,

− 1
`(`+1)

Y`m , ` 6= 0 ,
(9.0.4)
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and Y`m satisfies

2γzz̄∂z∂z̄Y`m = −`(`+ 1)Y`m . (9.0.5)

This implies

2γzz̄∂z∂z̄ε`m = Y`m . (9.0.6)

Any other solution differs from this one by a solution to the homogeneous Maxwell
equation.

Similarly, for the outgoing null shockwave, the solution is

Fuz = −e2δ(u)∂zε`′m′ , Fur = Frz = Fzz̄ = 0 . (9.0.7)

1(b). We have F (0)
vz = ∂vA

−(0)
z and the boundary condition A−(0)

z

∣∣
I−−

= 0, we find

A−(0)
z (v, z, z̄) = −e2θ(v)∂zε`m(z, z̄) , (9.0.8)

where θ is the Heaviside step function. Then, using the antipodal matching condition,
we find

A(0)
z

∣∣
I+
−

= −e2∂zε`m(z, z̄) . (9.0.9)

Finally, integrating F (0)
uz = ∂uA

(0)
z and using the above boundary condition, we find

A(0)
z (u, z, z̄) = −e2∂zε`m(z, z̄)− e2θ(u)∂zε`′m′(z, z̄) . (9.0.10)

2(a). In the (u, r, z, z̄) coordinates, the Lorenz gauge condition and Maxwell equations take
the form

(∂u − ∂r)
(
r2Fru

)
+ γzz̄ (∂zFuz̄ + ∂z̄Fuz) = 0 ,

−∂r
(
r2Fru

)
+ γzz̄ (∂zFrz̄ + ∂z̄Frz) = 0 ,

r2 (∂u − ∂r)Frz + r2∂rFuz + ∂z
(
γzz̄Fzz̄

)
= 0 ,

−∂u
(
r2Ar

)
− ∂r

(
r2Au

)
+ ∂r

(
r2Ar

)
+ γzz̄ (∂zAz̄ + ∂z̄Az) = 0 .

(9.0.11)

To impose the Bianchi identity, express the Maxwell equations in terms of the gauge
field Aµ, and in addition, substitute the Lorenz gauge condition into each Maxwell
equation:

−2r∂r(r∂uAu) + ∂r(r
2∂rAu) + 2γzz̄∂z∂z̄Au = 0 ,

−2∂r(rAu)− 2∂u∂r(r
2Ar) + ∂2

r (r
2Ar) + 2γzz̄∂z∂z̄Ar = 0 ,

−2r2∂u∂rAz + r2∂2
rAz + 2r∂z(Ar − Au) + 2∂z(γ

zz̄∂z̄Az) = 0 .

(9.0.12)

The gauge field can be expanded at large r as

Au =
∞∑

n=2

A(n)
u

rn
, Ar =

∞∑

n=2

A(n)
r

rn
, Az =

∞∑

n=0

A(n)
z

rn
. (9.0.13)
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Note that Au has a slightly different expansion than what was given in section 2,
namely, A(1)

u = 0. The Lorenz gauge condition leaves unfixed a set of residual gauge
transformations satisfying �ε = 0. Among these are a set of trivial gauge trans-
formations with falloff behavior O(1/r) near I+. This set of residual trivial gauge
transformations has precisely the degrees of freedom of a massless scalar field with the
usual falloff near I+, and thus, the residual trivial gauge symmetry can be used to set
A(1)
u = 0. Then the Lorenz gauge condition has the following expansion:

∂uA
(2)
r = γzz̄

(
∂zA

(0)
z̄ + ∂z̄A

(0)
z

)
,

∂uA
(3)
r = γzz̄

(
∂zA

(1)
z̄ + ∂z̄A

(1)
z

)
,

∂uA
(n+2)
r = (n− 1)(A(n+1)

u − A(n+1)
r ) + γzz̄

(
∂zA

(n)
z̄ + ∂z̄A

(n)
z

)
, n > 1 .

(9.0.14)

Using the leading order equation, one can determine A(2)
r up to integration constants

in terms of the boundary data A(0)
z . The first equation in (9.0.12) has the following

expansion:

∂uA
(2)
u = 0 ,

∂uA
(n+1)
u = − 1

2n

[
n(n− 1) + 2γzz̄∂z∂z̄

]
A(n)
u , n > 1 .

(9.0.15)

Hence, we can determine all A(n)
u up to integration constants. The second equation in

(9.0.12) has the following expansion:

∂uA
(3)
r = −A(2)

u − γzz̄∂z∂z̄A(2)
r ,

∂uA
(n+1)
r = −A(n)

u −
[

1

2
(n− 2) +

1

n− 1
γzz̄∂z∂z̄

]
A(n)
r , n > 2 .

(9.0.16)

Hence, with the previously determined set of A(n)
u and A(2)

r , we can determine all A(n)
r

up to integration constants. Finally, the third equation in (9.0.12) has the following
expansion:

∂uA
(1)
z = −∂z(γzz̄∂z̄A(0)

z ) ,

∂uA
(n+1)
z =

1

n+ 1

[
−∂zA(n+1)

r + ∂zA
(n+1)
u − 1

2
n(n+ 1)A(n)

z − ∂z(γzz̄∂z̄A(n)
z )

]
,

(9.0.17)

for n > 0. With the previously determined sets of A(n)
u and A(n)

r plus the boundary
data A(0)

z , we can determine all A(n)
z , up to integration constants. Therefore, we have

determined the full four-dimensional gauge field entirely in terms of A(0)
z up to integra-

tion constants. Note the remaining (seemingly unused) equations in (9.0.15) give rise
to additional constraints on the integration constants.

3(a). Varying the action, we find

δS = − 1

e2

∫
dδA ∧ ∗F =

1

e2

∫
(d ∗ F ) ∧ δA− 1

e2

∫
d (∗F ∧ δA) . (9.0.18)
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The equations of motion are d ∗F = 0. Following [198], the (pre) symplectic potential
current density can be read off as

Θ (A, δA) = − 1

e2 (∗F ) ∧ δA . (9.0.19)

The symplectic form is then

ΩΣ =

∫

Σ

ω (A, δ1A, δ2A) = − 1

e2

∫

Σ

[δ1 (∗F ) ∧ δ2A− δ2 (∗F ) ∧ δ1A] . (9.0.20)

In terms of a wedge product of differential forms on the symplectic manifold, this can
be written as

ΩΣ = − 1

e2

∫

Σ

δ (∗F ) ∧ δA . (9.0.21)

3(b). For Σ = I+, we are interested in the uzz̄ component of the above three-form. We find

ωuzz̄

∣∣
I+ = − 1

e2 [δ(∗F )uz ∧ δAz̄ + δ(∗F )z̄u ∧ δAz + δ(∗F )zz̄ ∧ δAu]I+

= − i

e2

[
δF (0)

uz ∧ δA(0)
z̄ + δF

(0)
uz̄ ∧ δA(0)

z

]
,

(9.0.22)

where

(∗F )uz = εuzrz̄F
rz̄ = i (Fuz − Frz) , (∗F )zz̄ = ir2γzz̄Fru . (9.0.23)

This implies

ΩI+ =
1

e2

∫
dud2z

[
δF (0)

uz ∧ δA(0)
z̄ + δF

(0)
uz̄ ∧ δA(0)

z

]
. (9.0.24)

We now use this to write everything in terms of Âz, φ, and N . To do this, we write

A(0)
z = Âz + ∂zφ ,

∫ ∞

−∞
duF (0)

uz = e2∂zN , (9.0.25)

which gives

ΩI+ =
2

e2

∫
dud2z∂uδÂz ∧ δÂz̄ − 2

∫
d2zδ∂zφ ∧ ∂z̄δN . (9.0.26)

We can then derive the brackets

− 2

e2

[
∂uÂz(u, z, z̄), Âw̄(u′, w, w̄)

]
= iδ(u− u′)δ2(z − w) ,

2 [∂zφ(z, z̄), ∂w̄N(w, w̄)] = iδ2(z − w) .
(9.0.27)

Integrating the above, we find

[
Âz(u, z, z̄), Âw̄(u′, w, w̄)

]
= −ie

2

4
Θ(u− u′)δ2(z − w) ,

[φ(z, z̄), N(w, w̄)] = − i

4π
log |z − w|2 + f(z, z̄) + g(w, w̄) .

(9.0.28)
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4. The free field mode expansion can be written as

Aµ(x) = e
∑

α=±

∫
d3q

(2π)3

1

2ωq

[
ε∗αµ (~q)aα(~q)e−iωqu−iωqr(1−q̂·x̂)

+εαµ(~q)a†α(~q)eiωqu+iωqr(1−q̂·x̂)
]

=
e

8π2

∑

α=±

∫ ∞

0

dωqωq

∫ π

0

dθ sin θ
[
ε∗αµ (~q)aα(~q)e−iωqu−iωqr(1−cos θ)

+εαµ(~q)a†α(~q)eiωqu+iωqr(1−cos θ)
]
.

(9.0.29)

At large r, we use the saddle point approximation. The exponent is stationary at
θ = 0, π. The saddle point at θ = π does not contribute due to the Riemann-Lebesgue
lemma (the assumptions of the lemma hold here as operator statements due to the
cluster decomposition principle that all S-matrices satisfy). Then, expanding the in-
tegrand around θ = 0, we find

Aµ(x) =
e

8π2

∑

α=±

∫ ∞

0

dωqωqε
∗α
µ (ωqx̂)aα(ωqx̂)e−iωqu

∫ π

0

dθθe−iωqrθ
2
/2 + c.c.+O(r−2)

= − ie

8π2r

∑

α=±

∫ ∞

0

dωq
[
ε∗αµ (ωqx̂)aα(ωqx̂)e−iωqu − c.c.

]
+O(r−2) .

(9.0.30)

We are interested first in Az = ∂zx
µAµ. To determine this, note that

∂zx
µε+

µ (ωqx̂) = 0 , ∂zx
µε−µ (ωqx̂) =

√
2r

1 + zz̄
. (9.0.31)

Using this, we find

Az = − i

8π2

√
2e

1 + zz̄

∫ ∞

0

dωq

[
a+(ωqx̂)e−iωqu − a†−(ωqx̂)eiωqu

]
+O(r−1) . (9.0.32)

Finally, we can immediately read off from this equation the large-r mode:

A(0)
z = − i

8π2

√
2e

1 + zz̄

∫ ∞

0

dωq

[
a+(ωqx̂)e−iωqu − a†−(ωqx̂)eiωqu

]
. (9.0.33)

From this, we find

e2∂zN =
1

2
lim
ω→0

+

∫ ∞

−∞
du
(
eiωu + e−iωu

)
∂uA

(0)
z

= − 1

8π

√
2e

1 + zz̄
lim
ω→0

+

[
ωa+(ωx̂) + ωa†−(ωx̂)

]
.

(9.0.34)
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5(a). Rewriting expression (8.0.9) is a simple problem of algebra. We are required to sub-
stitute

qµ =
ω

1 + zz̄
(1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) ,

pµk =
Ek

1 + zkz̄k
(1 + zkz̄k, zk + z̄k,−i(zk − z̄k), 1− zkz̄k) ,

εµ+(q) =
1√
2

(z̄, 1,−i,−z̄) ,

εµ−(q) =
1√
2

(z, 1, i,−z) .

(9.0.35)

To simplify the algebra a little, note that the polarizations satisfy the property

εµ+(q) =
1√
2ω
∂z [(1 + zz̄) qµ] , εµ−(q) =

1√
2ω
∂z̄ [(1 + zz̄) qµ] . (9.0.36)

Then the soft factor for the kth particle takes the form

pk · ε+

pk · q
=

1√
2ω

∂z [(1 + zz̄) pk · q]
pk · q

=
1√
2ω

(1 + zz̄) ∂z log [(1 + zz̄) pk · q] .
(9.0.37)

A similar formula for negative helicity holds with ∂z → ∂z̄. Finally, compute

pk · q = − 2ωEk
(1 + zz̄) (1 + zkz̄k)

|z − zk|2 . (9.0.38)

Then the soft factor is

pk · ε+

pk · q
=

1√
2ω

(1 + zz̄) ∂z log |z − zk|2 =
1√
2ω

1 + zz̄

z − zk
,

pk · ε−
pk · q

=
1√
2ω

(1 + zz̄) ∂z̄ log |z − zk|2 =
1√
2ω

1 + zz̄

z̄ − z̄k
.

(9.0.39)

Thus, the soft-theorem can be written as

lim
ω→0

+

[
ω 〈out| aout

+ (ωx̂)S |in〉
]

=
e√
2

(1 + zz̄)

[∑

k∈out

Qk

z − zk
−
∑

k∈in

Qk

z − zk

]
〈out| S |in〉 .

(9.0.40)

A similar formula is true for the negative helicity photon. Finally, note that we can
write the limit in terms of an insertion of Nz, by using formula (8.0.7) derived in
exercise 4, namely,

e2∂zN = − 1

8π2

√
2e

1 + zz̄
lim
ω→0

+

[
ωa+ (ωx̂) + ωa†− (ωx̂)

]
. (9.0.41)

This gives for an insertion of Nz,

〈out| ∂zN S |in〉 = − 1

8π2

[∑

k∈out

Qk

z − zk
−
∑

k∈in

Qk

z − zk

]
〈out| S |in〉 . (9.0.42)
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5(b). Again, it will be convenient to write the soft factor

pk · ε+

pk · q
= − 1√

2ω
(1 + zz̄) ∂z log

(1 + zz̄)−1

pk · q
. (9.0.43)

However, now we parametrize pµk = mk

(√
1 + ρ2

k , ρkx̂k

)
and qµ = ω (1, q̂). Then, we

find

pk · ε+

pk · q
= − 1

2
√

2ω
(1 + zz̄) ∂z log

γzz̄(√
1 + ρ2

k − ρkq̂ · x̂k
)2

. (9.0.44)

Note that the mass mk drops out of the formula. Now, recall the scalar propagator
(2.12.11):

G (ρ, x̂; q̂) =
1

4π

γzz̄(√
1 + ρ2 − ρq̂ · x̂

)2
. (9.0.45)

This is precisely the term in the logarithm in the soft factor. Thus, we find

pk · ε+

pk · q
= − 1

2
√

2ω
(1 + zz̄) ∂z logG (ρk, x̂k; q̂) . (9.0.46)

Then the soft theorem can be written as

〈out| ∂zN S |in〉 = 〈out| S |in〉
[∑

k∈out

−
∑

k∈in

]
Qk

16π2∂z logG (ρk, x̂k; q̂) . (9.0.47)

6(a). The compactified coordinates on the Penrose diagram of Minkowski space are given by

T = tan−1 (t+ r) + tan−1 (t− r) ,

R = tan−1 (t+ r)− tan−1 (t− r) ,
(9.0.48)

with the coordinate range R + |T | < π and R ≥ 0. Setting t = νr, we find

T = tan−1 [r (ν + 1)] + tan−1 [r (ν − 1)] ,

R = tan−1 [r (ν + 1)]− tan−1 [r (ν − 1)] .
(9.0.49)

Lines of constant ν and constant r are shown in figure 24 .

6(b). Let us first determine the metric in these coordinates. We start from the metric of
Minkowski space in the standard spherical coordinates

ds2 = −dt2 + dr2 + r2dΩ2
2 . (9.0.50)

Substituting in t = νr, we find

ds2 = −(rdν + νdr)2 + dr2 + r2dΩ2
2

= −r2dν2 − 2νrdνdr +
(
1− ν2

)
dr2 + r2dΩ2

2 .
(9.0.51)
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Figure 24: Lines of constant ν (left) and constant r (right).

The inverse metric is

gµρ =
1

r2



−
(
1− ν2

)
−rν 0

−νr r2 0

0 0 γAB


 , (9.0.52)

where xA = (θ, φ), and γAB is the inverse metric on the unit S2. Note that
√−g =

r3√γ. The scalar wave equation is then

0 = D2ε =
1√−g∂µ

(√−ggµρ∂ρε
)

= − 1

r2

(
1− ν2

)
∂2
νε−

2ν

r
∂ν∂rε+

2

r
∂rε+ ∂2

rε+
1

r2D
2ε ,

(9.0.53)

where D2 is the Laplacian operator on S2.

6(c). For r-independent solutions, the scalar wave equation reduces to

(
1− ν2

)
∂2
νε = D2ε . (9.0.54)

Now consider solutions of the form ε`m(ν, xA) = A`(ν)Y `
m(xA). By noting that Y `

m(xA)
satisfies D2Y `

m = −` (`+ 1)Y `
m, we find the following equation for A`(ν):

(
1− ν2

)
∂2
νA`(ν) = −` (`+ 1)A`(ν) . (9.0.55)
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When ` = 0, the most general solution is A0(ν) = d1ν+d2. Requiring that the function
be well defined at the origin, ν → ±∞ requires d1 = 0. We also normalize the solution
so that A`(1) = 1. Thus, we must have d2 = 1. So, for ` = 0, the solution is

A0(ν) = 1 . (9.0.56)

We now come to the less trivial case ` > 0, which will be our assumption for the rest
of this problem. The first step is to note that by taking a derivative of the equation
above we arrive at

(
1− ν2

)
A′′′` (ν)− 2νA′′` (ν) + ` (`+ 1)A′`(ν) = 0 , (9.0.57)

which is the Legendre equation for A′`(ν). Thus, we must have

A′`(ν) = c1P`(ν) + c2Q`(ν) . (9.0.58)

Integrating this equation yields

A`(ν) =
c1

2`+ 1
[P`+1(ν)− P`−1(ν)] +

c2

2`+ 1
[Q`+1(ν)−Q`−1(ν)] + c3 , (9.0.59)

where we have used the formula
∫
dνP`(ν) =

P`+1(ν)− P`−1(ν)

2`+ 1
, (9.0.60)

and similarly for Q`. Note that we originally started out with a second order differential
equation, whereas our final answer for A`(ν) contains three unknown constants. This is
because we took a derivative of the original differential equation (9.0.55) in the process.
To fix one of the constants, let us plug in our ansatz for the solution into the original
differential equation. To do this, we use the property

[(
1− ν2

)
∂2
ν + ` (`+ 1)

]
[P`+1(ν)− P`−1(ν)] = 0 ,

[(
1− ν2

)
∂2
ν + ` (`+ 1)

]
[Q`+1(ν)−Q`−1(ν)] = 0 .

(9.0.61)

Thus, for (9.0.59) to satisfy the differential equation, we must have c3 = 0. So, we find
the solution

A`(ν) = c1 [P`+1(ν)− P`−1(ν)] + c2 [Q`+1(ν)−Q`−1(ν)] . (9.0.62)

We are interested in studying the properties of this function at ν = ±1 and ν = ±∞.
For this purpose, a more convenient representation of Q`(ν) is

Q`(ν) =
1

2
P`(ν) log

1 + ν

1− ν + F`(ν) , |ν| < 1 , (9.0.63)

where

F`(ν) = −
b `−1

2
c∑

k=0

2`− 4k − 1

(2k + 1) (`− k)
P`−2k−1(ν) . (9.0.64)
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Note that F`(ν) is a polynomial in ν. Then we have

A`(ν) =

[
c1 +

c2

2
log

1 + ν

1− ν

]
[P`+1(ν)− P`−1(ν)] + c2 [F`+1(ν)− F`−1(ν)] , (9.0.65)

for |ν| < 1. Due to the logarithm in the parenthesis above, A`(ν) has a branch point
at ν = ±1. Thus, we must choose an appropriate branch cut. We would like to choose
the branch cut so that A`(ν) is defined for all ν ∈ R and so that it does not diverge
at both ν → ±∞. As a result, the branch cuts must be chosen as follows. First, we
choose an arbitrary branch cut at ν = +1. This determines a particular way of defining
A`(ν) for ν > 1 and in the process also specifies the asymptotic behavior of A`(ν) at
ν →∞. Requiring that this is finite will fix c1 in terms of c2. Once this has been done,
the choice of branch at ν = −1 is fixed by requiring that the same solution (namely,
for the same choice of c1 and c2) also be finite at ν → −∞. We choose the branch cut
at ν = 1 so that it extends along ν = 1 + it for t > 0. With this choice of the branch
cut, the extension of A`(ν) to ν > 1 is fixed as

A`(ν) =

[
c1 −

ic2π

2
+
c2

2
log

ν + 1

ν − 1

]
[P`+1(ν)− P`−1(ν)] + c2 [F`+1(ν)− F`−1(ν)] .

(9.0.66)

This extension can be seen by writing ν = 1 − reiθ near the branch point. Note that
as θ goes from 0 to π, we move from ν < 1 to ν > 1 without crossing the branch cut.
Plugging ν = 1 − reiθ into (9.0.65), then setting θ = π, and finally setting r = ν − 1,
we reproduce (9.0.66). We can now study the asymptotics of this function at large ν.
The leading term in the large ν expansion arises from P`+1(ν), which goes like

P`+1(ν) → 2−`−1(2`+ 2)!

(`+ 1)!2
ν`+1 as ν →∞ . (9.0.67)

Then we find

A`(ν)→
(
c1 −

ic2π

2

)
2−`−1(2`+ 2)!

(`+ 1)!2
ν`+1 + · · · . (9.0.68)

The quantity above is divergent unless c1 = ic2π
2

. A proper check requires that we also
verify that the subleading divergent powers also do not contribute in this limit. The
subleading divergent powers do not contribute because

1

2
log

ν + 1

ν − 1
P`(ν) + F`(ν) = O

(
ν−`−1

)
at large ν . (9.0.69)

Thus, we have determined that for the choice c1 = ic2π
2

, A`(ν) is completely finite at
large ν. We now consider the extension of A`(ν) to ν < −1. Since the asymptotics of
the Legendre polynomials is the same at ν → −∞ as it is for ν → +∞, it is clear that
a branch cut must be chosen so that A`(ν) takes exactly the form (9.0.66) for ν < −1.
This requires choosing a branch that starts at ν = −1 and extends along ν = −1 + it
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polynomials is the same at ⌫ ! �1 as it is for ⌫ ! +1, it is clear that a branch cut must

be chosen so that A`(⌫) takes exactly the form (5.53) for ⌫ < �1. This requires choosing a

branch that starts at ⌫ = �1 and extends along ⌫ = �1 + it for t > 0. The branch cuts for

the function in the complex ⌫ plane are shown below

⌫

Figure 2: Branch cuts for A`(⌫).

In summary, we have so far constructed branch cuts so that the function is well-defined at

⌫ = ±1. In doing so, we have defined the function everywhere except at ⌫ = ±1. Indeed, due

to the presence of the branch point, it is not clear that the function can be defined at that

point. However, we note that this is not the case. The only divergence at ⌫ = ±1 arises from

the log. This is multiplied by P`+1(⌫) � P`�1(⌫) which vanishes polynomially near ⌫ = ±1.

Thus, A`(±1) is finite and well-defined. In fact, the function is also continuous at this point

since the only non-vanishing term in this limit arises from F`(⌫) which is a polynomial and

continuous everywhere. Explicitly, we have

A`(±1) = lim
h!0±

A`(±1 + h) = c2 [F`+1(±1) � F`�1(±1)] = �(±1)`
c2 (2`+ 1)

` (`+ 1)
. (5.57)

As before, we normalize the function so that A`(1) = 1. This fixes

c2 = �`(`+ 1)

2`+ 1
. (5.58)

In summary, we have

A`(⌫) =

8
<
:

� `(`+1)
2`+1

⇥ ⇣
i⇡
2 + 1

2 log 1+⌫
1�⌫

⌘
[P`+1(⌫) � P`�1(⌫)] + F`+1(⌫) � F`�1(⌫)

⇤
, |⌫| < 1 ,

� `(`+1)
2`+1

⇥
1
2 [P`+1(⌫) � P`�1(⌫)] log ⌫+1

⌫�1 + F`+1(⌫) � F`�1(⌫)
⇤

, |⌫| > 1 .

(5.59)

(d) For ` = 2, the solution above (when ⌫ > 1) takes the form

A2(⌫) = 3⌫2 � 2 +
3

2
⌫
�
1 � ⌫2

�
log

⌫ + 1

⌫ � 1
. (5.60)

10

Figure 25: Branch cuts for A`(ν).

for t > 0. The branch cuts for the function in the complex ν plane are shown in figure
25. In summary, we have so far constructed branch cuts so that the function is well
defined at ν = ±∞. In doing so, we have defined the function everywhere except at
ν = ±1. Indeed, due to the presence of the branch point, it is not a priori evident
that the function can be defined at these points. However, note that this is not the
case. The only divergence at ν = ±1 arises from the logarithm. This is multiplied by
P`+1(ν) − P`−1(ν), which vanishes polynomially near ν = ±1. Thus, A`(±1) is finite
and well defined. In fact, the function is also continuous at this point, since the only
nonvanishing term in this limit arises from F`(ν), which is a polynomial and continuous
everywhere. Explicitly, we have

A`(±1) = lim
h→0

±
A`(±1 + h) = c2 [F`+1(±1)− F`−1(±1)] = −(±1)`

c2 (2`+ 1)

` (`+ 1)
.

(9.0.70)

As before, we normalize the function so that A`(1) = 1. This fixes

c2 = −`(`+ 1)

2`+ 1
. (9.0.71)

In summary, for |ν| < 1, we have

A`(ν) = −`(`+ 1)

2`+ 1

[
1

2
log eiπ

1 + ν

1− ν [P`+1(ν)− P`−1(ν)] + F`+1(ν)− F`−1(ν)

]
,

(9.0.72)

whereas for |ν| > 1, we have

A`(ν) = −`(`+ 1)

2`+ 1

[
1

2
[P`+1(ν)− P`−1(ν)] log

ν + 1

ν − 1
+ F`+1(ν)− F`−1(ν)

]
. (9.0.73)

6(d). For ` = 2, the solution in part (c) (when ν > 1) takes the form

A2(ν) = 3ν2 − 2 +
3

2
ν
(
1− ν2

)
log

ν + 1

ν − 1
. (9.0.74)
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Plugging in ν = t
r

= 1 + u
r

and expanding in powers of r, we find

A2

(
1 +

u

r

)
= 1 +

3u

r

(
2 + log

u

2r

)
+

3u2

2r2

(
1 + 3 log

u

2r

)
+O

(
r−3
)
. (9.0.75)

This implies that the expansion of the full solution is

ε2m(u, r, θ, φ) = Y 2
m(θ, φ)

[
1 +

3u

r

(
2 + log

u

2r

)

+
3u2

2r2

(
1 + 3 log

u

2r

)
+O

(
r−3
)]

.

(9.0.76)

6(e). We now solve the scalar wave equation at large r in the retarded radial coordinates.
The answer to part (d) of the problem shows that we must have a large-r falloff of the
form

ε(u, r, z, z̄) = ε(0)(u, z, z̄) +
1

r
ε(1)(u, z, z̄) +

1

r
f (1)(u, z, z̄) log

u

2r

+
1

r2 ε
(2)(u, z, z̄) +

1

r2f
(2)(u, z, z̄) log

u

2r
+O(r−3) .

(9.0.77)

The scalar wave equation in the retarded radial coordinates is
[
∂2
r − 2∂u∂r +

2

r
(∂r − ∂u) +

2

r2γ
zz̄∂z∂z̄

]
ε(u, r, z, z̄) = 0 . (9.0.78)

Plugging in the expansion (9.0.77) and expanding in large r, we find the following
equations order-by-order in large r:

∂uε
(0) = 0 , ∂uf

(1) +
1

2
D2ε(0) = 0 , ∂uf

(2) +
1

2
D2f (1) = 0 ,

∂uε
(2) =

1

2
D2f (1) − 1

2
D2ε(1) − 1

2
f (1) − 1

u
f (2) .

(9.0.79)

The solutions to these equations are

f (1) = −u
2
D2ε(0) + g(1) ,

f (2) =
u2

8

(
D2
)2
ε(0) − u

2
D2g(1) + g(2) ,

ε(2) = −3u2

16

(
D2
)2
ε(0) +

u2

8
D2ε(0) + uD2g(1) − u

2
g(1)

− g(2) log u− 1

2
D2

∫
duε(1) + h(2) ,

(9.0.80)

where all functions on the RHS are functions of (z, z̄), except for ε(1), which is an
arbitrary function of (u, z, z̄). The solution is indeed the form of the solution ε2m

obtained in part (d). We can see this by choosing

ε(0) = Y 2
m , ε(1) = 6uY 2

m , g(1) = g(2) = h(2) = 0 . (9.0.81)
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In this case, we have

f (1) = 3uY 2
m , f (2) =

9u2

2
Y 2
m , ε(2) =

3u2

2
Y 2
m , (9.0.82)

which is precisely the expansion (9.0.76).

7(a). Inverting the coordinates, we have r = ρτ and t = τ
√

1 + ρ2. We parametrize the
massive momentum as pµ =

(
ωp, ~p

)
. Then we have

p · x = τ

[
−
√
p2 +m2

√
1 + ρ2 + ρ~p · x̂

]
= −τf(~p) . (9.0.83)

In the mode expansion, we perform an integral over ~pi. In the limit of large τ , the
value of the integral is dominated by the integrand at the minimum of the function
f(~p):

∂f

∂pi
= 0 =⇒ ~p√

p2 +m2
=

ρ√
1 + ρ2

x̂ . (9.0.84)

Let us simplify this expression a little more. Squaring both sides, we find

p2

p2 +m2 =
ρ2

1 + ρ2 =⇒ ρ =
|~p|
m

=⇒ ωp = m

√
1 + ρ2 . (9.0.85)

Then we find that the saddle point is at

~p = mρx̂ . (9.0.86)

Next, in the saddle point approximation, we must evaluate the function f and its
second derivative at this value. We find

f(mρx̂) = m ,
∂

∂pi

∂

∂pj
f

∣∣∣∣
~p=mρx̂

=
1

m

[
δij −

ρ2

1 + ρ2 x̂ix̂j

]
= Pij . (9.0.87)

Then around the saddle point, expand

p · x = −mτ − τ

2
Pij(pi −mρx̂i)(pj −mρx̂j) +O(p3) . (9.0.88)

At large τ , we can then write the mode expansion as

φ(x) =
1

2m(2π)3
√

1 + ρ2

[
a(mρx̂)e−imτ

∫
d3pe−i

τ
2
Pijpipj

+a†(mρx̂)eimτ
∫
d3pei

τ
2
Pijpipj

]

=

√
(2π)

3

τ
3

detP

2m(2π)3
√

1 + ρ2

[
a(mρx̂)e−imτe−3iπ/4 + a†(mρx̂)eimτe3iπ/4

]
,

(9.0.89)
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where we used
∫ ∞

−∞
dx eikx

2

=

√
π

k
eiπ/4 . (9.0.90)

Next we must evaluate detP . An explicit computation shows

detP =
1

m3
(
1 + ρ2

) . (9.0.91)

Using equation (9.0.91), we find

φ(τ, ρ, x̂) =

√
m

2(2πτ)3/2

[
a(mρx̂)e−imτe−3iπ/4 + a†(mρx̂)eimτe3iπ/4

]
. (9.0.92)

7(b). We start with the action

S = −1

2

∫
d4x
√−g

[(
∂µφ
)2

+m2φ2
]
. (9.0.93)

Varying (9.0.93) with respect to φ, we find

δS =

∫
d4x
√−g

(
�−m2

)
φδφ−

∫
d4x
√−g∇µ (∇µφδφ) . (9.0.94)

The first term gives the equations of motion. The canonical one-form (symplectic
potential current density) can be read off as Θµ(φ, δφ) = −∇µφδφ. The symplectic
form is then

ΩΣ =

∫
dΣµω

µ =

∫
dΣµ [δ1Θµ (φ, δ2φ)− 1↔ 2]

= −
∫
dΣµ [∇µδ1φδ2φ−∇µδ2φδ1φ] .

(9.0.95)

7(c). The Minkowskian metric in (ρ, τ, θ, φ) coordinates is

ds2 = −dτ 2 + τ 2

[
dρ2

1 + ρ2 + ρ2γABdx
AdxB

]
. (9.0.96)

We consider the hypersurface Σ to be τ = constant. Then the unit normal is

nµ = ∂µτ = δτµ . (9.0.97)

The volume element is

dΣµ = d3V τ 3δτµ , (9.0.98)

where d3V is the volume element on the unit hyperboloid. Using this volume element,
we find

Ωτ =

∫
d3V τ 3∂τδφ ∧ δφ . (9.0.99)
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To simplify this, we can now insert the large-τ expression for φ. We then find at τ =∞
that

Ωτ→∞ = − im2

2(2π)3

∫
d3V δa(mρx̂) ∧ δa†(mρx̂) . (9.0.100)

7(d). The commutation relation obtained from equation (9.0.100) is

[
a(mρx̂), a†(mρ′x̂′)

]
=

2 (2π)3

m2 δ
(
ρ− ρ′

)
δ2
(
x̂− x̂′

)
, (9.0.101)

where the δ-functions are normalized so that
∫
d3V δ

(
ρ− ρ′

)
δ2
(
x̂− x̂′

)
= 1 . (9.0.102)

To match (9.0.101) to the standard commutation relations in momentum space, we
have to transform the δ-functions above to the standard three-vector notation. We do
this as follows. Recall that we are parameterizing

~p = mρx̂ =
mρ

1 + zz̄
(z + z̄,−i(z − z̄), 1− zz̄) . (9.0.103)

Then the standard volume form in momentum space is dp1 ∧ dp2 ∧ dp3. Using the
parameterization above, we find

dp1 ∧ dp2 ∧ dp3 = im3ρ2γzz̄dρ ∧ dz ∧ dz̄ . (9.0.104)

From equation (9.0.104), we find

1 =

∫
d3pδ3

(
~p− ~p′

)

=

∫
dρd2zm3ρ2γzz̄δ

3
(
~p− ~p′

)

=

∫
d3V m2ωpδ

3
(
~p− ~p′

)
.

(9.0.105)

From equation (9.0.105), we can read off

m2ωpδ
3
(
~p− ~p′

)
= δ

(
ρ− ρ′

)
δ2
(
x̂− x̂′

)
. (9.0.106)

Plugging this form into our commutation relations, we find

[
a(mρx̂), a†(mρ′x̂′)

]
= (2π)3 (2ωp

)
δ3
(
~p− ~p′

)
. (9.0.107)

8. To determine the action of the charge, we first determine the symplectic form on I+.
We do so by determining the boundary fields φ and ψ+ on I+ using large-r limits of the
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bulk mode expansions. For this, we will use the saddle point approximation. We start
by determining the boundary field of a scalar. Bulk scalar fields have mode expansions

Φ(x) =

∫
d3q

(2π)3

1

2ωq

[
a(~q)eiq·x + ã†(~q)e−iq·x

]
. (9.0.108)

Here a and ã satisfy the usual creation-annihilation commutation relations. Then,
taking a large-r limit and doing the usual saddle point procedure, we find

φ(u, z, z̄) = − i

8π2

∫ ∞

0

dω
[
a(ωx̂)e−iωu − ã†(ωx̂)eiωu

]
. (9.0.109)

Using the standard commutators, we find

[
φ(u, z, z̄), φ̄(u′, z′, z̄′)

]
= − i

4
γzz̄Θ(u− u′)δ2(z − z′) . (9.0.110)

Bulk spinors40 have the mode expansion

Ψα(x) =

∫
d3q

(2π)3

1

2ωq
ηα(~q)

[
b(~q)eiq·x + b̃†(~q)e−iq·x

]
, (9.0.111)

where ηα(~p)η̄α̇(~p) = pµ(σµ)αα̇, and b and b̃ satisfy the standard fermionic creation-
annihilation commutation relations. To perform the large-r expansion, we will first
have to convert the conventions of Wess and Bagger [207] to the (u, r, z, z̄) coordinate
system. First, we determine the basis spinors. In the (u, r, z, z̄) coordinates used here,
we have

σz
z =

1

r2γ
zz̄∂zx

µ∂z̄x
νσµν =

(
1−zz̄

2(1+zz̄)
z̄

1+zz̄
z

1+zz̄
− 1−zz̄

2(1+zz̄)

)
. (9.0.112)

The eigenvalues of this matrix are ±1
2

with eigenvectors

ξ(+)
α =

√
1

1 + zz̄

(
1
z

)
, ξ(−)

α =

√
1

1 + zz̄

(
z̄
−1

)
. (9.0.113)

The normalization of the eigenvectors is chosen so that ξ(+)αξ(−)
α = 1. Since ηα(~p)

is a two-component spinor, it can be expanded in this basis. If we parametrize the
momentum as

pµ =
ω

1 + zz̄
(1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) , (9.0.114)

then ηα(p) =
√

2ωξ(+)
α . With all the explicit formulas determined, we can go ahead

and take the large-r expansion of Ψα:

ψ(+)(u, z, z̄) = − i

8π2

∫ ∞

0

dωq
√

2ωq

[
b(ωqx̂)e−iωqu − b̃†(ωqx̂)eiωqu

]
. (9.0.115)

40Spinor conventions of Wess and Bagger [207] are used here.
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Using the commutation relations for b and b̃, we find
{
ψ(+)(u, z, z̄), ψ̄(−)(u

′, z′, z̄′)
}

= γzz̄δ(u− u′)δ2(z − z′) . (9.0.116)

Now we are ready to determine the action of the hard charge on the fields. The hard
charge is

F h[χ] =
Q

2
√

2

∫
dud2zγzz̄χu∂u

(
φψ̄(−)

)
. (9.0.117)

It is clear that this acts trivially on φ and ψ̄(−). However, we have

[
F h[χ], ∂uφ̄(u, z, z̄)

]
=

Q

2
√

2

∫
du′d2z′γz′z̄′χu

′∂u′∂u
([
φ(u′, z′, z̄′), φ̄(u, z, z̄)

]
ψ̄(−)

)

= −i Q
4
√

2
χ(z, z̄)ψ̄(−)(z, z̄) ,

{
F h[χ], ψ(+)(u, z, z̄)

}
=

Q

2
√

2

∫
du′d2z′γz′z̄′χu

′∂u′
(
φ
{
ψ̄(−), ψ(+)(u, z, z̄)

})

= − Q

2
√

2
χ(z, z̄)φ(u, z, z̄) ,

(9.0.118)

which determines the action of the hard charge on the fields.

9(a). We consider an (n + 2)-point amplitude Aa1,a2
n+2 (q1, ε1; q2, ε2). The amplitude also de-

pends on the other external momenta, but we suppress the dependence for convenience.
Taking first the limit q2 → 0 and using the soft gluon theorem, we find

lim
q2→0
Aa1,a2
n+2 (q1, ε1; q2, ε2)→ gYM

n∑

k=1

pk · ε2

pk · q2

T a2
k A

a1
n+1(q1, ε1)

+ gYM
q1 · ε2

q1 · q2

(
T a2

adj.

)a1bAbn+1(q1, ε1) ,

(9.0.119)

where we have used the fact that the gluon transforms in the adjoint representation.

The matrix elements of the adjoint representations are
(
T a2

adj.

)a1b = −ifa2a1b = ifa1a2b.
Using this, we find

lim
q2→0
Aa1,a2
n+2 (q1, ε1; q2, ε2)→ gYM

n∑

k=1

pk · ε2

pk · q2

T a2
k A

a1
n+1(q1, ε1)

+ igYMf
a1a2b

q1 · ε2

q1 · q2

Abn+1(q1, ε1) .

(9.0.120)

Let us now take the second limit, q1 → 0:

lim
q1→0

lim
q2→0
Aa1,a2
n+2 (q1, ε1; q2, ε2)→ g2

YM

n∑

k=1

n∑

k
′
=1

pk · ε2

pk · q2

pk′ · ε1

pk′ · q1

T a2
k T

a1

k
′ An

+ ig2
YMf

a1a2b
q1 · ε2

q1 · q2

n∑

k=1

pk · ε1

pk · q1

T bkAn .
(9.0.121)
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When the limits are taken in the opposite order, we find

lim
q2→0

lim
q1→0
Aa1,a2
n+2 (q1, ε1; q2, ε2)→ g2

YM

n∑

k=1

n∑

k
′
=1

pk · ε2

pk · q2

pk′ · ε1

pk′ · q1

T a1

k
′ T

a2
k An

− ig2
YMf

a1a2b
q2 · ε1

q2 · q1

n∑

k=1

pk · ε2

pk · q2

T bkAn .
(9.0.122)

Now subtract the two. Note that in the double sum, when k 6= k′ the two quantities
are equal, since the generators Tk are acting on different sets of indices. The only
nontrivial contribution to the difference occurs when k = k′. Thus, we find

[
lim
q1→0

, lim
q2→0

]
Aa1,a2
n+2 (q1, ε1; q2, ε2)→ g2

YM

n∑

k=1

pk · ε2

pk · q2

pk · ε1

pk · q1

[T a2
k , T

a1
k ]An

+ ig2
YMf

a1a2b
q1 · ε2

q1 · q2

n∑

k=1

pk · ε1

pk · q1

T bkAn

+ ig2
YMf

a1a2b
q2 · ε1

q2 · q1

n∑

k=1

pk · ε2

pk · q2

T bkAn

→ ig2
YMf

a1a2b
n∑

k=1

(
q1 · ε2

q1 · q2

pk · ε1

pk · q1

+
q2 · ε1

q2 · q1

pk · ε2

pk · q2

− pk · ε2

pk · q2

pk · ε1

pk · q1

)
T bkAn .
(9.0.123)

This can be written in a more concise way by adding to it a fourth term that is
identically zero:

−ig2
YMf

a1a2b
n∑

k=1

q1 · ε2

q1 · q2

q2 · ε1

q2 · q1

T bkAn = −ig2
YMf

a1a2b
q1 · ε2

q1 · q2

q2 · ε1

q2 · q1

n∑

k=1

T bkAn . (9.0.124)

The last term vanishes due to global color charge conservation. Adding this, we can
write the double-soft limit as
[

lim
q1→0

, lim
q2→0

]
Aa1,a2
n+2 (q1, ε1; q2, ε2)

→ ig2
YMf

a1a2b
n∑

k=1

(
pk · ε2

pk · q2

− q1 · ε2

q1 · q2

)(
q2 · ε1

q2 · q1

− pk · ε1

pk · q1

)
T bkAn .

(9.0.125)

9(b). All we have to do here is to plug in the explicit forms of the momenta in the z
parametrization. Recall that when the helicity is positive,

pk · ε
pk · q

∝ 1

z − zk
. (9.0.126)
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Then the soft factor is(
pk · ε2

pk · q2

− q1 · ε2

q1 · q2

)(
q2 · ε1

q2 · q1

− pk · ε1

pk · q1

)
∝
(

1

w − zk
− 1

w − z

)(
1

z − w −
1

z − zk

)

=
zk − z

(w − zk)(w − z)

w − zk
(z − w)(z − zk)

=
1

(z − w)2 .

(9.0.127)

This factor does not depend on zk at all. Thus, we can pull this factor out of the sum
to get

[
lim
q1→0

, lim
q2→0

]
Aa1,a2
n+2 (q1, ε1; q2, ε2) ∝ ig2

YMf
a1a2b

(z − w)2

n∑

k=1

T bkAn = 0 . (9.0.128)

The argument follows through in the same way when the helicity is negative (just take
all z’s to z̄’s).

10. We take the metric to be of the form

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ +
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2

+ Uzdudz + Uz̄dudz̄ + · · · .
(9.0.129)

The four-dimensional Weyl tensor of a spacetime is given by

Cµνρσ = Rµνρσ +
1

2

(
gνρRσµ + gµσRρν − gνσRρµ − gµρRσν

)
+

1

6
R
(
gµρgσν − gµσgρν

)
.

(9.0.130)

We are interested in computing the following components:

Crzrz = Rrzrz −
1

2
gzzRrr , Crurz = Rrurz +

1

2
(gurRrz − guzRrr) . (9.0.131)

For the metric of interest, we then find

Crzrz = O(r−3) , Crurz = − 1

4r2 (Uz −DzCzz) +O(r−3) , (9.0.132)

where Dz is the covariant derivative with respect to γzz̄. Thus, to have an asymptoti-
cally flat spacetime, we must have

Uz = DzCzz . (9.0.133)

11(a). We will show that ∂r det
(
gAB
r
2

)
= 0 implies that CAB is traceless.

det

(
gAB

r2

)
= det

(
γAB +

CAB
r

+O(r−2)

)

= det γ

(
1 +

CA
A

r
+O(r−2)

)
.

(9.0.134)
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Hence,

∂r det

(
gAB

r2

)
= − det γ

CA
A

r2 +O(r−3) . (9.0.135)

Therefore,

∂r det

(
gAB

r2

)
= 0 =⇒ CA

A = 0 . (9.0.136)

11(b). First, we must determine the variation of the metric under a diffeomorphism generated
by the vector field ξ, where ξu, ξr ∼ O(1) and ξA ∼ O(r−1). The variation of the metric
under a diffeomorphism is given by

Lξgµν = ξρ∂ρgµν + gµρ∂νξ
ρ + gνρ∂µξ

ρ . (9.0.137)

By definition, the asymptotic symmetries must preserve the falloff conditions for the
fields:

guu = −U +
1

4
gABU

AUB = −1 +
2mB

r
+O(r−2) ,

gur = −e2β = −1 +O(r−2) ,

guA =
1

2
gABU

B =
1

2
DBCBA +O(r−1) ,

grA = grr = 0 ,

gAB = r2γAB + rCAB + h
(0)
AB +O(r−1) .

(9.0.138)

In Bondi gauge,
Lξgrr = 2∂rξ

ugur , (9.0.139)

which implies ξu must be independent of r

ξu = ξu(u, xA) . (9.0.140)

To leading order in the asymptotic expansion, we have

Lξgur = ∂uξ
ugur +O(r−1) . (9.0.141)

Hence, ξu must also be independent of u:

ξu = f(xA) . (9.0.142)

Then the remaining components have the following variations under ξ, with ξu = f :

Lξguu = f∂uguu + ξr∂rguu + ξA∂Aguu + 2∂uξ
rgru + 2∂uξ

AgAu ,

LξgrA = ∂rξ
CgCA + gur∂Af ,

LξgAB = f∂ugAB + ξr∂rgAB + ξC∂CgAB + guB∂Af + ∂Aξ
CgCB

+ guA∂Bf + ∂Bξ
CgCA .

(9.0.143)
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Let us consider the asymptotic expansion of the vector field

ξ = f∂u +
∞∑

n=0

ξr(n)

rn
∂r +

∞∑

n=1

ξA(n)

rn
∂A . (9.0.144)

The Lie derivative of the metric is then

Lξguu = −2∂uξ
r(0) +

−2∂uξ
r(1) + 2f∂umB + ∂uξ

A(1)DBCBA
r

+O(r−2) ,

LξgrA = −γAB
(
ξB(1) +DBf

)
− 2γABξ

B(2) + CABξ
B(1)

r
+O(r−2) ,

LξgAB = r
(
f∂uCAB + 2γABξ

r(0) +DAξ
(1)
B +DBξ

(1)
A

)

+ f∂uh
(0)
AB + CABξ

r(0) + 2γABξ
r(1) +

1

2
DCCCADBf

+
1

2
DCCCBDAf + ξC(1)DCCAB +DAξ

(2)
B

+ CBCDAξ
C(1) +DBξ

(2)
A + CACDBξ

C(1) +O(r−1) .

(9.0.145)

From LξgrA at O(1), we find

ξA(1) = −DAf . (9.0.146)

From LξgrA at O(r−1), we find

ξA(2) =
1

2
CABDBf . (9.0.147)

We require that the O(r) term of LξgAB be traceless, which implies

ξr(0) =
1

2
DAD

Af . (9.0.148)

Finally, to determine the O(r−2) piece of ξr, we need to consider a higher order expan-
sion of gAB:

gAB = r2γAB + rCAB + h
(0)
AB +O(r−1). (9.0.149)

Then

det

(
gAB

r2

)
= det γ exp tr

[
log

(
δBA +

1

r
CA

B +
1

r2h
(0)
A

B +O(r−3)

)]

= det γ

[
1 +

1

r
CA

A

+
1

r2

(
h

(0)
A

A − 1

2
CA

BCB
A +

1

2
CA

ACB
B

)
+O(r−3)

]
.

(9.0.150)

Assuming that CA
A = 0 to satisfy the O(r−1) constraint, we additionally find that

h
(0)
A

A =
1

2
CABC

AB . (9.0.151)
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This imposes the following constraint on the variations of the metric components

δh
(0)
A

A = CABδC
AB . (9.0.152)

An explicit computation reveals

δh
(0)
A

A = f∂uh
(0)
A

A + 4ξr(1) + 2DAfDBC
AB − CABDADBf ,

CABδC
AB =

f

2
∂u(C

ABCAB)− 2CABDADBf .
(9.0.153)

Equating these terms, we find

ξr(1) = −1

2
DAfDBC

AB − 1

4
CABDADBf . (9.0.154)

Therefore, the most general diffeomorphism ξ that preserves the metric to leading order
is given by

ξ(f) = f∂u +

[
−D

Af

r
+

1
2
CABDBf

r2 +O
(

1

r3

)]
∂A

+

[
1

2
D2f +

−1
2
DAfDBC

AB − 1
4
CABDADBf

r
+O

(
1

r2

)]
∂r ,

(9.0.155)

where f = f(xA).

11(c). We will show that the Lie algebra of the supertranslations at leading order is abelian,
that is,

[ξ(f1), ξ(f2)] = O(r−1) . (9.0.156)

Using the definition of the Lie bracket, we find

[ξ(f1), ξ(f2)]u = ξ(f1)µ∂µf2 − ξ(f2)µ∂µf1

=
−DAf1DAf2

r
+

1
2
CABDAf1DBf2

r2 − (f1 ↔ f2)

= 0 ,

[ξ(f1), ξ(f2)]r = ξ(f1)µ∂µ

(
1

2
D2f2

)
− (f1 ↔ f2) +O(r−2)

=
1

2r
DA

(
−DAf1D

2f2 +DAf2D
2f1

)
+O(r−2)

= O(r−1) ,

[ξ(f1), ξ(f2)]A = ξ(f1)µ∂µ

[
−D

Af2

r

]
− (f1 ↔ f2) +O(r−3)

=
1

2

D2f1D
Af2

r2 +
DBf1DBD

Af2

r2 − 1↔ 2 +O(r−3)

= O(r−2) .

(9.0.157)
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11(d). Recall in part (b), Eq.(9.0.145), we found

Lξguu = −2∂uξ
r(0) +

−2∂uξ
r(1) + 2f∂umB + ∂uξ

A(1)DBCBA
r

+O(r−2) ,

LξgAB = r
(
f∂uCAB + 2γABξ

r(0) +DAξ
(1)
B +DBξ

(1)
A

)
+O(1) .

(9.0.158)

Using the solution for part (b) and the variations above, we can calculate the action
of ξ(f) on mB, CAB and NAB:

LfCAB = f∂uCAB + γABD
2f − 2DADBf ,

LfNAB = f∂uNAB ,

LfmB = f∂umB +
1

4

(
NABDADBf + 2DAfDBN

AB
)
.

(9.0.159)

Note that γABLfCAB = 0 .

11(e). Let us now evaluate the vector field ξ(f) on the ` = 0 and ` = 1 spherical harmonics.

ξ(Y 0
0 ) = Y 0

0 ∂u ,

ξ(Y m
1 ) = Y m

1 ∂u −
γAB∂BY

m
1

r
∂A +

1

2
D2Y m

1 ∂r .
(9.0.160)

Consider the following normalization for the spherical harmonics:

Y 0
0 = 1, Y 1

1 =
z

1 + zz̄
, Y 0

1 =
1− zz̄
1 + zz̄

, Y −1
1 =

z̄

1 + zz̄
. (9.0.161)

Then we have

ξ(Y 0
0 ) = ∂u ,

ξ(Y 1
1 ) =

z

1 + zz̄
(∂u − ∂r) +

z2

2r
∂z −

1

2r
∂z̄ ,

ξ(Y 0
1 ) =

1− zz̄
1 + zz̄

(∂u − ∂r) +
z

r
∂z +

z̄

r
∂z̄ ,

ξ(Y −1
1 ) =

z̄

1 + zz̄
(∂u − ∂r)−

1

2r
∂z +

z̄2

2r
∂z̄ .

(9.0.162)

To compare with the standard global translations in Minkowski space, we begin with
these translations in Cartesian coordinates:

T = ∂t , Xi = ∂i . (9.0.163)

In Bondi coordinates, the global translations take the following form:

T = ∂u ,

X1 = − z + z̄

1 + zz̄
∂u +

z + z̄

1 + zz̄
∂r +

1− z2

2r
∂z +

1− z̄2

2r
∂z̄ ,

X2 =
i(z − z̄)

1 + zz̄
∂u −

i(z − z̄)

1 + zz̄
∂r +

i(1 + z2)

2r
∂z −

i(1 + z̄2)

2r
∂z̄ ,

X3 = −1− zz̄
1 + zz̄

∂u +
1− zz̄
1 + zz̄

∂r −
z

r
∂z −

z̄

r
∂z̄ .

(9.0.164)
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We then find

ξ(Y 0
0 ) = T ,

ξ(Y 1
1 ) = −1

2
(X1 + iX2) ,

ξ(Y 0
1 ) = −X3 ,

ξ(Y −1
1 ) = −1

2
(X1 − iX2) .

(9.0.165)

The action of the ` = 0 mode on the fields is given by

L
ξ(Y

0
0 )
CAB = Y 0

0 ∂uCAB ,

L
ξ(Y

0
0 )
NAB = Y 0

0 ∂uNAB ,

L
ξ(Y

0
0 )
mB = Y 0

0 ∂umB .

(9.0.166)

The action of the ` = 1 modes on the fields is given by

Lξ(Ym1 )CAB = Y m
1 ∂uCAB , Lξ(Ym1 )NAB = Y m

1 ∂uNAB,

L
ξ(Y

1
1 )
mB = Y 1

1 ∂umB +
1

4

(
Dz̄Nz̄z̄ − z2DzNzz

)
,

L
ξ(Y

0
1 )
mB = Y 0

1 ∂umB −
1

2

(
zDzNzz + z̄Dz̄Nz̄z̄

)
,

L
ξ(Y
−1
1 )

mB = Y −1
1 ∂umB +

1

4

(
DzNzz − z̄2Dz̄Nz̄z̄

)
,

(9.0.167)

where we have used the fact that DzDzY
m

1 = 0.

12(a). The Lorentz transformations in Cartesian coordinates are given by

Ki = x0∂i + xi∂0, Jij = xi∂j − xj∂i , (9.0.168)

where Ki are the boosts and Jij are the rotations. The Cartesian coordinates are
related to the (u, r, z, z̄) coordinates by the coordinate transformations

u = t−
√
xixi , r =

√
xixi , z =

x1 + ix2

x3 +
√
xixi

. (9.0.169)
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In these coordinates, the boosts and rotations take the following form:

K1 = −u(z + z̄)

1 + zz̄
∂u +

(r + u)(z + z̄)

1 + zz̄
∂r

−
(
z2 − 1

)
(r + u)

2r
∂z −

(
z̄2 − 1

)
(r + u)

2r
∂z̄ ,

K2 =
iu(z − z̄)

1 + zz̄
∂u −

i(r + u)(z − z̄)

1 + zz̄
∂r

+
i
(
z2 + 1

)
(r + u)

2r
∂z −

i
(
z̄2 + 1

)
(r + u)

2r
∂z̄ ,

K3 = −u(1− zz̄)

1 + zz̄
∂u +

(r + u)(1− zz̄)

1 + zz̄
∂r −

z(r + u)

r
∂z −

z̄(r + u)

r
∂z̄ ,

J12 = iz∂z − iz̄∂z̄ ,

J23 =
1

2
i
(
z2 − 1

)
∂z −

1

2
i
(
z̄2 − 1

)
∂z̄ ,

J31 =
1

2

(
z2 + 1

)
∂z +

1

2

(
z̄2 + 1

)
∂z̄ .

(9.0.170)

Then in Bondi gauge, a generic Lorentz transformation is generated by the vector field
ζ, with components

ζu =
u

2

2z(c− a∗) + 2z̄(c∗ − a) + (b+ b∗)(1− zz̄)

1 + zz̄
,

ζr = −u+ r

2

2z(c− a∗) + 2z̄(c∗ − a) + (b+ b∗)(1− zz̄)

1 + zz̄
,

ζz = a+ bz + cz2 +
u

2r

(
(a− c∗) + (b+ b∗)z + (c− a∗)z2

)
.

(9.0.171)

In particular, the individual rotations and boosts are reproduced for specific choices of
a, b, and c:

J12 = ζ|a=0
b=i
c=0

, J23 = ζ|a=− i
2

b=0
c= i

2

, J31 = ζ|a= 1
2

b=0
c= 1

2

,

K1 = ζ| a= 1
2

b=0
c=− 1

2

, K2 = ζ|a= i
2

b=0
c= i

2

, K3 = ζ| a=0
b=−1
c=0

.
(9.0.172)

We now express this vector in terms of the global CKV on the sphere Y z = a+bz+cz2.
Using the identities

DzY
z +Dz̄Y

z̄ =
2z(c− a∗) + 2z̄(c∗ − a) + (b+ b∗)(1− zz̄)

1 + zz̄
,

Dz
(
DzY

z +Dz̄Y
z̄
)

= −
(
(a− c∗) + (b+ b∗)z + (c− a∗)z2

)
,

(9.0.173)

we find

ζ(Y ) =
u

2
DAY

A∂u −
u+ r

2
DAY

A∂r +
[
Y A − u

2r
DADBY

B
]
∂A . (9.0.174)

130



Comparing (9.0.173) with (9.0.161), we have D·Y ∼ Y m
1 . Noting that DzDzY

z = −Y z,
we can write this vector field as presented in section 5.3

ζ(Y ) =
u

2

(
DzY

z +Dz̄Y
z̄
)
∂u −

u+ r

2

(
DzY

z +Dz̄Y
z̄
)
∂r

+
[
Y z +

u

2r

(
Y z −DzDz̄Y

z̄
)]
∂z

+
[
Y z̄ +

u

2r

(
Y z̄ −Dz̄DzY

z
)]
∂z̄ .

(9.0.175)

12(b). We show that the Lorentz algebra is isomorphic to the algebra of the global CKVs of
S2. First note that, since the r and u components of ζ are linear in r and u, the terms
of the form ζµ∂µζ

ν will always cancel when µ, ν = u, r:

[ζ(Y1), ζ(Y2)]u = ζ(Y1)ADAζ(Y2)u − ζ(Y2)ADAζ(Y1)u

=
u

2

[
Y A

1 DADBY
B

2 − Y A
2 DADBY

B
1

]

=
u

2
DB

[
Y A

1 DAY
B

2 − Y A
2 DAY

B
1

]

=
u

2
DA [Y1, Y2]A .

(9.0.176)

In a similar way, we have

[ζ(Y1), ζ(Y2)]r = ζ(Y1)ADAζ(Y2)r − ζ(Y2)ADAζ(Y1)r

= −u+ r

2

[
Y A

1 DADBY
B

2 − Y A
2 DADBY

B
1

]

= −u+ r

2
DA [Y1, Y2]A ,

[ζ(Y1), ζ(Y2)]A = [Y1, Y2]A +
u2

4r2

[
D · Y2D

AD · Y1 −D · Y1D
AD · Y2

+DCD · Y1DCD
AD · Y2 −DCD · Y2DCD

AD · Y1

]

− u

2r

[
DAD · [Y1, Y2]− (DAY C

1 +DCY A
1 )DCD · Y2

+ (DAY C
2 +DCY A

2 )DCD · Y1 +D · Y1D
AD · Y2

−D · Y2D
AD · Y1

]

= [Y1, Y2]A − u

2r
DAD · [Y1, Y2] ,

(9.0.177)

where we have used the identities DAYB + DBYA = γABD · Y and DADB(D · Y ) =
1
2
γABD

2D · Y = −γABD · Y .

12(c). The diffeomorphism generated by ζ induces the following variations in the metric
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components:

Lζguu =
D · Y (u∂umB + 3mB) + 2Y A∂AmB − 1

2
DBCBAD

AD · Y
r

+O(r−2) ,

Lζgur = O(r−2) ,

Lζgrr = 0 ,

LζguA = O(1) ,

LζgrA =
u

2

(
gABγ

BC

r2 + gurδ
C
A

)
DCD · Y ,

LζgAB =
u

2
(D · Y ∂ugAB −D · Y ∂rgAB + guBDAD · Y + guADBD · Y )

− u

2r

[
DCD · Y DCgAB + gCBDAD

CD · Y + gCADBD
CD · Y

]

− r

2
D · Y ∂rgAB + LY gAB .

(9.0.178)

The first four equations in (9.0.178) indicate that ζ preserves the asymptotic form of
the components guu, grr, gur, and guA. We now check the leading and subleading terms
in the variations of grA and gAB, using the asymptotic expansion gAB = r2γAB+rCAB+
O(1):

LζgrA =
u

2

(
γABγ

BC − δCA +O(r−1)
)
DCD · Y ,

LζgAB = r2 (LY γAB − γABD · Y ) + r
[u

2
(D · Y ∂uCAB − 2γABD · Y

−2DADBD · Y )− 1

2
CABD · Y + LYCAB

]
+O(1) .

(9.0.179)

At order O(r2), LζgAB vanishes, due to the conformal Killing equation LY γAB =
DAYB +DBYA = γABD · Y . The O(r) term gives the variation of CAB:

δCAB =
u

2
(D · Y ∂uCAB − 2γABD · Y − 2DADBD · Y )

− 1

2
CABD · Y + LYCAB .

(9.0.180)

Note that

γABδCAB =
u

2

(
−4D · Y − 2D2D · Y

)
+ CAB (DAYB +DBYA) = 0 , (9.0.181)

where D2D · Y = −2D · Y , and CAB (DAYB +DBYA) = CABγABD · Y . Hence, CAB
remains traceless under the diffeomorphism generated by ζ.

13(a). In the limit r →∞, the metric in Bondi gauge is flat, and vµ = (1, 0, 0, 0) is a solution
for the four-velocity of a timelike observer. At finite but large r, an inertial observer’s
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four-velocity must have subleading corrections, generically of the form

vu = 1 +
1

r
vu(1) +O(r−2) ,

vr =
1

r
vr(1) +O(r−2) ,

vz =
1

r
vz(1) +

1

r2v
z(2) +O(r−3) ,

vz̄ =
1

r
vz̄(1) +

1

r2v
z̄(2) +O(r−3) .

(9.0.182)

To compute the norm, we use the asymptotic form of the metric:

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ +
2mB

r
du2

+DzCzzdudz +Dz̄Cz̄z̄dudz̄ + rCzzdz
2 + rCz̄z̄dz̄

2 + · · · .
(9.0.183)

By requiring that vµvµ = −1 +O(r−2), we find

vz(1) = vz̄(1) = 0 , mB = vu(1) + vr(1) . (9.0.184)

Hence, we will study a four-velocity of the asymptotic form

vu = 1 +
m0(u, z, z̄)

r
+O(r−2) ,

vr =
mB(u, z, z̄)−m0(u, z, z̄)

r
+O(r−2) ,

vz =
1

r2v
z(2) +O(r−3) ,

vz̄ =
1

r2v
z̄(2) +O(r−3) .

(9.0.185)

We require that vµ∇µv
u,r = O(r−2) and vµ∇µv

z,z̄ = O(r−3). Explicitly, these condi-
tions are given by

∂um0

r
+ Γuαβv

αvβ = O(r−2) ,

∂umB − ∂um0

r
+ Γrαβv

αvβ = O(r−2) ,

∂uv
z(2)

r2 + Γzαβv
αvβ = O(r−3) .

(9.0.186)

Next, we need to compute the large-r expansion of the Christoffel connection. The
only nonzero components at this order are

Γruu = −∂umB

r
+O(r−2) , Γzuu =

DzN
zz

2r2 +O(r−3) . (9.0.187)
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Substituting (9.0.187) into the geodesic equation, we find the following constraints:

∂um0 = 0 , ∂uv
z(2) = −1

2
DzN

zz . (9.0.188)

Integrating the second condition, we find

vz(2)(u, z, z̄) = −1
2

(DzC
zz(u, z, z̄)−DzC

zz(u0, z, z̄)) . (9.0.189)

Moreover, since m0 is simply a function of (z, z̄), we can also interpret it as a boundary
condition. Hence, we have

vµ =

(
1 + mB(u0,z,z̄)

r
+O(r−2) , ∆mB(u,z,z̄)

r
+O(r−2) ,

− Dz∆C
zz

(u,z,z̄)

2r
2 +O(r−3),−Dz̄∆C

z̄z̄
(u,z,z̄)

2r
2 +O(r−3)

)
,

(9.0.190)

where

∆mB(u, z, z̄) ≡ mB(u, z, z̄)−mB(u0, z, z̄) ,

∆Czz(u, z, z̄) ≡ Czz(u, z, z̄)− Czz(u0, z, z̄) .
(9.0.191)

To leading order in r0 and for small λ, the trajectory of an observer with this four-
velocity is

Xµ(λ) = (u0 + λ, r0, z0, z̄0) . (9.0.192)

The first correction to the four-velocity may now be approximated as

vµ(λ) =

(
1 +

mB(u0, z, z̄)

r0

,
λ∂umB(u0, z, z̄)

r0

,

−λDzN
zz(u0, z, z̄)

2r2
0

, − λDz̄N
z̄z̄(u0, z, z̄)

2r2
0

)
.

(9.0.193)

The trajectory with these subleading corrections is

Xµ(λ) =

(
u0 + λ

(
1 +

mB(u0, z, z̄)

r0

)
, r0 +

λ2∂umB(u0, z, z̄)

2r0

,

z0 −
λ2DzN

zz(u0, z, z̄)

4r2
0

, z̄0 −
λ2Dz̄N

z̄z̄(u0, z, z̄)

4r2
0

)
+ · · ·

=

(
u, r0

(
1 +

(u− u0)2∂umB(u0, z, z̄)

2r2
0

)
,

z0 −
(u− u0)2DzN

zz(u0, z, z̄)

4r2
0

, z̄0 −
(u− u0)2Dz̄N

z̄z̄(u0, z, z̄)

4r2
0

)
+ · · · .
(9.0.194)

13(b). Since both inertial observers pass through the point (u0, r0), we can use the trajectory
found in part (a), and simply modify the angular dependence. To leading order in the
large-r0 limit, assuming |u− u0| � r0, we find

∆Xµ ≡ Xµ
1 −Xµ

0 = (0, 0, z1 − z0, z̄1 − z̄0) + · · · . (9.0.195)
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The leading order proper distance between the observers is then

L ≈
√

2r2
0γz0z̄0δzδz̄ =

2r0|δz|
1 + z0z̄0

, δz ≡ z1 − z0 . (9.0.196)

13(c). Due to the burst of radiation, the metric undergoes a transition. Inverting the leading
order constraint equation, we find that the leading order change in the zz-component
is given by

∆Czz(z, z̄) ≡ Czz(z, z̄)
∣∣
u=uf

− Czz(z, z̄)
∣∣
u=u0

= 2

∫
d2z′ γz′z̄′D

2
zG(z, z̄; z′, z̄′)

[∫ uf

u0

du Tuu(u, z
′, z̄′) + ∆mB(z′, z̄′)

]
,

(9.0.197)

where uf > urad,
|uf−u0|
r0
� 1, and

G(z, z̄; z′, z̄′) =
1

π

|z − z′|2
(1 + zz̄)(1 + z′z̄′)

log

( |z − z′|2
(1 + zz̄)(1 + z′z̄′)

)
,

∆mB = mB(uf , z, z̄)−mB(u0, z, z̄) .

(9.0.198)

Henceforth we assume mB is independent of (z, z̄). To check this, note that

D2
z̄D

2
zG(z, z̄; z′, z̄′) = γzz̄δ

2(z − z′) + · · · . (9.0.199)

To determine ∆mB, we used the constraint equation

∂umB =
1

4

[
D2
zN

zz +D2
z̄N

z̄z̄
]
− Tuu . (9.0.200)

We can extract the zero mode of this equation by integrating over the two-sphere

∂umB = − 1

4π

∫
d2z γzz̄Tuu . (9.0.201)

Integrating over u, we find

∆mB = − 1

4π

∫ uf

u0

∫
d2z γzz̄ Tuu . (9.0.202)

Then the change in Czz takes the modified form

∆Czz(z, z̄) = 2

∫
d2z′ γz′z̄′D

2
zG(z, z̄; z′, z̄′)

×
[∫ uf

u0

du

(
Tuu(u, z

′, z̄′)− 1

4π

∫
d2z′′γz′′z̄′′Tuu(u, z

′′, z̄′′)

)]
.

(9.0.203)

Tuu due to the burst of radiation is given by

Tuu(u, z, z̄) = µδ(u− urad)
δ2(z − zrad)

γzz̄
. (9.0.204)
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The change in Czz due to the burst in radiation is then as follows:

∆Czz(z, z̄) = 2µ

∫
d2z′ D2

zG(z, z̄; z′, z̄′)
[
δ2(z′ − zrad)− γz′z̄′

4π

]

= 2µD2
zG(z, z̄; zrad, z̄rad)

− µ

2π

∫
d2z′ γz′z̄′D

2
zG(z, z̄; z′, z̄′) .

(9.0.205)

Since this component of the metric never contributed to the proper distance between
inertial observers at leading order, to leading order the separation between the observers
after the burst of radiation remains unchanged:

L ≈ 2r0|δz|
1 + z0z̄0

≡ L0 . (9.0.206)

However, this component of the metric does play a role in subleading corrections. Note
that to calculate the first subleading correction to L, we can safely neglect any correc-
tions to ∆X, since they will not contribute at this order. Hence, the first subleading
correction comes from the metric used to compute the inner product of ∆Xµ. At a
given time u, the distance is given by

L ≈
√

2r2
0γz0z̄0δzδz̄ + r0Czz(u, z0, z̄0)δz2 + r0Cz̄z̄(u, z0, z̄0)δz̄2

= L0

√
1 +

r0

L2
0

[
Czz(u, z0, z̄0)δz2 + Cz̄z̄(u, z0, z̄0)δz̄2

]

≈ L0 +
r0

2L0

[
Czz(u, z0, z̄0)δz2 + Cz̄z̄(u, z0, z̄0)δz̄2

]
.

(9.0.207)

Hence, the change in distance between u0 and uf is given by the difference in the
subleading term at uf and u0:

∆L =
r0

2L0

[
∆Czz(z0, z̄0)δz2 + ∆Cz̄z̄(z0, z̄0)δz̄2

]
. (9.0.208)

13(d). To determine the supertranslation that would give rise to the same change in proper
distance as equation (9.0.208), recall that under a supertranslation parametrized by a
function on the sphere f , we have

LfCzz = fNzz − 2D2
zf . (9.0.209)

The change in the metric is related to the Lie derivative

∆Czz = −LfCzz = 2D2
zf , (9.0.210)

where Nzz has been set to zero, since the region of I+ before and after the radiation
has passed is in a vacuum state. Then, using equation (9.0.205), we find

f(z, z̄) = µG(z, z̄; zrad, z̄rad)− µ

4π

∫
d2z′ γz′z̄′G(z, z̄; z′, z̄′) . (9.0.211)
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14(a). To determine the linearized Einstein’s equation, note that

Rµν [g + h] = Rµν [g] +
1

2

(
∇ρ∇µhν

ρ +∇ρ∇νhµ
ρ −∇2hµν −∇µ∇νh

)

+O
(
h2
)
,

R[g + h] = R[g]−Rµν [g]hµν +∇µ∇νh
µν −∇2h+O

(
h2
)
,

(9.0.212)

where ∇µ is the covariant derivative w.r.t. gµν . Using this, we find

Gµν [g + h] = Gµν [g] +
1

2

(
∇ρ∇µhν

ρ +∇ρ∇νhµ
ρ −∇2hµν −∇µ∇νh

)

+
1

2
gµνh

ρσRρσ[g]− 1

2
gµν∇ρ∇σh

ρσ +
1

2
gµν∇2h

− 1

2
hµνR[g] +O

(
h2
)
.

(9.0.213)

We are interested in the linearized equations about the Schwarzschild background. In
this case, Rµν [g] = R[g] = 0, which implies that the linearized Einstein equations are

∇ρ∇µhν
ρ +∇ρ∇νhµ

ρ −∇2hµν −∇µ∇νh− gµν∇ρ∇σh
ρσ + gµν∇2h = 0 . (9.0.214)

To solve the linearized Einstein’s equations about the initial Schwarzschild solution in
Bondi gauge, we consider a line element of the form

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + 2r2γzz̄dzdz̄ + hµνdx

µdxν , (9.0.215)

where hµν is a small perturbation of the metric. We require that hµν preserve the Bondi
gauge condition and the Bondi mass only shifts by a constant. In particular, since the
metric describes a spacetime that is perturbed by a null shockwave at v = v0, we can
take hµν to be of the following form:

hvv(v, r, z, z̄) = θ(v − v0)

(
2δm

r
+

1

r2 h̃vv(r, z, z̄)

)
,

hvr(v, r, z, z̄) =
θ(v − v0)

r2 h̃vr(r, z, z̄) ,

hvz(v, r, z, z̄) = θ(v − v0)h̃vz(r, z, z̄) ,

hzz(v, r, z, z̄) = rθ(v − v0)h̃zz(r, z, z̄) ,

hrr = hrz = hzz̄ = 0 ,

(9.0.216)

where h̃µν(r, z, z̄) must approach a finite function on the two-sphere as r → ∞. Note

that at linear order, the Bondi condition ∂r det gAB
r
2 implies γABhAB = 0. Consider the

rr-component of Einstein’s equation,

Grr =
2θ(v − v0)

(
r∂rh̃vr − 2h̃vr

)

r4 = 0 (9.0.217)
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which implies that
h̃vr = r2c1vr(z, z̄) . (9.0.218)

However, to satisfy the boundary condition that h̃vr is finite as r → ∞, we must
have c1vr(z, z̄) = 0. Using this result, next consider the zz-component of Einstein’s
equations:

Gzz = −rδ(v − v0)∂rh̃zz +
1

2r2 θ(v − v0)
(

2r2∂rDzh̃vz − 2Mr∂rh̃zz

+r2(2M − r)∂2
r h̃zz + 2Mh̃zz

)

= 0 ,

(9.0.219)

where Dz is the covariant derivative w.r.t. the two-sphere. From the first term, we
find that h̃zz must be r-independent. Using these results, we have

Grz = −θ(v − v0)

(
−2r2∂2

r h̃vz + 4h̃vz + 2Dzh̃zz

4r2

)
= 0 . (9.0.220)

If we take a derivative of the numerator with respect to r, we find a differential equa-
tions for only h̃vz with the general solution

h̃vz(r, z, z̄) =
c1vz(z, z̄)

r
+ c2vz(z, z̄) + c3vz(z, z̄)r2 . (9.0.221)

The boundary conditions force c3vz(z, z̄) = 0. Moreover, substituting back into (9.0.220)
implies that c2vz = −1

2
Dzh̃zz. From the second term in (9.0.219), we learn that

h̃zz = 1
M
Dzc1vz. Using these results, we have

Gzz̄ = θ(v − v0)

(
2Dzc1vz + 2Dz̄c1vz̄ − 2r2∂2

r h̃vv + 4r∂rh̃vv − 4h̃vv

2r2(1 + zz̄)2

)
= 0 . (9.0.222)

Again, taking an r-derivative of the numerator, we can solve for the r-dependence of
h̃vv. The most general solution consistent with the boundary conditions is

h̃vv(r, z, z̄) =
1

2

(
Dzc1vz +Dz̄c1vz̄

)
. (9.0.223)

Using these results, the vz-component is of the form

Gvz =
3δ(v − v0)c1vz

2r2 + θ(v − v0)G′vz(r, z, z̄) , (9.0.224)

where G′vz(r, z, z̄) is defined to be the coefficient of the θ(v − v0) term in Gvz. Using
the Einstein’s equations, we find

c1vz = −2MDzf . (9.0.225)
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Finally, we can compute

Gvv = δ(v − v0)

(
2δm

r2 +
D2(D2 + 2)f

2r2 − 3MD2f

r3

)
. (9.0.226)

Using Einstein’s equations, we find δm = µ. At this point, we have completely deter-
mined the metric to be

gvv = −1 +
2(M + µθ(v − v0))

r
− θ(v − v0)MD2f

r2 ,

gvr = 1 ,

gvz = θ(v − v0)Dz

[(
1− 2M

r

)
+

1

2
D2

]
f ,

gzz = −2rθ(v − v0)D2
zf ,

gzz̄ = r2γzz̄ ,

grr = grz = 0 .

(9.0.227)

One can check that this metric satisfies Gvr = 0, as desired.

14(b). Note that a spherically symmetric shockwave with stress tensor

Tvv =
µδ(v − v0)

4πr2 , (9.0.228)

is a particular case of equation (9.0.226) part (a) with f = 0, so that for v > v0 the
metric will take the form

ds2 = −
(

1− 2(M + µ)

r

)
dv2 + 2dvdr + 2r2γzz̄dzdz̄ . (9.0.229)

The exact form of the generator of supertranslations in a Schwarzschild background is
given by

ξ = f∂v +
1

r
DAf∂A −

1

2
D2f∂r , (9.0.230)

where f = f(z, z̄). Under the supertranslation, the components of the metric have the
following variations:

Lfgvv =
D2fM

r2 , Lfgvr = Lfgrr = Lfgrz = Lfgzz̄ = 0 ,

Lfgvz = −1

2
DzD

2f −Dzf +
2DzfM

r
, Lfgzz = 2rD2

zf .

(9.0.231)

The change in the metric is related to the Lie derivative by δgµν = −Lfgµν . Hence,
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the resulting metric is given by

gvv = −1 +
2(M + µ)

r
− D2fM

r2 ,

gvr = 1 ,

gvz =
1

2
DzD

2f +Dzf −
2DzfM

r
,

gzz = −2rD2
zf ,

gzz̄ = r2γzz̄ ,

grr = grz = 0 ,

(9.0.232)

which matches the metric found in part (a) when v > v0.

15(a). Maxwell’s equations are

d ∗ F = e2 ∗ j . (9.0.233)

Then, using Stokes’ law, we can write

Q̂Hε =
1

e2

∫

H
d [ε ∗ F ] =

1

e2

∫

H
dε ∧ ∗F +

∫

H
ε ∗ j . (9.0.234)

The first term in this equation is the soft charge. To determine its explicit form, we
need to determine the projection of the two-form ∗F onto H. To do this, note that
the Vaidya metric takes the form

ds2 = −
[
1− 2Mθ(v)

r

]
dv2 + 2dvdr + 2r2γzz̄dzdz̄ . (9.0.235)

Using this form, we can determine ∗F as

∗F = iF z
zdv ∧ dr − ir2γzz̄Fvrdz ∧ dz̄

+

[
iFrzdr ∧ dz − i

[
Fvz +

[
1− 2M

r
θ(v)

]
Frz

]
dv ∧ dz + c.c.

]
.

(9.0.236)

This is derived using

(∗F )µν =
1

2
εµνρσF

ρσ . (9.0.237)

We must now project equation (9.0.237) onto H. To do so, we note that the event
horizon of the Vaidya shockwave metric is located at

rH(v) =

{
v
2

+ 2M , v ≤ 0 ,
2M , v > 0 .

(9.0.238)

Then, setting r = rH(v) in (9.0.236), we find

(∗F )
∣∣
H = −ir2

Hγzz̄F
(0)
vr dz ∧ dz̄ +

{
−i
[
F (0)
vz +

1

2
θ(−v)F (0)

rz

]
dv ∧ dz + c.c.

}
,

(9.0.239)
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where here the superscript (0) indicates the projection of the corresponding component
of the field strength onto H. Now we are finally ready to compute the charge. We take
ε to be extended onto H so that it is constant along null generators (i.e., ∂vε = 0).
Then we find

Q̂S,H
ε =

1

e2

∫
d2zε (∂zNz̄ + ∂z̄Nz) , (9.0.240)

where

Nz =

∫
dv

(
F (0)
vz +

1

2
θ(−v)F (0)

rz

)
. (9.0.241)

Here Nz is the analog of the zero mode on I+. Just like on I+, it is also a boundary
term and only gets contributions from H+. To see this, we move to the advanced radial
gauge:

Ar = 0 , Av
∣∣
H = 0 . (9.0.242)

In this gauge, we have

F (0)
vz +

1

2
θ(−v)F (0)

rz =

(
∂v +

1

2
θ(−v)∂r

)
Az
∣∣
r=rH

= ∂vA
(0)
z . (9.0.243)

In the second equality, we first take the appropriate derivatives and then set r = rH
in Az. By the chain rule, this is equal to first setting r = rH in Az and then taking a
v-derivative. Thus, we have

Nz =

∫
dv∂vA

(0)
z = A+

z − A−z . (9.0.244)

The past boundary ofH is really a point at v = −4M, r = 0, where there is a coordinate
singularity. To regulate this, we take the boundary to be at v = −4M + ε and then
take ε→ 0.

15(b). We recall the symplectic form determined in exercise 3:

ΩΣ = − 1

e2

∫

Σ

δ(∗F ) ∧ δA . (9.0.245)

Plugging in the explicit forms of ∗F and A in the advanced radial gauge, we find

ΩH =
1

e2

∫

H
dvd2z

(
∂vδA

(0)
z ∧ δA(0)

z̄ + ∂vδA
(0)
z̄ ∧ δA(0)

z

)
. (9.0.246)

Note that the symplectic form as well as the soft charge take exactly the same form as
on I+. We can therefore proceed as we did there. Define

Âz = A(0)
z −

1

2

(
A+
z + A−z

)
= A(0)

z − ∂zφ . (9.0.247)

Using this, we find

ΩH =
2

e2

∫
dvd2z∂vδÂz ∧ δÂz̄ −

1

e2

∫
d2z [δ∂zφ ∧ δNz̄ + δ∂z̄φ ∧ δNz] . (9.0.248)
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15(c). Just as on I+, we can write out the commutators from (9.0.248) as

[
Âz(v), Âw̄(v′)

]
= −ie

2

4
Θ(v − v′)δ2(z − w) ,

[∂zφ,Nw̄] = ie2δ2(z − w) .

(9.0.249)

Using this, we find
[
QS,H
ε , Âz

]
=
[
QS,H
ε , Nz

]
= 0 ,

[
QS,H
ε , ∂zφ

]
= i∂zε . (9.0.250)

10 Acknowledgments

I am grateful to Thomas Dumitrescu, Stephen Hawking, Temple He, Dan Kapec, Slava
Lysov, Prahar Mitra, Monica Pate, Sabrina Pasterski, Malcolm Perry, Achilleas Porfyriadis,
Ana Raclariu, Shu-Heng Shao and Sasha Zhiboedov for invaluable discussion and collabo-
ration on the topics in these lectures, to Temple He, Dan Kapec, Alex Lupsasca, Prahar
Mitra, Monica Pate, Abhishek Pathak and Ana Raclariu for help with the manuscript, and
to Juan Maldacena for key observations at early stages of my research into IR structures.
Various components of this work were supported by DOE grant DE-FG02-91ER40654, NSF
grant 1205550, the John Templeton Foundation and the Simons Foundation.

11 References

[1] F. Bloch and A. Nordsieck, “Note on the Radiation Field of the electron,” Phys. Rev.
52 (1937) 54–59.

[2] F. E. Low, “Scattering of light of very low frequency by systems of spin 1/2,” Phys.
Rev. 96 (1954) 1428–1432.

[3] M. Gell-Mann and M. L. Goldberger, “Scattering of low-energy photons by particles
of spin 1/2,” Phys. Rev. 96 (1954) 1433–1438.

[4] F. E. Low, “Bremsstrahlung of very low-energy quanta in elementary particle
collisions,” Phys. Rev. 110 (1958) 974–977.

[5] E. Kazes, “Generalized current conservation and low energy limit of photon
interactions,” Il Nuovo Cimento (1955-1965) 13 no. 6, (Sep, 1959) 1226–1239.
https://doi.org/10.1007/BF02725129.

[6] D. R. Yennie, S. C. Frautschi, and H. Suura, “The infrared divergence phenomena
and high-energy processes,” Annals Phys. 13 (1961) 379–452.

[7] S. Weinberg, “Infrared photons and gravitons,” Phys. Rev. 140 (1965) B516–B524.

[8] H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in
general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc.
Lond. A269 (1962) 21–52.

142

http://dx.doi.org/10.1103/PhysRev.52.54
http://dx.doi.org/10.1103/PhysRev.52.54
http://dx.doi.org/10.1103/PhysRev.96.1428
http://dx.doi.org/10.1103/PhysRev.96.1428
http://dx.doi.org/10.1103/PhysRev.96.1433
http://dx.doi.org/10.1103/PhysRev.110.974
http://dx.doi.org/10.1007/BF02725129
https://doi.org/10.1007/BF02725129
http://dx.doi.org/10.1016/0003-4916(61)90151-8
http://dx.doi.org/10.1103/PhysRev.140.B516
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0161


[9] R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically
flat space-times,” Proc. Roy. Soc. Lond. A270 (1962) 103–126.

[10] A. Strominger, “Asymptotic Symmetries of Yang-Mills Theory,” JHEP 07 (2014)
151, arXiv:1308.0589 [hep-th].

[11] T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, “New Symmetries of Massless
QED,” JHEP 10 (2014) 112, arXiv:1407.3789 [hep-th].

[12] T. He, P. Mitra, and A. Strominger, “2D Kac-Moody Symmetry of 4D Yang-Mills
Theory,” JHEP 10 (2016) 137, arXiv:1503.02663 [hep-th].

[13] D. Kapec, M. Pate, and A. Strominger, “New Symmetries of QED,”
arXiv:1506.02906 [hep-th].

[14] M. Campiglia and A. Laddha, “Asymptotic symmetries of QED and Weinberg’s soft
photon theorem,” JHEP 07 (2015) 115, arXiv:1505.05346 [hep-th].

[15] G. Barnich and C. Troessaert, “Comments on holographic current algebras and
asymptotically flat four dimensional spacetimes at null infinity,” JHEP 11 (2013)
003, arXiv:1309.0794 [hep-th].

[16] G. Barnich and P.-H. Lambert, “Einstein-Yang-Mills theory: Asymptotic
symmetries,” Phys. Rev. D88 (2013) 103006, arXiv:1310.2698 [hep-th].

[17] D. Grumiller, M. Leston, and D. Vassilevich, “Anti-de Sitter holography for gravity
and higher spin theories in two dimensions,” Phys. Rev. D89 no. 4, (2014) 044001,
arXiv:1311.7413 [hep-th].

[18] A. Mohd, “A note on asymptotic symmetries and soft-photon theorem,” JHEP 02
(2015) 060, arXiv:1412.5365 [hep-th].

[19] C. Cardona, “Asymptotic Symmetries of Yang-Mills with Theta Term and
Monopoles,” arXiv:1504.05542 [hep-th].

[20] T. Adamo and E. Casali, “Perturbative gauge theory at null infinity,” Phys. Rev.
D91 no. 12, (2015) 125022, arXiv:1504.02304 [hep-th].

[21] A. Seraj, “Multipole charge conservation and implications on electromagnetic
radiation,” JHEP 06 (2017) 080, arXiv:1610.02870 [hep-th].

[22] B. Gabai and A. Sever, “Large gauge symmetries and asymptotic states in QED,”
JHEP 12 (2016) 095, arXiv:1607.08599 [hep-th].

[23] Y. Zeldovich and A. Polnarev, “Radiation of gravitational waves by a cluster of
superdense stars,” Sov. Astron. AJ (Engl. Transl.), v. 18, no. 1, pp. 17-23 (Jul,
1974) .

143

http://dx.doi.org/10.1098/rspa.1962.0206
http://dx.doi.org/10.1007/JHEP07(2014)151
http://dx.doi.org/10.1007/JHEP07(2014)151
http://arxiv.org/abs/1308.0589
http://dx.doi.org/10.1007/JHEP10(2014)112
http://arxiv.org/abs/1407.3789
http://dx.doi.org/10.1007/JHEP10(2016)137
http://arxiv.org/abs/1503.02663
http://arxiv.org/abs/1506.02906
http://dx.doi.org/10.1007/JHEP07(2015)115
http://arxiv.org/abs/1505.05346
http://dx.doi.org/10.1007/JHEP11(2013)003
http://dx.doi.org/10.1007/JHEP11(2013)003
http://arxiv.org/abs/1309.0794
http://dx.doi.org/10.1103/PhysRevD.88.103006
http://arxiv.org/abs/1310.2698
http://dx.doi.org/10.1103/PhysRevD.89.044001
http://arxiv.org/abs/1311.7413
http://dx.doi.org/10.1007/JHEP02(2015)060
http://dx.doi.org/10.1007/JHEP02(2015)060
http://arxiv.org/abs/1412.5365
http://arxiv.org/abs/1504.05542
http://dx.doi.org/10.1103/PhysRevD.91.125022
http://dx.doi.org/10.1103/PhysRevD.91.125022
http://arxiv.org/abs/1504.02304
http://dx.doi.org/10.1007/JHEP06(2017)080
http://arxiv.org/abs/1610.02870
http://dx.doi.org/10.1007/JHEP12(2016)095
http://arxiv.org/abs/1607.08599


[24] V. B. Braginsky and L. P. Grishchuk, “Kinematic Resonance and Memory Effect in
Free Mass Gravitational Antennas,” Sov. Phys. JETP 62 (1985) 427–430. [Zh. Eksp.
Teor. Fiz.89,744(1985)].

[25] V. B. Braginskii and K. S. Thorne, “Gravitational-wave bursts with memory and
experimental prospects,” Nature 327 (May, 1987) 123–125.

[26] D. Christodoulou, “Nonlinear nature of gravitation and gravitational wave
experiments,” Phys. Rev. Lett. 67 (1991) 1486–1489.

[27] A. G. Wiseman and C. M. Will, “Christodoulou’s nonlinear gravitational wave
memory: Evaluation in the quadrupole approximation,” Phys. Rev. D44 no. 10,
(1991) R2945–R2949.

[28] L. Blanchet and T. Damour, “Hereditary effects in gravitational radiation,” Phys.
Rev. D46 (1992) 4304–4319.

[29] K. S. Thorne, “Gravitational-wave bursts with memory: The Christodoulou effect,”
Phys. Rev. D45 no. 2, (1992) 520–524.

[30] M. Favata, “The gravitational-wave memory effect,” Class. Quant. Grav. 27 (2010)
084036, arXiv:1003.3486 [gr-qc].

[31] A. Tolish and R. M. Wald, “Retarded Fields of Null Particles and the Memory
Effect,” Phys. Rev. D89 no. 6, (2014) 064008, arXiv:1401.5831 [gr-qc].

[32] A. Tolish, L. Bieri, D. Garfinkle, and R. M. Wald, “Examination of a simple example
of gravitational wave memory,” Phys. Rev. D90 no. 4, (2014) 044060,
arXiv:1405.6396 [gr-qc].

[33] J. Winicour, “Global aspects of radiation memory,” Class. Quant. Grav. 31 (2014)
205003, arXiv:1407.0259 [gr-qc].

[34] P. D. Lasky, E. Thrane, Y. Levin, J. Blackman, and Y. Chen, “Detecting
gravitational-wave memory with LIGO: implications of GW150914,” Phys. Rev. Lett.
117 no. 6, (2016) 061102, arXiv:1605.01415 [astro-ph.HE].

[35] R. van Haasteren and Y. Levin, “Gravitational-wave memory and pulsar timing
arrays,” Mon. Not. Roy. Astron. Soc. 401 (2010) 2372, arXiv:0909.0954
[astro-ph.IM].

[36] J. B. Wang et al., “Searching for gravitational wave memory bursts with the Parkes
Pulsar Timing Array,” Mon. Not. Roy. Astron. Soc. 446 (2015) 1657–1671,
arXiv:1410.3323 [astro-ph.GA].

[37] L. Bieri and D. Garfinkle, “An electromagnetic analogue of gravitational wave
memory,” Class. Quant. Grav. 30 (2013) 195009, arXiv:1307.5098 [gr-qc].

[38] L. Susskind, “Electromagnetic Memory,” arXiv:1507.02584 [hep-th].

144

http://dx.doi.org/10.1038/327123a0
http://dx.doi.org/10.1103/PhysRevLett.67.1486
http://dx.doi.org/10.1103/PhysRevD.44.R2945
http://dx.doi.org/10.1103/PhysRevD.44.R2945
http://dx.doi.org/10.1103/PhysRevD.46.4304
http://dx.doi.org/10.1103/PhysRevD.46.4304
http://dx.doi.org/10.1103/PhysRevD.45.520
http://dx.doi.org/10.1088/0264-9381/27/8/084036
http://dx.doi.org/10.1088/0264-9381/27/8/084036
http://arxiv.org/abs/1003.3486
http://dx.doi.org/10.1103/PhysRevD.89.064008
http://arxiv.org/abs/1401.5831
http://dx.doi.org/10.1103/PhysRevD.90.044060
http://arxiv.org/abs/1405.6396
http://dx.doi.org/10.1088/0264-9381/31/20/205003
http://dx.doi.org/10.1088/0264-9381/31/20/205003
http://arxiv.org/abs/1407.0259
http://dx.doi.org/10.1103/PhysRevLett.117.061102
http://dx.doi.org/10.1103/PhysRevLett.117.061102
http://arxiv.org/abs/1605.01415
http://dx.doi.org/10.1111/j.1365-2966.2009.15885.x
http://arxiv.org/abs/0909.0954
http://arxiv.org/abs/0909.0954
http://dx.doi.org/10.1093/mnras/stu2137
http://arxiv.org/abs/1410.3323
http://dx.doi.org/10.1088/0264-9381/30/19/195009
http://arxiv.org/abs/1307.5098
http://arxiv.org/abs/1507.02584


[39] S. Pasterski, “Asymptotic Symmetries and Electromagnetic Memory,” JHEP 09
(2017) 154, arXiv:1505.00716 [hep-th].

[40] M. Pate, A.-M. Raclariu, and A. Strominger, “Color Memory,” arXiv:1707.08016

[hep-th].

[41] A. Strominger and A. Zhiboedov, “Gravitational Memory, BMS Supertranslations
and Soft Theorems,” JHEP 01 (2016) 086, arXiv:1411.5745 [hep-th].

[42] A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07 (2014)
152, arXiv:1312.2229 [hep-th].

[43] T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and
Weinberg’s soft graviton theorem,” JHEP 05 (2015) 151, arXiv:1401.7026
[hep-th].

[44] A. Bagchi and R. Gopakumar, “Non-relativistic AdS/CFT and the GCA,” J. Phys.
Conf. Ser. 462 no. 1, (2013) 012017.

[45] T. Andrade and D. Marolf, “Asymptotic Symmetries from finite boxes,” Class.
Quant. Grav. 33 no. 1, (2016) 015013, arXiv:1508.02515 [gr-qc].

[46] G. Barnich, A. Gomberoff, and H. A. Gonzalez, “The Flat limit of three dimensional
asymptotically anti-de Sitter spacetimes,” Phys. Rev. D86 (2012) 024020,
arXiv:1204.3288 [gr-qc].

[47] D. Christodoulou and S. Klainerman, The Global nonlinear stability of the Minkowski
space. Princeton University Press, 1993.

[48] S. W. Hawking, M. J. Perry, and A. Strominger, “Superrotation Charge and
Supertranslation Hair on Black Holes,” JHEP 05 (2017) 161, arXiv:1611.09175
[hep-th].

[49] A. Ashtekar, ASYMPTOTIC QUANTIZATION: BASED ON 1984 NAPLES
LECTURES. 1987.

[50] A. P. Balachandran and S. Vaidya, “Spontaneous Lorentz Violation in Gauge
Theories,” Eur. Phys. J. Plus 128 (2013) 118, arXiv:1302.3406 [hep-th].

[51] G. Barnich and C. Troessaert, “Finite BMS transformations,” JHEP 03 (2016) 167,
arXiv:1601.04090 [gr-qc].

[52] J. de Boer and S. N. Solodukhin, “A Holographic reduction of Minkowski
space-time,” Nucl. Phys. B665 (2003) 545–593, arXiv:hep-th/0303006 [hep-th].

[53] T. Banks, “A Critique of pure string theory: Heterodox opinions of diverse
dimensions,” arXiv:hep-th/0306074 [hep-th].

145

http://dx.doi.org/10.1007/JHEP09(2017)154
http://dx.doi.org/10.1007/JHEP09(2017)154
http://arxiv.org/abs/1505.00716
http://arxiv.org/abs/1707.08016
http://arxiv.org/abs/1707.08016
http://dx.doi.org/10.1007/JHEP01(2016)086
http://arxiv.org/abs/1411.5745
http://dx.doi.org/10.1007/JHEP07(2014)152
http://dx.doi.org/10.1007/JHEP07(2014)152
http://arxiv.org/abs/1312.2229
http://dx.doi.org/10.1007/JHEP05(2015)151
http://arxiv.org/abs/1401.7026
http://arxiv.org/abs/1401.7026
http://dx.doi.org/10.1088/1742-6596/462/1/012017
http://dx.doi.org/10.1088/1742-6596/462/1/012017
http://dx.doi.org/10.1088/0264-9381/33/1/015013
http://dx.doi.org/10.1088/0264-9381/33/1/015013
http://arxiv.org/abs/1508.02515
http://dx.doi.org/10.1103/PhysRevD.86.024020
http://arxiv.org/abs/1204.3288
http://dx.doi.org/10.1007/JHEP05(2017)161
http://arxiv.org/abs/1611.09175
http://arxiv.org/abs/1611.09175
http://dx.doi.org/10.1140/epjp/i2013-13118-9
http://arxiv.org/abs/1302.3406
http://dx.doi.org/10.1007/JHEP03(2016)167
http://arxiv.org/abs/1601.04090
http://dx.doi.org/10.1016/S0550-3213(03)00494-2
http://arxiv.org/abs/hep-th/0303006
http://arxiv.org/abs/hep-th/0306074


[54] G. Barnich and C. Troessaert, “Symmetries of asymptotically flat 4 dimensional
spacetimes at null infinity revisited,” Phys. Rev. Lett. 105 (2010) 111103,
arXiv:0909.2617 [gr-qc].

[55] G. Barnich and C. Troessaert, “Supertranslations call for superrotations,” PoS
(2010) 010, arXiv:1102.4632 [gr-qc]. [Ann. U. Craiova Phys.21,S11(2011)].

[56] F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton Theorem,”
arXiv:1404.4091 [hep-th].

[57] D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Semiclassical Virasoro
symmetry of the quantum gravity S-matrix,” JHEP 08 (2014) 058,
arXiv:1406.3312 [hep-th].

[58] T. T. Dumitrescu, T. He, P. Mitra, and A. Strominger, “Infinite-Dimensional
Fermionic Symmetry in Supersymmetric Gauge Theories,” arXiv:1511.07429

[hep-th].

[59] T. H. Burnett and N. M. Kroll, “Extension of the low soft photon theorem,” Phys.
Rev. Lett. 20 (1968) 86.

[60] V. Lysov, S. Pasterski, and A. Strominger, “Low’s Subleading Soft Theorem as a
Symmetry of QED,” Phys. Rev. Lett. 113 no. 11, (2014) 111601, arXiv:1407.3814
[hep-th].

[61] M. Campiglia and A. Laddha, “Subleading soft photons and large gauge
transformations,” JHEP 11 (2016) 012, arXiv:1605.09677 [hep-th].

[62] E. Conde and P. Mao, “Remarks on asymptotic symmetries and the subleading soft
photon theorem,” Phys. Rev. D95 no. 2, (2017) 021701, arXiv:1605.09731
[hep-th].

[63] R. Jackiw, “Low-Energy Theorems for Massless Bosons: Photons and Gravitons,”
Phys. Rev. 168 (1968) 1623–1633.

[64] D. J. Gross and R. Jackiw, “Low-Energy Theorem for Graviton Scattering,” Phys.
Rev. 166 (1968) 1287–1292.

[65] C. D. White, “Factorization Properties of Soft Graviton Amplitudes,” JHEP 05
(2011) 060, arXiv:1103.2981 [hep-th].

[66] M. Campiglia and A. Laddha, “Asymptotic symmetries and subleading soft graviton
theorem,” Phys. Rev. D90 no. 12, (2014) 124028, arXiv:1408.2228 [hep-th].

[67] D. Kapec, P. Mitra, A.-M. Raclariu, and A. Strominger, “2D Stress Tensor for 4D
Gravity,” Phys. Rev. Lett. 119 no. 12, (2017) 121601, arXiv:1609.00282 [hep-th].

[68] C. Cheung, A. de la Fuente, and R. Sundrum, “4D scattering amplitudes and
asymptotic symmetries from 2D CFT,” JHEP 01 (2017) 112, arXiv:1609.00732
[hep-th].

146

http://dx.doi.org/10.1103/PhysRevLett.105.111103
http://arxiv.org/abs/0909.2617
http://arxiv.org/abs/1102.4632
http://arxiv.org/abs/1404.4091
http://dx.doi.org/10.1007/JHEP08(2014)058
http://arxiv.org/abs/1406.3312
http://arxiv.org/abs/1511.07429
http://arxiv.org/abs/1511.07429
http://dx.doi.org/10.1103/PhysRevLett.20.86
http://dx.doi.org/10.1103/PhysRevLett.20.86
http://dx.doi.org/10.1103/PhysRevLett.113.111601
http://arxiv.org/abs/1407.3814
http://arxiv.org/abs/1407.3814
http://dx.doi.org/10.1007/JHEP11(2016)012
http://arxiv.org/abs/1605.09677
http://dx.doi.org/10.1103/PhysRevD.95.021701
http://arxiv.org/abs/1605.09731
http://arxiv.org/abs/1605.09731
http://dx.doi.org/10.1103/PhysRev.168.1623
http://dx.doi.org/10.1103/PhysRev.166.1287
http://dx.doi.org/10.1103/PhysRev.166.1287
http://dx.doi.org/10.1007/JHEP05(2011)060
http://dx.doi.org/10.1007/JHEP05(2011)060
http://arxiv.org/abs/1103.2981
http://dx.doi.org/10.1103/PhysRevD.90.124028
http://arxiv.org/abs/1408.2228
http://dx.doi.org/10.1103/PhysRevLett.119.121601
http://arxiv.org/abs/1609.00282
http://dx.doi.org/10.1007/JHEP01(2017)112
http://arxiv.org/abs/1609.00732
http://arxiv.org/abs/1609.00732


[69] S. Pasterski, A. Strominger, and A. Zhiboedov, “New Gravitational Memories,”
JHEP 12 (2016) 053, arXiv:1502.06120 [hep-th].

[70] D. A. Nichols, “Spin memory effect for compact binaries in the post-Newtonian
approximation,” Phys. Rev. D95 no. 8, (2017) 084048, arXiv:1702.03300 [gr-qc].

[71] Y.-J. Du, B. Feng, C.-H. Fu, and Y. Wang, “Note on Soft Graviton theorem by KLT
Relation,” JHEP 11 (2014) 090, arXiv:1408.4179 [hep-th].

[72] M. Zlotnikov, “Sub-sub-leading soft-graviton theorem in arbitrary dimension,” JHEP
10 (2014) 148, arXiv:1407.5936 [hep-th].

[73] C. Kalousios and F. Rojas, “Next to subleading soft-graviton theorem in arbitrary
dimensions,” JHEP 01 (2015) 107, arXiv:1407.5982 [hep-th].

[74] P. Di Vecchia, R. Marotta, and M. Mojaza, “Subsubleading soft theorems of
gravitons and dilatons in the bosonic string,” JHEP 06 (2016) 054,
arXiv:1604.03355 [hep-th].

[75] M. Campiglia and A. Laddha, “Sub-subleading soft gravitons and large
diffeomorphisms,” JHEP 01 (2017) 036, arXiv:1608.00685 [gr-qc].

[76] P. Di Vecchia, R. Marotta, and M. Mojaza, “Soft behavior of a closed massless state
in superstring and universality in the soft behavior of the dilaton,” JHEP 12 (2016)
020, arXiv:1610.03481 [hep-th].

[77] A. Luna, S. Melville, S. G. Naculich, and C. D. White, “Next-to-soft corrections to
high energy scattering in QCD and gravity,” JHEP 01 (2017) 052,
arXiv:1611.02172 [hep-th].

[78] M. Campiglia and A. Laddha, “Sub-subleading soft gravitons: New symmetries of
quantum gravity?,” Phys. Lett. B764 (2017) 218–221, arXiv:1605.09094 [gr-qc].

[79] J. Broedel, M. de Leeuw, J. Plefka, and M. Rosso, “Constraining subleading soft
gluon and graviton theorems,” Phys. Rev. D90 no. 6, (2014) 065024,
arXiv:1406.6574 [hep-th].

[80] H. Elvang, C. R. T. Jones, and S. G. Naculich, “Soft Photon and Graviton Theorems
in Effective Field Theory,” Phys. Rev. Lett. 118 no. 23, (2017) 231601,
arXiv:1611.07534 [hep-th].

[81] E. Casali, “Soft sub-leading divergences in Yang-Mills amplitudes,” JHEP 08 (2014)
077, arXiv:1404.5551 [hep-th].

[82] A. Sabio Vera and M. A. Vazquez-Mozo, “The Double Copy Structure of Soft
Gravitons,” JHEP 03 (2015) 070, arXiv:1412.3699 [hep-th].

[83] W.-M. Chen, Y.-t. Huang, and C. Wen, “New Fermionic Soft Theorems for
Supergravity Amplitudes,” Phys. Rev. Lett. 115 no. 2, (2015) 021603,
arXiv:1412.1809 [hep-th].

147

http://dx.doi.org/10.1007/JHEP12(2016)053
http://arxiv.org/abs/1502.06120
http://dx.doi.org/10.1103/PhysRevD.95.084048
http://arxiv.org/abs/1702.03300
http://dx.doi.org/10.1007/JHEP11(2014)090
http://arxiv.org/abs/1408.4179
http://dx.doi.org/10.1007/JHEP10(2014)148
http://dx.doi.org/10.1007/JHEP10(2014)148
http://arxiv.org/abs/1407.5936
http://dx.doi.org/10.1007/JHEP01(2015)107
http://arxiv.org/abs/1407.5982
http://dx.doi.org/10.1007/JHEP06(2016)054
http://arxiv.org/abs/1604.03355
http://dx.doi.org/10.1007/JHEP01(2017)036
http://arxiv.org/abs/1608.00685
http://dx.doi.org/10.1007/JHEP12(2016)020
http://dx.doi.org/10.1007/JHEP12(2016)020
http://arxiv.org/abs/1610.03481
http://dx.doi.org/10.1007/JHEP01(2017)052
http://arxiv.org/abs/1611.02172
http://dx.doi.org/10.1016/j.physletb.2016.11.046
http://arxiv.org/abs/1605.09094
http://dx.doi.org/10.1103/PhysRevD.90.065024
http://arxiv.org/abs/1406.6574
http://dx.doi.org/10.1103/PhysRevLett.118.231601
http://arxiv.org/abs/1611.07534
http://dx.doi.org/10.1007/JHEP08(2014)077
http://dx.doi.org/10.1007/JHEP08(2014)077
http://arxiv.org/abs/1404.5551
http://dx.doi.org/10.1007/JHEP03(2015)070
http://arxiv.org/abs/1412.3699
http://dx.doi.org/10.1103/PhysRevLett.115.021603
http://arxiv.org/abs/1412.1809


[84] Z.-W. Liu, “Soft theorems in maximally supersymmetric theories,” Eur. Phys. J.
C75 no. 3, (2015) 105, arXiv:1410.1616 [hep-th].

[85] L. V. Bork and A. I. Onishchenko, “On soft theorems and form factors in N = 4
SYM theory,” JHEP 12 (2015) 030, arXiv:1506.07551 [hep-th].

[86] Y.-J. Du and H. Luo, “On single and double soft behaviors in NLSM,” JHEP 08
(2015) 058, arXiv:1505.04411 [hep-th].

[87] B. U. W. Schwab, “A Note on Soft Factors for Closed String Scattering,” JHEP 03
(2015) 140, arXiv:1411.6661 [hep-th].

[88] B. U. W. Schwab, “Subleading Soft Factor for String Disk Amplitudes,” JHEP 08
(2014) 062, arXiv:1406.4172 [hep-th].

[89] P. Di Vecchia, R. Marotta, and M. Mojaza, “Soft theorem for the graviton, dilaton
and the Kalb-Ramond field in the bosonic string,” JHEP 05 (2015) 137,
arXiv:1502.05258 [hep-th].

[90] M. Bianchi and A. L. Guerrieri, “On the soft limit of open string disk amplitudes
with massive states,” JHEP 09 (2015) 164, arXiv:1505.05854 [hep-th].

[91] S. G. Avery and B. U. W. Schwab, “Burg-Metzner-Sachs symmetry, string theory,
and soft theorems,” Phys. Rev. D93 (2016) 026003, arXiv:1506.05789 [hep-th].

[92] M. Bianchi and A. L. Guerrieri, “On the soft limit of closed string amplitudes with
massive states,” Nucl. Phys. B905 (2016) 188–216, arXiv:1512.00803 [hep-th].

[93] A. Sen, “Soft Theorems in Superstring Theory,” JHEP 06 (2017) 113,
arXiv:1702.03934 [hep-th].

[94] A. J. Larkoski, “Conformal Invariance of the Subleading Soft Theorem in Gauge
Theory,” Phys. Rev. D90 no. 8, (2014) 087701, arXiv:1405.2346 [hep-th].

[95] B. U. W. Schwab and A. Volovich, “Subleading Soft Theorem in Arbitrary
Dimensions from Scattering Equations,” Phys. Rev. Lett. 113 no. 10, (2014) 101601,
arXiv:1404.7749 [hep-th].

[96] H. Luo, P. Mastrolia, and W. J. Torres Bobadilla, “Subleading soft behavior of QCD
amplitudes,” Phys. Rev. D91 no. 6, (2015) 065018, arXiv:1411.1669 [hep-th].

[97] F. Cachazo, P. Cha, and S. Mizera, “Extensions of Theories from Soft Limits,” JHEP
06 (2016) 170, arXiv:1604.03893 [hep-th].

[98] L. Rodina, “Uniqueness from gauge invariance and the Adler zero,”
arXiv:1612.06342 [hep-th].

[99] N. Arkani-Hamed, F. Cachazo, and J. Kaplan, “What is the Simplest Quantum Field
Theory?,” JHEP 09 (2010) 016, arXiv:0808.1446 [hep-th].

148

http://dx.doi.org/10.1140/epjc/s10052-015-3304-1
http://dx.doi.org/10.1140/epjc/s10052-015-3304-1
http://arxiv.org/abs/1410.1616
http://dx.doi.org/10.1007/JHEP12(2015)030
http://arxiv.org/abs/1506.07551
http://dx.doi.org/10.1007/JHEP08(2015)058
http://dx.doi.org/10.1007/JHEP08(2015)058
http://arxiv.org/abs/1505.04411
http://dx.doi.org/10.1007/JHEP03(2015)140
http://dx.doi.org/10.1007/JHEP03(2015)140
http://arxiv.org/abs/1411.6661
http://dx.doi.org/10.1007/JHEP08(2014)062
http://dx.doi.org/10.1007/JHEP08(2014)062
http://arxiv.org/abs/1406.4172
http://dx.doi.org/10.1007/JHEP05(2015)137
http://arxiv.org/abs/1502.05258
http://dx.doi.org/10.1007/JHEP09(2015)164
http://arxiv.org/abs/1505.05854
http://dx.doi.org/10.1103/PhysRevD.93.026003
http://arxiv.org/abs/1506.05789
http://dx.doi.org/10.1016/j.nuclphysb.2016.02.005
http://arxiv.org/abs/1512.00803
http://dx.doi.org/10.1007/JHEP06(2017)113
http://arxiv.org/abs/1702.03934
http://dx.doi.org/10.1103/PhysRevD.90.087701
http://arxiv.org/abs/1405.2346
http://dx.doi.org/10.1103/PhysRevLett.113.101601
http://arxiv.org/abs/1404.7749
http://dx.doi.org/10.1103/PhysRevD.91.065018
http://arxiv.org/abs/1411.1669
http://dx.doi.org/10.1007/JHEP06(2016)170
http://dx.doi.org/10.1007/JHEP06(2016)170
http://arxiv.org/abs/1604.03893
http://arxiv.org/abs/1612.06342
http://dx.doi.org/10.1007/JHEP09(2010)016
http://arxiv.org/abs/0808.1446


[100] T. Klose, T. McLoughlin, D. Nandan, J. Plefka, and G. Travaglini, “Double-Soft
Limits of Gluons and Gravitons,” JHEP 07 (2015) 135, arXiv:1504.05558
[hep-th].

[101] A. P. Saha, “Double soft limit of the graviton amplitude from the Cachazo-He-Yuan
formalism,” Phys. Rev. D96 no. 4, (2017) 045002, arXiv:1702.02350 [hep-th].

[102] S. Chakrabarti, S. P. Kashyap, B. Sahoo, A. Sen, and M. Verma, “Subleading Soft
Theorem for Multiple Soft Gravitons,” arXiv:1707.06803 [hep-th].

[103] A. Volovich, C. Wen, and M. Zlotnikov, “Double Soft Theorems in Gauge and String
Theories,” JHEP 07 (2015) 095, arXiv:1504.05559 [hep-th].

[104] F. Cachazo, S. He, and E. Y. Yuan, “New Double Soft Emission Theorems,” Phys.
Rev. D92 no. 6, (2015) 065030, arXiv:1503.04816 [hep-th].

[105] T. McLoughlin and D. Nandan, “Multi-Soft gluon limits and extended current
algebras at null-infinity,” JHEP 08 (2017) 124, arXiv:1610.03841 [hep-th].

[106] W.-M. Chen, Y.-t. Huang, and C. Wen, “From U(1) to E8: soft theorems in
supergravity amplitudes,” JHEP 03 (2015) 150, arXiv:1412.1811 [hep-th].

[107] I. Low, “Double Soft Theorems and Shift Symmetry in Nonlinear Sigma Models,”
Phys. Rev. D93 no. 4, (2016) 045032, arXiv:1512.01232 [hep-th].

[108] P. Di Vecchia, R. Marotta, and M. Mojaza, “Double-soft behavior for scalars and
gluons from string theory,” JHEP 12 (2015) 150, arXiv:1507.00938 [hep-th].

[109] M. Bianchi, S. He, Y.-t. Huang, and C. Wen, “More on Soft Theorems: Trees, Loops
and Strings,” Phys. Rev. D92 no. 6, (2015) 065022, arXiv:1406.5155 [hep-th].

[110] Z. Bern, S. Davies, and J. Nohle, “On Loop Corrections to Subleading Soft Behavior
of Gluons and Gravitons,” Phys. Rev. D90 no. 8, (2014) 085015, arXiv:1405.1015
[hep-th].

[111] S. He, Y.-t. Huang, and C. Wen, “Loop Corrections to Soft Theorems in Gauge
Theories and Gravity,” JHEP 12 (2014) 115, arXiv:1405.1410 [hep-th].

[112] F. Cachazo and E. Y. Yuan, “Are Soft Theorems Renormalized?,” arXiv:1405.3413

[hep-th].

[113] Z. Bern, S. Davies, P. Di Vecchia, and J. Nohle, “Low-Energy Behavior of Gluons
and Gravitons from Gauge Invariance,” Phys. Rev. D90 no. 8, (2014) 084035,
arXiv:1406.6987 [hep-th].

[114] J. Broedel, M. de Leeuw, J. Plefka, and M. Rosso, “Local contributions to factorized
soft graviton theorems at loop level,” Phys. Lett. B746 (2015) 293–299,
arXiv:1411.2230 [hep-th].

149

http://dx.doi.org/10.1007/JHEP07(2015)135
http://arxiv.org/abs/1504.05558
http://arxiv.org/abs/1504.05558
http://dx.doi.org/10.1103/PhysRevD.96.045002
http://arxiv.org/abs/1702.02350
http://arxiv.org/abs/1707.06803
http://dx.doi.org/10.1007/JHEP07(2015)095
http://arxiv.org/abs/1504.05559
http://dx.doi.org/10.1103/PhysRevD.92.065030
http://dx.doi.org/10.1103/PhysRevD.92.065030
http://arxiv.org/abs/1503.04816
http://dx.doi.org/10.1007/JHEP08(2017)124
http://arxiv.org/abs/1610.03841
http://dx.doi.org/10.1007/JHEP03(2015)150
http://arxiv.org/abs/1412.1811
http://dx.doi.org/10.1103/PhysRevD.93.045032
http://arxiv.org/abs/1512.01232
http://dx.doi.org/10.1007/JHEP12(2015)150
http://arxiv.org/abs/1507.00938
http://dx.doi.org/10.1103/PhysRevD.92.065022
http://arxiv.org/abs/1406.5155
http://dx.doi.org/10.1103/PhysRevD.90.085015
http://arxiv.org/abs/1405.1015
http://arxiv.org/abs/1405.1015
http://dx.doi.org/10.1007/JHEP12(2014)115
http://arxiv.org/abs/1405.1410
http://arxiv.org/abs/1405.3413
http://arxiv.org/abs/1405.3413
http://dx.doi.org/10.1103/PhysRevD.90.084035
http://arxiv.org/abs/1406.6987
http://dx.doi.org/10.1016/j.physletb.2015.05.018
http://arxiv.org/abs/1411.2230


[115] A. E. Lipstein, “Soft Theorems from Conformal Field Theory,” JHEP 06 (2015) 166,
arXiv:1504.01364 [hep-th].

[116] A. Brandhuber, E. Hughes, B. Spence, and G. Travaglini, “One-Loop Soft Theorems
via Dual Superconformal Symmetry,” JHEP 03 (2016) 084, arXiv:1511.06716
[hep-th].

[117] T. He, D. Kapec, A.-M. Raclariu, and A. Strominger, “Loop-Corrected Virasoro
Symmetry of 4D Quantum Gravity,” JHEP 08 (2017) 050, arXiv:1701.00496
[hep-th].

[118] D. Kapec, V. Lysov, and A. Strominger, “Asymptotic Symmetries of Massless QED
in Even Dimensions,” arXiv:1412.2763 [hep-th].

[119] D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Higher-Dimensional
Supertranslations and Weinberg’s Soft Graviton Theorem,” arXiv:1502.07644

[gr-qc].

[120] A. Kehagias and A. Riotto, “BMS in Cosmology,” JCAP 1605 no. 05, (2016) 059,
arXiv:1602.02653 [hep-th].
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