
Physics 253a Problem set 1

Due Tuesday September 20, 2022

Problem 1. In the first lecture we introduced a scalar field operator in the system of free

relativistic particles of mass m in D-dimensional Minkowskian spacetime, of the form

φ̂(x) =

∫
dD−1~k√

(2π)D−12ω~k

(
a~ke

i~k·~x−iω~kx
0

+ a†~ke
−i~k·~x+iω~kx

0
)
, (1)

where xµ ≡ (x0, ~x) is the space-time coodinate, ~x is the (D− 1)-dimensional spatial position

vector, ~k is the spatial momentum vector, and ω~k ≡
√
~k2 +m2 is the energy of a particle

according to the relativistic dispersion relation. a~k and a†~k are annihilation and creation

operators that obey the commutation relations

[a~k, a~k′ ] = 0 = [a†~k, a
†
~k′

], [a~k, a
†
~k′

] = δD−1(~k − ~k′). (2)

(a) Verify the equal-time commutation relations

[φ̂(x0, ~x), φ̂(x0, ~y)] = 0, [φ̂(x0, ~x),
∂

∂x0
φ̂(x0, ~y)] = i δD−1(~x− ~y). (3)

(b) The stress-energy tensor operator T̂µν(x) is given by

T̂µν(x) =: ∂µφ̂(x)∂νφ̂(x) : −ηµν
[

1

2
: ∂ρφ̂(x)∂ρφ̂(x) : +

1

2
m2 : (φ̂(x))2 :

]
, (4)

where : · · · : stands for the normal ordering, defined simply by moving the a†’s to the left of

the a’s in a product of creation and annihilation operators. The derivation of this expression

through the Noether procedure will be discussed in class later. For now you are asked to

simply take the expression as given, and verify the conservation relation

∂µT̂
µ
ν(x) = 0, (5)

where ∂µ ≡ ∂
∂xµ

, and the Lorentz indices are raised or lowered by contracting with ηµν or

ηµν .
1 A consequence is that

P̂ µ =

∫
dD−1~x T̂ 0µ(x) (6)

1In our convention, the Minkowskian metric (ηµν), as well as its inverse matrix (ηµν), is given by

diag{−1, 1, · · · , 1}.
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is independent of time x0, i.e. conserved. Verify that P̂ 0 is the Hamiltonian and
~̂
P is the

total spatial momentum operator as mentioned in the first lecture.

Also verify that the boost-angular-momentum operator

Ĵµν =

∫
dD−1~x

[
xµT̂ 0ν(x)− xνT̂ 0µ(x)

]
(7)

is conserved.

(c) In class we asserted the Poincaré transformation property of φ̂(x),

φ̂(Λx+ a) = U(Λ, a)φ̂(x)(U(Λ, a))−1. (8)

Verify this relation for the infinitesimal transformation and its corresponding unitary oper-

ator

Λµ
ν = δµν + ωµν , U(Λ, a) = 1− iaµP̂µ +

i

2
ωµν Ĵ

µν , (9)

where ωµν and aµ are infinitesimal constants (i.e. we keep only first order terms in the Taylor

series in ω and a). Hint: you may simplify your computations making use of the result from

step (a).
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Problem 2. Consider a free non-relativistic particle moving on a circle of radius R, whose

Lagrangian is

L(q, q̇) =
1

2
q̇2, (10)

where the coordinate q is periodically valued, namely

q ∼ q + 2πR. (11)

In this problem you will study the energy spectrum by analyzing the thermal partition

function 2

Z(β) = Tre−βĤ =

∫
dq 〈q|e−βĤ |q〉, (12)

where the trace is taken over the Hilbert space of the system, using the Euclidean path

integral representation

Z(β) =

∫
[Dq] exp

[
−
∫ β

0

dτ
1

2
(∂τq)

2

]
, (13)

where q(τ) is subject to the boundary condition

q(β) = q(0) mod 2πR. (14)

(a) A general real function q(τ) subject to (14) may be expanded in terms of Fourier modes

as

q(τ) = 2πRw
τ

β
+

∞∑
k=−∞

qke
2πikτ/β, (15)

where w is an integer, qk’s for k 6= 0 are complex coefficients that obey q−k = (qk)
∗, and q0

is a real periodically valued parameter, q0 ∼ q0 + 2πR. One might attempt to replace the

functional integration with integration over qk’s and sum over w:∫
[Dq]→?

∞∑
w=−∞

∫ 2πR

0

dq0

∫ ∞∏
k=1

dqkdq
∗
k. (16)

In fact, this is almost correct, up to certain normalization factors that depend on β. To

determine this normalization, one can start with the Hamiltonian form of the path integral,

Z(β) =

∫
DpDq exp

[∫ β

0

dτ(ip∂τq −H(p, q))

]
, (17)

2We have henceforth set ~ to 1.
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where q(τ) obeys (14) while p(τ) obeys p(β) = p(0), and express the functional integral as

one over the Fourier modes of q and p in the form∫
DpDq → N

∑
w

∫ ∏
k

dqkdpk
2π

, (18)

where N is assumed to be independent of β. Your task is to perform the integral over qk,

pk, and express the result in the form

Z(β) = N
∞∑

w=−∞

f(w), (19)

for some function f(w) (which also depends on β).

(b) Using Poisson resummation formula

∞∑
w=−∞

f(w) =
∞∑

n=−∞

∫ ∞
−∞

dw e2πinwf(w), (20)

rewrite your result for (19) as a sum over n. Compare with what you expect from the eigen-

values of the quantum Hamiltonian of this system. What is the value of the normalization

factor N ?

Remark: the RHS of (18), while reasonable looking, isn’t quite the same as the integration

over p, q at discrete time steps in the original derivation of the path integral from Hamiltonian

formalism. The two different ways of doing the functional integral differ by a Jacobian factor.

This difference can be absorbed by shifting the Lagrangian by a constant counter term that

depends on the time step. You are not required to analyze this Jacobian factor, but you may

have extra fun by doing so.
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