
Physics 253b Problem set 5

Due Friday April 7, 2023

Problem 1. Consider a 0-dimensional analog of Yang-Mills theory where the spacetime is

replaced by a point and the gauge field variable1 is replaced by an N ×N unitary matrix U ,

with the Euclidean action

S(U) = −λTr(U + U−1). (1)

The U(N) “gauge” transformation on U takes the form

U 7→ gUg−1, (2)

where g is an arbitrary N × N unitary matrix. The analog of the path integral for the

partition function is

Z =
1

vol(U(N))

∫
U(N)

dU e−S(U), (3)

where dU is the Haar measure on U(N), with the defining property dU = d(gU) = d(Ug) for

any unitary g, and vol(U(N)) ≡
∫
U(N)

dU . Note that the overall normalization convention

of the Haar measure drops out of (3), and that Z is unambiguously defined as a function of

λ.

(a) Any unitary matrix U can be brought to a diagonal one by a gauge transformation of

the form (2), and thus we can partially fix the gauge redundancy by imposing the condition

Uab = δabe
iθa , a, b = 1, · · · , N, (4)

where θ1, · · · , θN are unconstrained real variables. Following the Faddeev-Popov procedure,

find the Faddeev-Popov determinant ∆ associated with the gauge condition (4) as a function

of θ⃗ = (θ1, · · · , θ), such that (3) is equal to

Z = CN

N∏
a=1

∫ 2π

0

dθa∆(θ⃗) e2λ
∑N

a=1 cos θa , (5)

for some λ-independent constant CN .

(b) In the case N = 2, we can parameterize the U(2) matrix U as

U ≡ eiα
(1 + iσ⃗ · x⃗)2

1 + x⃗2
, (6)

1More precisely, the unitary matrix U here is the analog of a closed Wilson loop in Yang-Mills theory.
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and write the Haar measure as

dU = f(α, x⃗)dαd3x⃗. (7)

Determine the function f(α, x⃗) (up to overall normalization), and verify that (3) is equivalent

to (5) by directly comparing the integration over (α, x⃗) in the former to the integration over

(θ1.θ2) in the latter (numerically if you are so inclined).
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Problem 2. In 253a we introduced a gauged fixed form of the free Maxwell theory, whose

action is

Snaive =

∫
d4x

[
−1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2
]
. (8)

Following the recipe of the BRST formalism introduced in class, we can now understand this

through the BRST-invariant action

S =

∫
d4x

[
−1

4
FµνF

µν +B∂µA
µ +

ξ

2
B2 + b ∂µ∂µc

]
, (9)

where the BRST variations of the field variables Aµ(x), B(x), b(x), c(x) take the form

δBAµ(x) = ϵ∂µc(x),

δBB(x) = 0,

δBb(x) = −ϵB(x),

δBc(x) = 0,

(10)

or equivalently, we may perform the Gaussian functional integration over B(x), leaving the

action

S̃ =

∫
d4x

[
−1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 + b ∂µ∂µc

]
, (11)

and the BRST variations of the field variables now take the form

δBAµ(x) = ϵ∂µc(x),

δBb(x) = ϵ
1

ξ
∂µA

µ(x),

δBc(x) = 0.

(12)

In this problem, you will analyze the Hilbert space of physical states in the BRST formalism,

in the Feynman gauge ξ = 1.

(a) You should observe that in the Feynman gauge, the part of the action involving Aµ takes

the form identical to that of 4 massless free scalars. Describe the full space of states in terms

of a Fock basis constructed using creation operators for Aµ and b, c fields.

(b) Find an explicit expression of the BRST operator Q̂B in terms of the creation and

annihilation operators for Aµ, b, c.

(c) Show that the BRST cohomology classes describing the physical 1-particle state are

precisely in correspondence with the 1-photon states of either positive or negative helicity,

nothing more and nothing less.
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