
Physics 253a Problem set 4

Due Thursday November 3, 2022

Our convention for scattering amplitudes is such that the 2 → 2 S-matrix element (in

the case of identical in- and out-particles) is written as

S(~k′1,
~k′2|~k1, ~k2) ≡ out〈~k′1, ~k′2|~k1, ~k2〉in

= δD−1(~k′1 − ~k1)δD−1(~k′2 − ~k2) + δD−1(~k′1 − ~k2)δD−1(~k′2 − ~k1)
+ i(2π)DδD(k′1 + k′2 − k1 − k2)M(~k′1,

~k′2,
~k1, ~k2),

(1)

where M is related to the manifestly Lorentz invariant form of the amplitude A by

M(~k′1,
~k′2,

~k1, ~k2) ≡
2∏
j=1

1

(2π)
D−1
2

√
2ωk′j

2∏
i=1

1

(2π)
D−1
2
√

2ωki
A(k′1, k

′
2|k1, k2), (2)

where ωk ≡
√
~k2 +m2.

Also recall that in D = 4 dimensions, the partial wave amplitude S`(E), at total energy

E and angular momentum ~J2 = `(`+ 1) in the center-of-mass frame (~k1 +~k2 = ~k′1 +~k2 = 0)

is related by

i(2π)4M(~k′1,
~k′2|~k1, ~k2) = (N (E))2

1

4π

∑
`

(2`+ 1)P`(k̂1 · k̂′1)(S`(E)− 1), (3)

where P`(x) is the `-th Legendre polynomial. For identical particles, N (E) =
√

8

|~k1|E
, and

the sum is restricted to even non-negative integer `.

Problem 1. Consider a field theory in D = 4 dimensions described by the Lagrangian

density

L = −1

2
(∂µφ1)

2 − 1

2
(∂µφ2)

2 − 1

2
m2

1φ
2
1 −

1

2
m2

2φ
2
2 −

g

2
φ2
1φ2, (4)

where φ1(x) and φ2(x) are a pair of scalar fields, with m2 > m1 > 0.

(a) Calculate the 2 → 2 scattering amplitude A(k′1, k
′
2|k1, k2) of the lightest particle in

perturbation theory up to order g2 (tree level).
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(b) Calculate the ` = 0 partial wave (i.e. “s-wave”) amplitude S0(E) up to order g2. Below

the energy threshold for inelastic processes, unitarity implies that S0(E) is a phase. Is your

answer consistent with this expectation?

Problem 2. Consider the scalar field theory described by the same Lagrangian as in problem

1, but now in D = 4 − δ dimensions (δ > 0), and with additional linear counter terms so

that 〈φ1〉 = 〈φ2〉 = 0.

(a) Calculate the mass of the lightest particle, as well as the Z factor of φ1, in perturbation

theory up to order g2.

(b) Calculate the self-energy Σ2(k) of φ2 up to order g2, related to the time-ordered 2-point

function via

〈Ω|Tφ̂2(x)φ̂2(0)|Ω〉 = −i
∫

dDk

(2π)D
eik·x

k2 +m2
2 − iε− Σ2(k)

. (5)

Describe the spectral function ρ2(µ
2) related via the Källén-Lehmann spectral representation

1

k2 +m2
2 − iε− Σ2(k)

=

∫ ∞
0

dµ2 ρ2(µ
2)

k2 + µ2 − iε
. (6)

Note: there are two qualitatively distinct cases: (1) m2 < 2m1, and (2) m2 > 2m1.

(c) Interpret your results in the D → 4 (i.e. δ → 0) limit.

Problem 3. Consider the φ4 theory defined by the Lagrangian density

L = −1

2
(∂µφ)2 − 1

2
m2φ2 − g

4!
φ4 (7)

in D = 4− δ spacetime dimensions.

(a) Calculate the 2 → 2 amplitude A(k′1, k
′
2|k1, k2) up to order g2 (1-loop order). Express

your result as a function of the Mandelstam invariants

s = −(k1 + k2)
2, t = −(k1 − k′1)2, u = −(k1 − k′2)2. (8)

Note: you may choose to express the result in terms of the physical mass; there is no need

to compute the mass counter term explicitly.
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(b) Now take the D → 4 (δ → 0) limit. You should find a divergence that can be canceled

by a counter term of the form

∆L =
C

δ
g2φ4, (9)

where C is a numerical constant. The term (9) can be absorbed into the definition of the

bare coupling in the Lagrangian. Define a renormalized coupling gR via

−gR ≡ A|s=t=u= 4m2

3

, (10)

and then express the amplitude A at generic momenta as a function of the renormalized

coupling. (Hopefully, the result will be manifestly finite in the δ → 0 limit.)

Note: the condition on the RHS of (10) requires analytic continuation of the momenta

outside of the regime of physical kinematics; nonetheless, the mass-shell condition and the

momentum conservation is preserved, and such an analytic continuation is unambiguous.
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