
Physics 253a Problem set 3

Due Thursday October 20, 2022

Problem 1. Consider in D-dimensional spacetime a free scalar field theory with the La-

grangian density

L = −1

2
ηµν∂µφ∂νφ−

1

2
m2φ2. (1)

In class we have derived the Fourier representation of the time-ordered 2-point function

G(x, y) ≡ 〈Ω|Tφ̂(x)φ̂(y)|Ω〉 = −i
∫

dDk

(2π)D
eik·(x−y)

k2 +m2 − iε
(2)

where k · (x− y) = ~k · (~x− ~y)− k0(x0 − y0) and k2 = −(k0)2 + ~k2, as well as the Euclidean

2-point function

GE(xE, yE) ≡ 〈φ̂E(xE)φ̂E(yE)〉 =

∫
dDkE
(2π)D

eikE ·(xE−yE)

k2E +m2
, (3)

where kE · (xE − yE) =
∑D

µ=1 k
µ
E(xE − yE)µ and k2E =

∑D
µ=1(k

µ
E)2, and φ̂E(xE) is related to

φ̂(x) by the analytic continuation in x0 that takes x0 → −ixDE .

For general D, the k-integral can be expressed in terms of Bessel functions. When D

is an odd integer, the result is an elementary function. In this problem, you are asked to

consider the D = 3 case, and write an elementary expression for G(x, y), GE(xE, yE), as well

as the Wightman function

W (x, y) ≡ 〈Ω|φ̂(x)φ̂(y)|Ω〉. (4)

Explain how W (x, y) is related to GE(xE, yE) by analytic continuation, and how W (x, y)

differs from W (y, x) for time-like separated x, y.

To be sure that you understand what’s going on, make a plot for both the real and

imaginary part of W (x, 0) as a function of (real time) x0 in the case m = 0 for some fixed

spatial coordinate ~x 6= 0.
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Problem 2. Consider in D-dimensional spacetime a free complex scalar field theory with

the Lagrangian density

L = −ηµν∂µϕ∗∂νϕ−m2ϕ∗ϕ, (5)

where ϕ = φ1 + iφ2, ϕ
∗ = φ1 − iφ2. The U(1) symmetry that rotates the phase of ϕ is

associated with a Noether current operator, of the form1

ĵµ(x) = −i : ϕ̂∗(x)
←→
∂ µϕ̂(x) : (7)

where f
←→
∂ µg ≡ f∂µg − (∂µf)g.

(a) Verify that ĵµ is conserved, namely ∂µĵ
µ = 0 as an operator.

(b) Calculate the time-ordered 3-point correlation function

Hµ(x1, x2, x3) ≡ 〈Ω|Tϕ̂∗(x1)ϕ(x2)ĵ
µ(x3)|Ω〉

=

∫
dDk1
(2π)D

dDk2
(2π)D

H̃µ(k1, k2)e
ik1·x1+ik2·x2−i(k1+k2)·x3 .

(8)

(c) Calculate

∂

∂xµ3
Hµ(x1, x2, x3) =

∫
dDk1
(2π)D

dDk2
(2π)D

(−i(k1 + k2)µ)H̃µ(k1, k2)e
ik1·x1+ik2·x2−i(k1+k2)·x3 . (9)

Does the result vanish? Explain whether/how it is compatible with your answer to (a).

1An equivalent expression for ĵµ in terms of φ̂ is

ĵµ(x) = −i lim
y→x

[
ϕ̂∗(y)

←→
∂ µϕ̂(x)−

〈
ϕ̂∗(y)

←→
∂ µϕ̂(x)

〉]
. (6)
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Problem 3. In class we introduced the 1-particle state |~k〉 for a massive particle with no

internal degree of freedom, normalized according to 〈~k|~k′〉 = δD−1(~k − ~k′), on which the

Lorentz transformation acts by

U(Λ)|~k〉 =

√
(Λk)0

k0
|
−→
Λk〉, (10)

where k0 = ω~k ≡
√
~k2 +m2. Recall that for infinitesimal Lorentz transformation Λµ

ν =

δµν + ωµν , U(Λ) = 1 + i
2
ωµν Ĵ

µν . Restricting to the case of D = 4 spacetime dimensions, the

usual angular momentum operator ~J = (J1, J2, J3) is related by Ĵij =
∑3

k=1 εijkJk.

Now consider a two-particle state |~k1, ~k2〉. For now you may assume that the two particles

are not interacting, and that U(Λ) acts by the obvious generalization of (10) 2

U(Λ)|~k1, k2〉 =

√
(Λk1)0(Λk2)0

k01k
0
2

|
−−→
Λk1,

−−→
Λk2〉. (11)

Assuming the two particles are identical bosons, it is natural to normalize the two-particle

state according to

〈~k1, ~k2|~k′1, ~k′2〉 = δ3(~k1 − ~k′1)δ3(~k2 − ~k′2) + δ3(~k1 − ~k′2)δ3(~k2 − ~k′1). (12)

We can consider an alternative basis |E, ~P , `,m〉 for the two-particle state, that are eigen-

states with respect to the total energy-momentum vector (of eigenvalue (E, ~P )), and with

respect to the angular momentum squared ~J2 = `(`+1) and the angular momentum compo-

nent J3 = m defined in the center-of-mass frame. We will normalize these states according

to the convention

〈E, ~P , `,m|E ′, ~P ′, `′,m′〉 = δ(E − E ′)δ3(~P − ~P ′)δ``′δmm′ . (13)

It is easy to see that the overlap between the two kinds of basis states are of the form

〈~k1, ~k2|E, ~P , `,m〉 = δ(ω~k1 + ω~k2 − E)δ3(~k1 + ~k2 − ~P )f`m(E, ~P ; k̂1) (14)

where the function f`m depends only on E, ~P , and the unit vector k̂1 ≡ ~k1/|~k1|. Your task

is to determine f`m in the special case ~P = 0. In particular, show that

f`m(E, 0; k̂1) = N (E)Y`m(k̂1), (15)

where Y`m are the spherical harmonics, and determine the function N (E).

2We will see in class soon that this is true for the so-called in- and out- asymptotic scattering states in

an interacting quantum field theory as well.
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Problem 4. A key fact concerning the Lorentz transformation property of the 1-particle

state, as discussed in class, is that the action of U(Λ) on the 1-particle state is determined

through that of U(W ), where W is a Lorentz transformation that leaves the momentum of

the particle invariant. The set of all such W ’s for a given particle momentum is called the

“little group”. In this problem you will study the little group of a massless particle in D = 4

spacetime dimensions.

(a) We begin with a light-like reference momentum kµR,

(k0R, k
1
R, k

2
R, k

3
R) = (E, 0, 0, E). (16)

For any spatial momentum 3-vector ~k, and the corresponding light-like 4-momentum vector

(k0 = |~k|, ~k), we can construct a “standard” Lorentz transformation L(~k) that takes kR to

k as

L(~k) = M(~k) ·R1, (17)

where

(M(~k))µν = δµν +
(k − kR)µ(k − kR)ν

k · kR
, (18)

and R1 is the reflection in the x1-direction. Verify that (17) is indeed a Lorentz transforma-

tion of the desired property.

(b) W = (L(
−−→
ΛkR))−1Λ, which leaves kR invariant (i.e. WkR = kR) for any generic Lorentz

transformation Λ, is an element of the little group. Find an example of W that is not merely

a rotation about the x3 axis nor a reflection.

Remark: The structure of the massless little group you find here, as we will see in a few

weeks, is closely related to why the photon is necessarily described by a gauge theory.
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