
Physics 253b Problem set 2

Due Wednesday March 1, 2023

Problem 1. In Lagrangian mechanics, the configuration space need not admit a linear

(i.e. vector space) structure, and different parameterizations of the configuration space

via generalized coordinates lead to equivalent Euler-Lagrange equations. A basic example

of this is the three-dimensional rigid body, whose rotational configuration space is SO(3),

and one may formulate its Euler-Lagrange equation in terms of Euler angles, or any other

parameterization of SO(3). In this problem you will investigate the Lagrangian formulation

of a quantum field theory in which the fields parameterize a nonlinear configuration space.

Consider a theory of three scalar fields ϕ⃗ = (ϕ1, ϕ2, ϕ3) in four-dimensional spacetime

with the Lagrangian density

L = −M
2

4
Tr(∂µU∂

µU †), U(x) ≡ exp
[
iσ⃗ · ϕ⃗(x)

]
. (1)

Here σ⃗ = (σ1, σ2, σ3) are Pauli matrices, M is a constant parameter, and U(x) is a 2 × 2

unitary matrix.1

(a) Expand the Lagrangian density (1) to quartic order in ϕ⃗ and derive the Feynman rules

of up to 4-point vertices. Compute the tree-level 2 → 2 scattering amplitude of a pair of

particles created by ϕa, ϕb into a pair of particles created by ϕc, ϕd, for arbitrary a, b, c, d.

You should express your answer in terms of the independent Mandelstam variables, say s

and t.

(b) We could consider an alternative parameterization of the SU(2) matrix U(x),

U(x) ≡ 1

1 + ζ⃗(x) · ζ⃗(x)
(1 + iσ⃗ · ζ⃗(x))2, (2)

in terms of the scalar fields ζ⃗ = (ζ1, ζ2, ζ3). Expand (1) to quartic order in ζ⃗ and calculate

the same amplitude as in (a) but now for particles created by ζ fields. How does your result

compare to that of (a)?

1One may view U(x) as a field that takes value in SU(2), the space of 2×2 unitary matrices. Different ϕ⃗’s

that give the same U , e.g. ϕ⃗ = (v, 0, 0) versus ϕ⃗ = (v+2π, 0, 0), are viewed as the same field configuration. In

principle, the path integral measure should be defined in such a way that U(x) is the fundamental variable,

where ϕ⃗(x) is merely a local coordinate system on the configuration space. This subtlety is inconsequential

for the consideration of perturbation theory in this problem.
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(c) Expand the above tree-level 2 → 2 amplitude in terms of the partial wave amplitudes

Sℓ(s) for all non-negative integer ℓ. How does your answer compare with the unitarity bound

on Sℓ(s)?
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Problem 2. Recall that the QED Lagrangian density can be expressed in terms of the

renormalized vector potential Aµ(x) and electron field ψα(x) as

L = −1

4
ZAFµνF

µν − Zψψ̄(γ
µDµ +m0)ψ, (3)

where Fµν = ∂µAν − ∂νAµ, and Dµψ = ∂µψ + ieAµψ. Here e is the unit (physical) electric

charge, m0 is the bare (not physical) mass, ZA and Zψ are the field renormalization con-

stants, as usual defined such that the 1-photon component of Fµν(x)|Ω⟩ and the 1-electron

component of ψα(x)|Ω⟩ are normalized as in free field theories.2 In this problem we will

carry out perturbation theory by splitting (3) as

L = Lfree + Lint,

Lfree = −1

4
FµνF

µν − ψ̄(γµ∂µ +mR)ψ,

Lint = −ieAµψ̄γµψ − 1

4
(ZA − 1)FµνF

µν − (Zψ − 1)ψ̄(γµDµ +mR)ψ − Zψδmψ̄ψ,

(4)

and view Lfree as the free theory Lagrangian density, treating all terms in Lint as interactions

that are of order e or higher. Here mR = m0− δm is a finite quantity that we refer to as the

renormalized mass, which a priori need not agree with the physical mass m of the electron.

For the rest of this problem, we will choose mR to agree with the physical mass m.

The time-ordered 2-point function of the electron field takes the form

⟨Ω|Tψ̂α(x) ˆ̄ψβ(y)|Ω⟩ = −i
∫

d4k

(2π)4
eik·(x−y)

(
(i/k +m− iϵ− Σ(k))−1

)
α
β, (5)

where the self-energy Σ(k) is a matrix with spinor indices. Note that the self-energy of the

electron field is a priori gauge-dependent, since ψ̂α(x) is not a gauge-invariant operator. You

can adopt Feynman gauge for this problem.

Calculate Σ(k) at order e2, and determine Zψ as well as δm at this order. You can

regularize the UV divergence using dimensional regularization (setting spacetime dimension

D = 4 − ϵ), and regularize the IR divergence by cutting off the photon loop momentum at

a small mass scale µ. You should find in your final result that Σ(k) is free of UV divergence

(due to the way we defined Zψ and δm), but it does contain an IR divergence.

2Recall that we have calculated ZA at 1-loop order in 253a.
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Problem 3. Consider scalar QED defined by the action

S[A,φ] =

∫
d4x

(
−1

4
FµνF

µν − |Dµφ|2 −m2|φ|2
)
, (6)

where φ is a complex scalar field, Dµφ ≡ ∂µφ − iqAµφ. We will define an effective action

Seff [A] (this is similar to, but not the same as, the 1PI effective action introduced in class)

by performing the functional integral over φ,

eiSeff [A] =

∫
[DφDφ∗]eiS[A,φ]. (7)

Evidently, the RHS of (7) can be evaluated as a Gaussian integral, resulting in the effective

action (up to an inconsequential constant shift)

Seff [A] =

∫
d4x

(
−1

4
FµνF

µν

)
+ i log det

(
−DµDµ +m2

)
, (8)

where det(· · · ) stands for the determinant of a linear functional.

(a) Using log det = tr log, and the formula

log
H

µ
= −

∫ ∞

0

ds

s

(
e−sH − e−sµ

)
, (9)

calculate the RHS of (8) in the case of a constant magnetic field F12 ≡ B3. From the result,

deduce the correction to the energy density of a constant magnetic field due to coupling to

the charged scalar field.

(b) Extend your result of (a) to the case of a constant electric field F01 ≡ E1 by a suitable

analytic continuation.

(c) If you are sufficiently careful with the analytic continuation in (b), you should find that

in the presence of a constant electric field, Seff is complex. Calculate the imaginary part of

Seff in this case, and from the result deduce the probability of the electric field decaying via

pair production of charged particles per unit spatial volume per unit time.3

3Note that this effect is non-perturbative and could not have been seen at any given finite order in

perturbation theory with respect to the electric charge nor the electric field.
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