
Physics 253a Problem set 2

Due Thursday October 6, 2022

Problem 1. The quantum anharmonic oscillator is defined through the Hamiltonian

H =
1

2
p̂2 +

1

2
q̂2 +

1

4!
gq̂4. (1)

In class we discussed the path integral representation of the system with the Lagrangian

L(q, q̇) =
1

2
q̇2 − 1

2
q2 − 1

4!
gq4, (2)

or more conveniently, the Euclidean path integral with the Euclidean Lagrangian

LE(q, ∂τq) =
1

2
(∂τq)

2 +
1

2
q2 +

1

4!
gq4, (3)

where the Euclidean time τ is related to the real time t by Wick rotation t = −iτ . In this

problem you will analyze the two-point Euclidean Green function G(τ), defined as

G(τ) ≡

{
〈0|q̂(τ)q̂(0)|0〉, τ ≥ 0

〈0|q̂(0)q̂(τ)|0〉, τ < 0
(4)

where |0〉 stands for the ground state of the system, perturbatively through its path integral

representation

G(τ) =

∫
[Dq]e−

∫
dτLEq(τ)q(0)∫

[Dq]e−
∫
dτLE

. (5)

(a) Compute G(τ), or its Fourier transform G̃(k) related by

G(τ) =

∫
dk

2π
G̃(k)eikτ , (6)

at order g2, using Feynman diagrams as described in class.

(b) In class, we argued that G̃(k) takes the form

G̃(k) =
1

k2 + 1− Σ(k)
, (7)
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where Σ(k) is computed by 1PI diagrams, and that the poles of G̃(k) on the positive imag-

inary k-axis correspond to possible excitation energies of the state q̂(0)|0〉. What can you

conclude about the energy of excited states using the expression for Σ(k) up to order g2?

Remark: You could have extra fun by checking your answer against Hamiltonian pertur-

bation theory to second order, or even by solving Schrödinger’s equation numerically, but you

are not required to do so.
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Problem 2. Consider a scalar field theory in D dimensions, defined through the path

integral representation with the action

S[φ] =

∫
dDx

[
−1

2
ηµν∂µφ(x)∂νφ(x)− 1

2
m2(φ(x))2 − 1

3!
g(φ(x))3

]
, (8)

where xµ = (x0, x1, · · · , xD−1) and (ηµν) = diag{−1, 1, · · · , 1}, or more conveniently, the

Euclidean path integral with the Euclidean action1

SE[φ] =

∫
dDx

[
1

2
(∂µφ(x))2 +

1

2
m2(φ(x))2 +

1

3!
g(φ(x))3

]
, (9)

where x = (x1, · · · , xD), xD being the Euclidean time related to the real time x0 by the Wick

rotation x0 = −ixD.

(a) We begin by analyzing the vacuum expectation value

〈φ〉 ≡ 〈0|φ̂(x)|0〉 =

∫
[Dφ]e−S

E [φ]φ(x)∫
[Dφ]e−SE

, (10)

where |0〉 stands for the vacuum state, φ̂(x) is a local field operator defined through the path

integral quantization. Calculate 〈φ〉 at order g. You should find a divergent result whenever

D ≥ 2. We will cure this problem by carefully define the path integral using the following

regularization:

[Dφ]→
∏
|k|<Λ

dφ̃(k), (11)

where φ̃(k) are the Fourier modes of φ(x). This will effectively cut off the momentum integral

in the diagram for 〈φ〉 and result in an answer that depends on the cutoff Λ.

At this point we could proceed by redefining φ′(x) = φ(x) − 〈φ〉, and work with φ′(x)

which has vanishing vacuum expectation value. Alternatively, we may modify the action SE

by adding a counter term

∆SE =

∫
dDx cΛφ(x), (12)

such that 〈φ〉 = 0 after taking into account the contribution from this counter term. These

two procedures are equivalent up to a redefinition of m2. It will be convenient to adopt the

second point of view, and define the theory with the regularization (11) and the counter

term (12) included in the action, and take the limit Λ→∞ in the end.

1This Euclidean action is not bounded from below due to the cubic coupling, but we will ignore this issue

while working only perturbatively in g.
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(b) Now you will analyze the two-point Euclidean Green function G(x), defined as

G(x) ≡

{
〈0|φ̂(x)φ̂(0)|0〉, xD ≥ 0

〈0|φ̂(0)φ̂(x)|0〉, xD < 0
(13)

through its path integral representation

G(x) =

∫
[Dφ]e−S

E [φ]φ(x)φ(0)∫
[Dφ]e−SE

. (14)

Compute G(x), or its Fourier transform G̃(k) related by

G(x) =

∫
dDk

(2π)D
G̃(k)eik·x, (15)

at order g2. You should find a well-defined answer when D = 2, 3 (and a divergent result

when D = 4).

(c) By similar diagrammatics as discussed in the anharmonic oscillator example, we expect

G̃(k) here to take the form

G̃(k) =
1

k2 +m2 − Σ(k)
, (16)

and you have just determined Σ(k) at order g2 in step (b). Compare with the spectral

decomposition

G(x) =

∫
dα〈0|φ̂(0)|α〉ei ~Pα·~x−P 0

αx
D〈α|φ̂(0)|0〉 (xD > 0) (17)

where |α〉 is a basis of energy-momentum eigenstates that obey P̂ µ|α〉 = P µ
α |α〉, and the

measure dα is normalized such that
∫
dα|α〉〈α| = 1. What can you conclude about the

invariant masses of the states |α〉 that contribute to this Green function?

Remark: unlike in problem 1 where G̃(k) has only poles on the upper half imagine k-

plane, corresponding to discrete (normalizable) energy eigenstates, here G̃(k) as a function

of complex kD (say at fixed spatial momentum ~k) may have poles as well as branch cuts, the

latter corresponding to a continuum of (delta-function-normalizable) energy eigenstates.
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