Physics 253b Problem set 4

Due Friday March 31, 2023

Consider the massless ϕ^4 theory in $D = 4 - \epsilon$ dimensions, defined by the bare Euclidean Lagrangian density

$$\mathcal{L}_E = \frac{1}{2} (\partial_\mu \phi)^2 + \frac{1}{2} m_0^2 \phi^2 + \frac{1}{4!} g_0 \phi^4, \tag{1}$$

where the bare mass m_0 is chosen such that the mass gap vanishes. As discussed in class, an appropriate definition of the dimensionless renormalized coupling $\lambda(\mu)$ is

$$\lambda(\mu) = -\mu^{-\epsilon} (Z(\mu))^2 \Gamma^{(4)}(k_1, k_2, k_3)|_{k_i^2 = \mu^2, \ s = t = u = -\frac{4}{3}\mu^2},\tag{2}$$

where $\Gamma^{(4)}(k_1, k_2, k_3)$ is computed by the 1PI diagram with four external momenta $k_1, k_2, k_3, -k_1 - k_2 - k_3$, and $Z(\mu)$ is related to the self-energy $\Sigma(k)$ by

$$Z(\mu) = \left. \left(1 - \frac{\partial \Sigma}{\partial k^2} \right)^{-1} \right|_{k^2 = \mu^2}.$$
(3)

The renormalized operator $[\phi]_{\mu}$ at mass scale μ is defined as

$$[\phi]_{\mu} = (Z(\mu))^{-\frac{1}{2}}\phi.$$
(4)

In the RG-improved perturbation theory, we compute Green functions at momenta scale μ , or equivalently distance scale μ^{-1} , through the perturbative expansion of Green functions of $[\phi]_{\mu}$ with respect to $\lambda(\mu)$, truncated to a certain order in $\lambda(\mu)$, and then substitute $\lambda(\mu)$ with its value determined through the RG equation truncated to the relevant loop order.

Recall that in class, we have studied the RG equation for $\lambda(\mu)$ at 1-loop order, and found the RG fixed point for λ up to order ϵ in the ϵ -expansion. We have also seen that at 1-loop order, $\Sigma(k)$ is independent of k and thus does not contribute to $Z(\mu)$.

(a) Calculate $\Sigma(k)$ (in the absence of mass gap) at 2-loop order in the naive perturbation theory, and then determine $Z(\mu)$ in the RG-improved perturbation theory by expressing

$$\gamma_{\phi}(\mu) \equiv \frac{1}{2} \frac{d \log Z(\mu)}{d \log \mu} \tag{5}$$

as a function of $\lambda(\mu)$, keeping up to order λ^2 terms, and using the solution for $\lambda(\mu)$ from the 1-loop RGE of the latter.

(b) Calculate the momentum space 2-point function of the renormalized operator $[\tilde{\phi}(p)]_{\mu}$

$$\langle [\widetilde{\phi}(p)]_{\mu} [\widetilde{\phi}(q)]_{\mu} \rangle \tag{6}$$

in the RG-improved perturbation theory, with the choice $\mu = |p|$ and the expansion of (6) in $\lambda(\mu)$ truncated to order λ^2 .

(c) How does the 2-point function $\langle \phi(x)\phi(0) \rangle$ behave at large |x|? Determine the scaling dimension of the operator $\phi(x)$ at the infrared RG fixed point to order ϵ^2 .